
Advances in Electrical and Computer Engineering Volume 20, Number 2, 2020

IoT Framework for Interoperability in the
oneM2M Architecture

Seongju KANG, Kwangsue CHUNG
Department of Electronics and Communications Engineering,

Kwangwoon University, Seoul, South Korea
kchung@kw.ac.kr

1 Abstract—The IoT is expected that many devices and

sensors can be interconnected and interact over the Internet.
Conventional IoT solutions rely on vertically developed
machine-to-machine solutions that yield limited
interoperability. To ensure interoperability between IoT
solutions, the oneM2M global initiative defines a horizontal
M2M service layer. To provide more intelligent services, such
as autonomous interaction services, semantic-level
interoperability should be ensured. Previous studies have
proposed solutions based on ontologies to realize semantic level
interoperability. However, in dynamic environments such as
IoT, where data generated by many devices must be processed,
an ontology leads to a system performance degradation owing
the overhead of the resource mapping mechanism. In this
study, we propose a semantic IoT framework based on the
Resource Description Framework graph extension scheme. We
utilize an aggregator based on the oneM2M standard platform.
All data are represented as an RDF graph, and reconfigured
dynamically through semantic queries. The proposed semantic
IoT gateway provides a user-based rule management
mechanism via the Web, thereby enabling rule configuration to
be dynamically tailored to user requirements. Finally, the
performance is evaluated compared with a solution that utilizes
an ontology in a real IoT system.

Index Terms—inference mechanisms, information science,
internet of things, semantic web, standardization.

I. INTRODUCTION

The Internet of Things (IoT) provides various solutions
by interconnecting “things” such as sensors, devices, and
gateways. The conventional IoT relies on vertically
developed machine-to-machine (M2M) solutions, optimized
for data processing and communications between
applications and devices. These solutions allow limited
interactions between IoT domains, because of the various
protocols, data types, and data formats that they utilize. To
overcome the problem of the fragmented IoT market, seven
Standards Development Organizations (SDOs) have
established the oneM2M global initiative [1]. oneM2M
defines the Common Service Functions (CSFs) for the
horizontal service layer, and supports them with the
RESTful Application Programming Interface (API) of the
oneM2M platform. The oneM2M service layer guarantees
communication-level interoperability between IoT service
domains on a global scale [2].

To provide intelligent services, IoT solutions should be

able to interact with both people and things [3]. Semantic-
level interoperability is necessary to achieve interoperability
between different data schemes and convert them to a
common vocabulary to be interpreted by machines. In
current IoT solutions, the server or gateway only receives
syntactic data for events that occur on the device or end
products. That is, the service platform knows whether events
have occurred, but does not understand what the events
mean. Using semantic technology, syntactic data can be
represented as semantic data that can be understood by
machines. The service platform can understand the meaning
of contextual data through semantic data, which enables a
suitable processing of data and facilitates decision-making.

1 This work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded by the Korea
government(MSIT) (No.2017-0-00167, Development of Human
Implicit/Explicit Intention Recognition Technologies for Autonomous
Human Interaction).

Previous studies have utilized ontologies as IoT solutions
for semantic interoperability. An ontology is a tool for
implementing a semantic Web for organizing and
representing information, and has advantages in terms of
information integration, information retrieval, and
knowledge management [4]. Many ontologies are available
in IoT, such as the Smart Application REFerence ontology
(SAREF), Semantic Sensor Network (SSN), and Sensor
Observation Sampling Actuator ontology (SOSA) [5-7]. An
ontology provides a metadata schema based on explicitly
defined semantic vocabularies. This schema allows the
service platform to interpret the meanings of events or data
that occur. For example, a movie ontology can be employed
in a movie information service platform to manage related
information, such as movie titles, directors, and actors. In
addition, the service provider can recommend movies of
similar genres and related queries to the user. Ontologies
provide efficient querying and reasoning in static
environments, where data creation and update intervals are
infrequent. However, in dynamic environments such as IoT,
where data generated by many devices must be processed,
ontologies are not suitable, owing the overhead of the
resource mapping process and query rewriting, which leads
to a system performance degradation.

In IoT, an ontology mapping process should be performed
to understand all the syntactic data generated by many
devices and sensors. In addition, because not all devices and
sensors can be described with a single ontology, integration
with other ontologies is necessary. The ontology integration
process requires ontology alignment via a matching
algorithm to associate all ontologies with the same semantic
vocabulary [8-10]. Ontologies are efficient for resource
sharing and management, but have limitations in describing
and managing all the data generated by devices and sensors
as semantic data. In addition, because the range of semantic
interoperability is limited to platforms’ own ontologies, it is

 11
1582-7445 © 2020 AECE

Digital Object Identifier 10.4316/AECE.2020.02002

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 10:23:44 (UTC) by 54.221.110.87. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 2, 2020

necessary to integrate ontologies to enable interactions with
other platforms.

In this study, we propose an IoT framework based on the
Resource Description Framework (RDF) graph extension
scheme. Data are integrated via an aggregator based on the
oneM2M-based platform, to enable interoperability of
communication levels in the vertical IoT domains. The
integrated data are represented by an RDF graph on the
semantic IoT gateway and autonomously managed through a
selective semantic query-based mechanism. In addition, the
gateway provides a user-based rule management mechanism
that allows users to dynamically create or modify rules. The
proposed IoT framework achieves semantic level
interoperability in a dynamic environment, such as IoT, via
these mechanisms.

The remainder of this paper is organized as follows. In
Section 2, we discuss how to ensure full interoperability in
IoT, and review related work. In Section 3, we describe the
RDF graph extension scheme, and semantic data
management mechanism for guaranteeing semantic
interoperability in the proposed semantic IoT framework. In
Section 4, we evaluate the performance of the proposed
scheme in a real IoT environment by comparing it with an
existing ontology-based solution. Finally, we present the
conclusions of this study and discuss future work in Section
5.

II. RELATED WORK

In this section, we discuss how to ensure interoperability
and review related work. Moreover, we discuss why
ontologies are not suitable for IoT, and present conditions
for semantic interoperability in IoT.

A. Interoperability

Interoperability is the property that one system can be
utilized compatibly with other systems of the same or
different kinds. There are many layers of interoperability,
such as business process, semantic, organizational, and
communication [11-12]. To provide intelligent and
autonomous services, IoT solutions should ensure various
levels of interoperability. For interoperability in IoT
environments, communication-level interoperability should
be ensured to allow each device to share and integrate
resources with other devices. In addition, to process data
autonomously, resources should be represented through
explicitly defined vocabularies that can be shared and
reused. Therefore, semantic-level interoperability should
also be ensured, to make service platforms able to
understand the meanings of occurred events and exchanged
resources. We focus on guaranteeing these two levels of
interoperability in IoT systems.

Communication-level interoperability is a substantial
problem in vertical silo domains. Vertically developed M2M
solutions that employ heterogeneous protocols, data types,
and data formats cannot communicate with each other
without a proxy or human intervention. To solve this
problem, seven SDOs, in Korea (TTA), Europe (ETSI),
China (CCSA), USA (ATIS/TIA), and Japan (TTC/ARIB),
have established the oneM2M global initiative. To minimize
fragmentation in the M2M service layer, oneM2M defines
IoT CSFs.

Fig. 1 illustrates the oneM2M system architecture, where
systems are divided into four functional node types:
Infrastructure Node (IN), Middle Node (MN), Application
Service Node (ASN), and Application Dedicated Node
(ADN). Each functional node has a Common Service Entity
(CSE) or Application Entity (AE) [13]. A CSE is a logical
entity that is instantiated in each functional node and
consists of a CSF. A CSE includes the defined IoT CSFs,
such as device management, registration, and resource
management. An AE is an entity that provides application
logic to facilitate M2M solutions such as remote control and
monitoring. Services provided by a CSE and AE are
represented in resource form. The oneM2M resource is
uniquely specified by a Uniform Resource Identifier (URI).
oneM2M provides a horizontal service layer based on CSFs
and the application logic used in functional nodes. Through
the represented URI, the common service layer performs
Create, Retrieve, Update, Delete, and Notify (CRUDN)
using a RESTful API. In addition, it supports protocol
bindings including Constrained Application Protocol
(CoAP), Message Queue Telemetry Transport (MQTT), and
Hyper Text Transfer Protocol (HTTP), and interworking
with technologies such as 3rd Generation Partnership
Project (3GPP), Open Connectivity Foundation (OCF), and
Lightweight M2M (LwM2M). The oneM2M is a global
initiative to ensure the interoperability of communication
levels.

Figure 1. oneM2M standard architecture

The semantic Web is an extended Web technology that

enables machines to integrate and exchange information
through machine-readable vocabularies [14]. Semantic
technology enables machines to understand the meaning of
data and infer new knowledge through relationships between
data. Linked open data (LOD) is the most fundamental
concept for realizing semantic Web technologies [15]. Fig. 2
shows the building blocks of the semantic Web
technologies. The RDF for representing the LOD concept
was standardized by the World Wide Web Consortium
(W3C). This RDF enables the association and integration of
the relationships between multiple resources through
standardized identifiers [16]. An RDF graph consists of
RDF triples, which each consists of a subject, a predicate,
and an object. Fig. 3 presents an example of an RDF graph.
The subject and each object are connected through a
predicate, which indicates the relationship. The object can
also be a subject, and connected with an RDF triple or
object.

 12

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 10:23:44 (UTC) by 54.221.110.87. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 2, 2020

Querying :
SPARQL

Ontology :
OWL

Rule : SWRL

RDFS

Semantic : RDF

Syntax : XML

Trust, Proof, Unifying Logic

User Interface and Application

Figure 2. Building blocks of semantic Web technologies

Subject

Object
Object

(Subject)

Predicate Predicate

Object Object

PredicatePredicate

Figure 3. Example of RDF graphs

The data storage and management schema in the

DataBase Management System (DBMS) must define the
relationships between the tuples to be connected in the table
configuration step, and further work is required on related
tuples to add relations with new tuples. To search related
data, the DBMS requires complex query statements. In
contrast, the RDF can use predicates to represent resource
relationships. Moreover, an RDF graph can be searched
using a semantic query statement, and it is easy to search for
related resources. Compared to a DBMS, RDF graphs have
advantages in terms of data management and expansion.

Ontology Web language (OWL) and RDF schema
(RDFS) are machine interpretable knowledge representation
languages standardized by the W3C for sharing and
providing knowledge. RDFS provides a vocabulary for
structuring RDF resources and representing relationships
among resources. OWL provides a richer vocabulary than
RDF and RDFS, providing a variety of sublanguages with
properties of reasoning completeness and time complexity.
Semantic protocol and RDF query language (SPARQL)
supports queries composed of RDF triples. Using SPARQL,
semantic queries on rules and knowledge can be performed
on ontologies that are designed for OWL and RDFS.
Semantic Web rule language (SWRL) is an OWL-based rule
language that enables a high level of matching and
reasoning to better query OWL vocabularies and
relationships compared to SPARQL. Ontologies can be
shared and reused through integration with other ontologies
via ontology matching algorithms based on semantic
annotations. In an IoT system, a machine can understand
resources based on an ontology and can infer relationships
between resources through the object properties or
predicates of resources.

B. Related work

In [17], the Semantic Rule Engine (SRE) was proposed
for industrial IoT gateways. The SRE consists of a semantic
engine and a rule engine, and executes rules based on the
Lua script language, which is a lightweight language that is

available in the Java and C platforms. The rules rely on a
device’s semantic annotations, and are not tied to the unique
identifier or any other binding. Hence, even if the topology
changes flexible and independent semantic functions can be
performed. The SRE also provides life-cycle management of
its rules, which can be managed in real time. Based on
semantically annotated data, the rule engine compares a
value with the threshold value and performs the operation
according to the logic specified in the rule. The SRE
provides a dynamic mechanism for a rule and matching via
the rule engine and semantic engine. However, it does not
address a dynamic mechanism for connecting devices or
sensors.

In [18], IoT-O was proposed to ensure semantic
interoperability in the oneM2M architecture. IoT-O is a new
ontology, which merges five ontologies for sensors,
observations, actuators, actuations, and service models
respectively. The main objective of the IoT-O ontology is a
dynamic reconfiguration of CSE resources to interconnect
applications according to semantic descriptions. Instances of
IoT-O are generated based on the locations of oneM2M
resources. However, IoT-O provides insufficient rules and
resource management mechanisms, and requires predefined
properties such as temperature, luminosity, and humidity to
generate automated rules.

The authors of [19] proposed IoT-Lite, which is a
lightweight IoT model based on the SSN ontology. The
authors noted that the detailed descriptions for facilitating a
flexible description of the ontologies require heavy queries
to perform semantic functions. IoT-Lite is designed as a
core lightweight ontology, which excludes the nonessential
components of SSN. Because IoT-Lite focuses on the
semantic interoperability of multiple sensors and the
processing of data generated by sensors, integration with
other ontologies is required for use in a real IoT scenario. In
addition, it does not address management mechanisms for
dynamic configuration and semantic functions.

In [20], the authors proposed a methodology for agnostic
endpoints, which can provide interoperability through
devices’ RESTful APIs. The endpoint analyzes the machine-
readable interface file and creates a semantic model of the
service input/output of the vendor. The endpoint can create a
unified model by defining common vocabularies for service
models from multiple vendors, and users can send requests
to a device through a generic input model and receive
services in an output model. The detailed implementation
and mechanism of the proposed methodology were not
described in that work. However, the methodology, which
manages the agnostic endpoint vendor API as an integrated
model and represents it through semantic data, can solve the
fundamental problem of semantic vocabulary definition.

Several other studies have considered interoperability
issues. In [21], a vision of how data and knowledge levels of
interoperability can be resolved in IoT was presented. The
authors of [22] discussed how to employ an ontology and
process semantic data to facilitate interoperability in IoT
environments. An ontology analyzes semantic annotations,
and can describe them as semantic data. Semantic
interoperability between vertical silos can be provided based
on the semantic annotation of IoT and legacy devices.
However, it is difficult to semantically annotate all data, and

 13

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 10:23:44 (UTC) by 54.221.110.87. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 2, 2020

semantic annotations do not include knowledge of M2M
interactions. Therefore, ontologies that use semantic
annotations are insufficient for handling large amounts of
data distributed across multiple IoT silos. In addition, for
ontology sharing and reuse, a semantic vocabulary matching
process and a new resource mapping mechanism of the
integrated ontology is needed are required.

Here, we identify a further problem: To understand the
data generated by all devices and sensors, we require an
ontology mapping process to describe syntactic data as
semantic data. IoT things generate a large amount of data. A
single mapping process has a small overhead, but it can lead
to a system performance degradation. In summary, an
ontology suffers from large overhead caused by the
ontology mapping process and the additional work required
to share resources between ontologies. For this reason,
conventional solutions based on ontologies have many
limitations in achieving semantic interoperability in IoT
environments.

Previous research has focused on autonomous inference
and resource management in a specified environment based
on its ontology and interoperability is only ensured for
limited resources. We propose the following conditions for
achieving enhanced communication-level and semantic-
level interoperability in IoT. First, generated data should be
integrated through an aggregator based on the IoT standard
platform. Conventional approaches to defining semantic
vocabularies for all devices and sensors have problems with
reprogramming and hard coding. Second, semantic data
should be represented based on a lightweight resource
representation model. A resource model that includes
detailed descriptions requires heavy queries to perform
semantic functions. Third, semantic data management
should be dynamically configurable according to the states
of devices and sensors and the data generated by IoT things
should be updated in real time to perform proper semantic
functions. Finally, a knowledge management mechanism
should be provided to enable rule reconfiguration according
to user requirements. The user can manage the rules through
the user interface of the Web or the application.

All authors have to personally sign the copyright transfer
form - with no exceptions. The signed copyright form has to
be scanned and uploaded by using the corresponding
interface on the website. There are some restrictions
regarding the length of the copyright file, so please read
carefully the instruction provided in the copyright file
uploading interface.

III. PROPOSED IOT FRAMEWORK

Communication-level interoperability can be ensured via
IoT standard platforms, such as OCEAN and IoTivity,
which provide many protocol bindings and equivalent data
formats. However, using ontologies to ensure semantic-level
interoperability in IoT environments has many limitations.
There is no ontology that provides a complete solution for
semantic vocabulary matching and resource mapping for
interactions on heterogeneous platforms, and it is difficult to
select an ontology that matches the target environments
among various existing ontologies.

A. Aggregator

In this study, we propose an IoT framework based on an
RDF graph extension scheme for communication-level and
semantic-level interoperability. In addition, to solve the
limitations of ontologies in IoT, we design a semantic data
model based on the oneM2M resource architecture. Fig. 4
illustrates the architecture of the proposed IoT framework,
which consists of an aggregator, a semantic IoT gateway,
and a Web client. To describe syntactic data in terms of
semantic data, a semantic vocabulary should be defined by
analyzing communication protocols and message formats.
The semantic vocabulary provides an equivalent
representation of the data generated by vertical silos.
However, defining an entire vocabulary requires expert
knowledge and skills, and problems of hard coding and
reprogramming arise when interconnecting new devices. In
addition, an ontology that represents all IoT devices and
sensors requires heavy queries to perform semantic
functions.

oneM2M
Translation

Rule
Customizing

Aggregator Semantic IoT Gateway Web Client

Semantic
Monitoring
& Modeling

Interworking
Interface

oneM2M
Database

Resource
Monitoring

Rule Making
& Matching

Semantic
Exposing

Semantic
Database

Device
Control

Resource
Viewer

RDF Graph

Figure 4. Semantic IoT framework architecture

To overcome this problem, it is necessary to define a

minimal semantic vocabulary to represent all data. An
aggregator based on the oneM2M standard provides a
solution for integrating data generated from vertical silos.
oneM2M resources are organized in a hierarchical structure
and identified by resource parameters. These resources can
be described as RDF triples by analyzing the parameters.
Because there is no need to define a semantic vocabulary for
all data generated by devices and sensors, hard coding and
reprogramming problems are prevented. In addition, the
oneM2M standard supports various protocol bindings to
perform interactions between heterogeneous platforms. The
aggregator ensures communication-level interoperability
and addresses fundamental problems for semantic-level
interoperability. The aggregated data are translated into
oneM2M resources, stored in the database, and managed.
Events for the creation, deletion, and updating of resources
generated by a device or sensor are reported to the gateway
in real time in the resource monitoring module. Because IoT
interconnects many devices and creates a large amount of
data, it is necessary to reduce the delays that occur in all
communications as much as possible. MQTT has a small
communication overhead compared to HTTP and a lower
delay compared to CoAP in a low-packet-loss environment
[23-24]. Therefore, the aggregator reports all events that
occur to the gateway using MQTT. The interworking
interface module modularizes the information on the API of
the vertical silos, and executes the device control command.

 14

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 10:23:44 (UTC) by 54.221.110.87. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 2, 2020

B. Semantic IoT gateway

We propose an RDF graph extension scheme that can
dynamically manage resources in an IoT environment. The
semantic IoT gateway represents the integrated oneM2M
resource in the aggregator as an RDF graph. Conventional
IoT solutions based on ontologies focus on rule design and
matching in a static environment with semantic modeling of
all devices and sensors. However, they do not address a
mechanism for dynamically managing connected devices.
For example, if a sensor device that measures temperature is
disconnected and there is no device to replace it, then the
consequences of inference become meaningless. Therefore,
it is necessary to have a mechanism that can dynamically
manage devices based on the health of the connection states
of the devices. The proposed semantic IoT framework for
achieving semantic interoperability provides a dynamic
configuration mechanism for connected devices. Fig. 5
illustrates the proposed RDF graph model based on the
oneM2M architecture. Various parameters are defined in
oneM2M [13]. Semantic IoT gateways use ty (type), pi
(parentId), ri (resourceId), and con (content) parameters and
a URI to represent hierarchical resource structures as
semantic data. The URI of the device and service graph
refers to the URI of the oneM2M RESTful API, which
represents the resource path within the oneM2M system.
The ty parameter represents the entity to which the resource
belongs. The gateway classifies the properties of resources
based on ty values. The ri parameter is the identifier of a
resource, and the pi parameter is the identifier of the parent
resource. The gateway associates the relationship between
the device and the service graph based on the ri and pi
parameters. The con parameter represents a service’s status
or value, such as temperature, humidity, or door status. The
semantic IoT gateway describes the oneM2M resource in
terms of semantic data based on the oneM2M resource
parameters. In addition, the gateway understands an
occurred event based on the op (operation), to (To), and fr
(From) parameters of the oneM2M standard message
specification. The op parameter is a value of post, get, put,
or delete method. For example, when the op parameter is 1,
this represents a message for a post method. The to and fr
parameters indicate the receiver and originator of a
oneM2M request message.

Associating by
semantic query

Predicate

Device

Type

Resource URI

Service List Service

Value

Command

Input
DataPoint

Output
DataPoint

Command
Value

Figure 5. Proposed RDF graph model

All oneM2M resources and events can be described by

semantic vocabularies, and the gateway can understand the
meanings of resources and generated events and

dynamically generate semantic queries. Therefore, users can
create or delete interaction rules between devices for
services represented by semantic data. The command graph
consists of the input and output datapoint, which refer to the
resource URI of the service graph. Through semantic
queries, the command value is associated with a value for
the service graph as a condition of rule execution.

Fig. 6 illustrates the RDF graph creation, updating, and
deletion processes. The gateway searches all resources
stored in the oneM2M database, and the semantic
monitoring and modeling module creates RDF graphs.
When a new device or sensor is registered as a oneM2M
resource, the gateway performs a semantic query based on
the reported syntactic data and creates an RDF graph using
that query. If the device is disconnected, then the gateway
deletes the RDF graph by performing a delete query via the
same mechanism. When an updating event occurs for a
service state, the semantic monitoring and modeling module
deletes the value object from the service graph and
regenerates the value object to update the graph. All RDF
graphs are stored in the semantic database and are provided
to the user via the Web client through the semantic exposing
module.

Semantic
Gateway

Aggregator
Device

(Sensor)

Device (Sensor) connected/
disconnectedEvent reporting

Web Client
(Application)

Resource retrieving

Provide resource

RDF graph creation

State (Value) update
Event reporting

RDF graph Updating

RDF graph exposing

RDF graph exposing

RDF graph creation/deletion

Figure 6. RDF graph creation, deletion, and updating processes for
proposed framework

Fig. 7 illustrates the process of user-based rule creation

and matching. The user sends a creation rule request to the
rule making and matching module through the Web client's
rule customizing module. The rule making and matching
module consists of a rule validator, rule manager, rule
matcher, and comparator. The rule validator checks the
validity of the rule requested by the user. For example, the
rule “set the room temperature to 23 degrees when the
temperature is below 25 degrees” causes the system to enter
an infinite loop. The rule manager creates a command graph
for rule creation requests that have passed validation. The
command graph consists of input datapoint and output
datapoint objects. The input datapoint is a condition object
of the rule that executes the rule and is connected to the
resource URI and the value object of the service graph
through a semantic query. The output datapoint is connected
to the resource URI and the value object of the actuator that
executes the rule through a semantic query. When the
resource monitoring module reports to the gateway on
events that occur on devices and sensors, the rule making
and matching module updates the RDF graph and searches
for rules using the rule matcher. If there is an input datapoint
for the resource URI of the updated service graph, the
comparator evaluates the updated value with the value of the

 15

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 10:23:44 (UTC) by 54.221.110.87. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 2, 2020

input datapoint. Based on the comparison result, the
oneM2M translator module composes a oneM2M message
to updating the resource URI object of the output datapoint
and sends it to the aggregator. The aggregator then performs
the service by calling the API of the actuator managed by
the interworking interface module. The rule manager
reduces unnecessary system behavior by deactivating the
rules of disconnected devices.

RDF graph exposing

Semantic
Gateway

Aggregator
Device

(Sensor)
Web Client

(Application)

Rule graph
creation/deletion

Request Rule creation/deletion

Device (Sensor) connected/
disconnectedEvent reporting

Rule graph
Activating/Inactivating

State (Value) update

RDF graph updating
& Rule matching

Event reporting

Send request message
Actuator control

Figure 7. Semantic rule creation and matching process of the proposed
framework

The RDF graph stored in the gateway’s semantic database

is provided to the user via the resource viewer module. The
Web client provides all the mechanisms for rule
management. The user can easily create rules for all devices
or sensors represented by RDF graphs via the Web UI,
rather than creating rules through hard coding at the code
level. Many previous studies have designed rules that meet
the user’s requirements by hard-coding through rich
expressions and conditions. The hard-coding method does
not allow the user to dynamically manage the created rules,
and additional work is required to create new rules. Through
the rule customizing module of the proposed framework, the
user can manage rules dynamically. In addition, the user can
control the device through the gateway by requesting an
update query for the device service status with the device
control module. The Web client provides all the semantic
functions through the Web UI, thereby eliminating the need
for expert knowledge and skills and providing an endpoint
that can satisfy the user requirements.

C. Difference from conventional solution

An ontology mapping algorithm should be utilized for the
server or gateway to understanding the meaning of data. In
the proposed scheme, the oneM2M standards-based
aggregator integrates data from vertical silos. The gateway
analyzes the oneM2M resource parameters and describes
them in an RDF graph. Therefore, the gateway does not
have to define a semantic vocabulary for all devices and can
manage resources by performing semantic queries
dynamically. The gateway performs semantic functions to
minimize the mapping process for the semantic vocabulary
through the lightweight RDF graph model illustrated in Fig.
5. Therefore, the semantic execution is faster compared to
ontology-based solutions and more suitable for the IoT
environment. In addition, the RDF graph extension scheme
provides a mechanism for dynamically managing semantic
data for M2M interactions through RDF graphs and
semantic queries.

IV. PERFORMANCE EVALUATION

The aggregator is implemented based on Mobius, which
is an opensource platform provided by OCEAN. We utilize
the Jena Framework to develop semantic functions, which is
a library for Java that supports RDF, OWL, Database, and
SPARQL [25]. We employ the Mosquitto MQTT broker,
and the MQTT client is implemented based on the Eclipse
Paho library. The aggregator operates on Linux OS with
Ubuntu, and the semantic IoT gateway operates on
Raspberry Pi 3 B+. We also implement an ontology-based
IoT framework for comparison experiments with the
proposed framework.

Fig. 8 shows the classes, object properties, and data
properties of the ontology, which was designed using
Protege [26]. We designed the ontology based on the RDF
graph model shown in Fig. 5, to perform the experiment
under similar conditions. In addition, all resource and rule
management are performed using the same mechanism for
both the ontology-based framework and the proposed
framework. We perform three comparative experiments to
evaluate the proposed IoT framework and the ontology-
based framework. All experiments are performed in a real
IoT environment and are used to evaluate the latency of
performing semantic functions. The latency is measured for
each module from the time at which the report on the event
is received from the aggregator to that at which the function
is completed.

Figure 8. Designed ontology based on RDF graph model in Figure 5

In the first experiment, we evaluate the resource update

function according to the number of devices. We measure
the execution time for resource updating by increasing the
number of devices from 50 to 1000. The average latency is
calculated based on 200 measurements in every case. Fig. 9
illustrate the results for latency of the update process as a
function of the number of devices. In experiments with less
than 200 devices, there is little change in the latency for
either framework. However, in experiments with over 300
devices, the latency of the proposed framework increased by
approximately 20 ms, whereas that of the ontology-based
framework increased by approximately 66 ms. The latency
difference between the two frameworks results from the
overhead in the resource mapping process of the ontology-
based framework. As the number of RDF triples increases,
the overhead of the resource mapping process increases the
semantic function time of the ontology-based framework.
The proposed framework demonstrates a performance
improvement of between 26.8% and 40.1% in all
experiments compared to the ontology-based framework.

 16

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 10:23:44 (UTC) by 54.221.110.87. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 2, 2020

50 100 200 300 500 1000
Proposed 222 226 224 226 232 244
Ontology 312 309 314 338 372 374

150

200

250

300

350

400
U

pd
at

e
E

xe
cu

ti
on

 T
im

e
(m

s)

Figure 9. Execution time for resource updating according to the number of
devices

In the second experiment, we measure the latency of

resource creation and deletion with 200 devices. We assume
that each device has one service. Fig. 10 presents the
execution time results for each resource creation and
deletion process. The proposed framework generates six
triples to represent each device. In contrast, the ontology-
based framework uses 97 triples to represent an ontology, as
illustrated in Fig. 8, and generates eight triples to represent a
single device. The proposed framework generates 1200
triples to represent 200 devices and the ontology-based
framework generates 1697 triples. In Fig. 10, the sums of
the latencies for generation and deletion differ by
approximately 52 ms and 71 ms, respectively, from the
results in Fig. 9. These differences in latency represent the
overheads that result from storing and managing the RDF
triples at the gateway. In this experiment, this involves a
tiny overhead of 0.04 ms per RDF triple. From the results of
the experiment, we can conclude that the number of RDF
triples does not have a noticeable effect on the latency of
performing semantic functions.

Create Resource Delete Resource
Proposed 79 93
Ontology 109 134

50

65

80

95

110

125

140

S
em

an
tic

 E
xe

cu
ti

on
 T

im
e

(m
s)

Figure 10. Execution time for semantic functions when 200 devices
connected

In the final experiment, we evaluate the rule matching

execution time as a function of the number of rules. We
perform the experiment by increasing the number of rules
from 50 to 1000. The average latency is calculated from 50
measurements in each case. Fig. 11 shows the execution
time for matching according to the number of rules. As
observed in the previous two experiments, there is a
difference in latency owing to resource mapping and triple
management overhead in the ontology and the proposed
framework improves performance by up to 27%.

50 100 200 300 500 1000
Proposed 10 15 21 32 44 83
Ontology 13 17 27 37 61 108

0

20

40

60

80

100

120

R
ul

e
M

at
ch

in
g

T
im

e
(m

s)

Figure 11. Execution time for rule matching according to the number of
rules

As the number of RDF triples increases, the latency

increases in the ontology-based solution owing to the
overhead of the resource mapping process. However,
because the proposed solution minimizes overheads of a
mapping mechanism, the latency for semantic function
execution is less affected by the number of triples. In IoT,
the number of RDF triples can increase exponentially, as
many devices are connected and devices have multiple
services. The proposed solution is more efficient in
processing all the data generated by devices or sensors than
the solution that utilizing the ontology.

We constructed an IoT environment as illustrated in Fig.
12 for rule-based interactions between heterogeneous
platform devices. The experimental environment consists of
five IoT platforms, namely Nest, Foobot, SmartThings,
Alljoyn and Philips, and a sensor that was developed with
Raspberry Pi 3B+. Each platform device performs device
registration, service registration, and resource creation based
on the oneM2M standard, without knowledge of the
semantic vocabulary used in the semantic gateway.

Figure 12. IoT environment for interaction between heterogeneous
platforms

Fig. 13 shows the results for rule-based interaction

between the Thermostat device of the Nest platform and the
LIFX device of the Alljoyn platform. We previously created
the following rule: "If the brightness of LIFX exceeds a
specified level, then the thermostat's target temperature
service controls the temperature to 28 degrees". When the
gateway receives a report concerning an event occurring in
LIFX, it searches the rule by understanding the meaning of
the event. If there is a rule as shown in Fig. 13, then the
comparator of the gateway checks the rule condition value
and executes the service defined in the output datapoint.

 17

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 10:23:44 (UTC) by 54.221.110.87. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 2, 2020

 18

[7] K. Janowicz, A. Haller, S. J. D. Cox, D. L. huoc, and M. Lefrancois,
“SOSA: A lightweight ontology for sensors, observations, samples,
and actuators”, Journal of Web Semantics, vo 56, pp. 1-10, 2019,
doi:10.1016/j.websem.2018.06.003.

[8] J. Kiljander, A. D’elia, F. Morandi, P. Hyttinen, J. Taskalo-mattila, A.
Ylisaukko-oja, J. Soininen, and T. S. Cinotti, “Semantic
Interoperability Architecture for Pervasive Computing and Internet of
Things”, IEEE Access, vol. 2, pp. 856-873, 2014,
doi:10.1109/ACCESS.2014.2347992.

[9] G. Stoilos, D. Geleta, J. Shamdasani, and M. Khodadadi, “A Novel
Approach and Practical Algorithms for Ontology Integration”, in Proc.
International Semantic Web Conference, vol. 11136, pp. 458-476,
2018, doi:10.1007/978-3-030-00671-6_27.

[10] G. Xiao, D. Hovland, D. Bilidas, M. Rezk, M. Giese, and D.
Calvanese, “Efficient Ontology-Based Data Integration with
Canonical IRIs”, in Proc. European Semantic Web Conference, vol.
10843, pp. 697-713, 2018, doi:10.1007/978-3-319-93417-4_45.

[11] H. Kubicek, R. Cimander, H. J. Scholl, “Organizational
Interoperability in E-government”, Springer Verlag, 2011.

[12] M. Ganzha, M. Paprzycki, W. Pawlowski, P. Szmeja, and K.
Wasielewska, “Towards Semantic Interoperability Between Internet
of Things Platforms”, Integration, Interconnection, and
Interoperability of IoT Systems, Springer, pp 103-127, 2017,
doi:10.1007/978-3-319-61300-0_6.

Figure 13. Rule-based interaction between Nest and Alljoyn platform

V. CONCLUSION

In this study, we proposed an IoT framework based on an
RDF graph extension schema to achieve enhanced
interoperability in IoT. We noted the following main
shortcoming of ontologies: To interact with new devices or
sensors, ontology-based solutions must define a semantic
vocabulary or utilize ontology integration mechanisms.
Defining semantic vocabularies for all IoT resource requires
human intervention and can lead to reprogramming and hard
coding problems. In addition, an ontology matching process
is required for all data for a machine to understand the
meaning of the data. We designed a lightweight RDF graph
model for M2M interactions that solves the ontology
problem in IoT. We integrate the data using the oneM2M
standard aggregator. The semantic gateway analyzes the
oneM2M resource parameters of the integrated data and
represents them as semantic data. We conducted a
comparative experiment with an ontology-based solution. In
terms of the experiment on the semantic function execution
time, the proposed framework outperformed the ontology-
based framework by up to 40%, and by up to 27% in terms
of rule matching. We have demonstrated experimentally that
the proposed framework is more suitable for IoT than an
ontology-based framework.

[13] oneM2M-TS-0001, “Functional architecture”, v3.11.0, 2018.
[14] K. Gilani, J. Kim, J. Song, D. Seed, and C. Wang, “Semantic

Enablement in IoT Service Layers-Standard Progress and
Challenges”, IEEE Internet Computing, vol. 22, pp. 56-63, 2018,
doi:10.1109/MIC.2018.043051465.

[15] P. Jain, P. Hitzler, A. P. Sheth, K. Verma, and P. Z. Yeh, “Ontology
Alignment for Linked Open Data”, in Proc. International Semantic
Web Conference, Springer, Berlin, Heidelberg, vol 6496. pp. 402-
417, 2010, doi:10.1007/978-3-642-17746-0_26.

[16] E. Miller, “An Introduction to the Resource Description Framework”,
Bulletin of the American Society for Information Science and
Technology, vol. 25, no. 1, pp. 15-19, 2005, doi:10.1002/bult.105.

[17] C. E. Kaed, I. Khan, A. V. D. Berg, H. Hossayni, and C. Saint-
Marcel, “SRE: Semantic Rules Engine for the Industrial Internet-of-
Things Gateways”, IEEE Transactions on Industrial Informatics, vol.
14, pp. 715-724, 2018, doi:10.1109/TII.2017.2769001.

[18] M. B. Alaya, S. Medjiah, T. Monteil, and K. Drira, “Toward Semantic
Interoperability in oneM2M Architecture”, IEEE Communications
Magazine, vol. 53, pp. 35-41, 2015,
doi:10.1109/MCOM.2015.7355582.

[19] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, and K. Taylor, “IoT-Lite:
a Lightweight Semantic Model for the Internet of Things and Its Use
with Dynamic Semantics”, Personal and Ubiquitous Computing, vol.
21, no. 3, pp. 475-487, 2017, doi:10.1007/s00779-017-1010-8.

[20] D. D. Marino, A. Esposito, S. A. Maisto, and S. Nacchia, “A
Semantic IoT Framework to Support RESTful Devices’ API
Interoperability”, in Proc. IEEE International Conference on
Networking, Sensing and Control, pp. 78-83, 2017,
doi:10.1109/ICNSC.2017.8000071.

[21] A. Mazayev, J. A. Martins, and N. Correia, “Interoperability in IoT
Through the Semantic Profiling of Object”, IEEE Access, vol. 6, pp.
19379-19385, 2017, doi:10.1109/ACCESS.2017.2763425.

REFERENCES [22] M. Ganzha, M. Paprzycki, W. Pawlowski, P. Szmeja, and K.
Wasielewska, “Semantic Interoperability in the Internet of Things: an
Overview from the INTER-IoT Perspective”, Journal of Network and
Computer Applications, vol. 81, pp. 111-124, 2017,
doi:10.1016/j.jnca.2016.08.007.

[1] J. Yun, I. Ahn, J. Song, and J. Kim, “Implementation of Sensing and
Actuation Capabilities for IoT Devices Using oneM2M Platforms”,
Sensors, vol. 19, no. 20, pp. 1-18, 2019, doi:10.3390/s19204567.

[2] J. Kim, J. Yun, S. Choi, D. N. Seed, G. Lu, M. Bauer, A. Al-Hezmi,
K. Campowsky, and J. Song, “Standard-based IoT Platforms
Interworking: Implementation, Experiences, and Lessons Learned”,
IEEE Communications Magazine, vol. 54, pp. 48-54, 2016,
doi:10.1109/MCOM.2016.7514163.

[23] T. Yokotani, and Y. Sasaki, “Comparison with HTTP and MQTT on
Required Network Resources for IoT”, in Proc. IEEE International
Conference on Control, Electronics, Renewable Energy and
Communications, pp. 1-6, 2016,
doi:10.1109/ICCEREC.2016.7814989.

[3] J. Miranda, N. Makitalo, J. Garcia-Alonso, J. Berrocal, T. Mikkonen,
C. Canal, and J. M. Murillo, "From the Internet of Things to the
Internet of People", IEEE Internet Computing, vol. 19, pp. 40-47,
2015, doi:10.1109/MIC.2015.24.

[24] D. Thangavel, X. Ma, A. Valera, H. X. Tan, and C. K. Y. Tan,
“Performance Evaluation of MQTT and CoAP via a Common
Middleware”, in Proc. IEEE International Conference on Intelligent
Sensors, Sensor Networks and Information Processing Conference,
pp. 1-6, 2014, doi:10.1109/ISSNIP.2014.6827678. [4] A. I. Maarala, X. S, and J. R, “Semantic matching for context-aware

Internet of Things applications”, IEEE Internet of Things Journal, vol.
4, pp. 461-473, 2017, doi:10.1109/JIOT.2016.2587060.

[25] B. McBride, “Jena: a semantic Web toolkit”, IEEE Internet
Computing, vol. 6, no. 6, pp. 55-59, 2002,
doi:10.1109/MIC.2002.1067737. [5] L. Daniele, F. D. Hartog, and J. Rose, “Created in Close Interaction

with the Industry: The Smart Appliances REFerence (SAREF)
Ontology”, International Workshop Formal Ontologies Meet
Industries, vol. 255, pp. 100-112, 2015, doi:10.1007/978-3-319-
21545-7_9.

[26] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and
M. A. Musen, “Creating Semantic Web contents with Protégé-2000”,
IEEE Intelligent Systems, vol. 16, no. 2, pp. 60-71, 2001,
doi:10.1109/5254.920601.

[6] “W3C SSN Incubator Group Report”, 2011. [Online] Available:
https://www.w3.org/2005/Incubator/ssn/

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 10:23:44 (UTC) by 54.221.110.87. Redistribution subject to AECE license or copyright.]

