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1 Abstract—The IoT is expected that many devices and 

sensors can be interconnected and interact over the Internet. 
Conventional IoT solutions rely on vertically developed 
machine-to-machine solutions that yield limited 
interoperability. To ensure interoperability between IoT 
solutions, the oneM2M global initiative defines a horizontal 
M2M service layer. To provide more intelligent services, such 
as autonomous interaction services, semantic-level 
interoperability should be ensured. Previous studies have 
proposed solutions based on ontologies to realize semantic level 
interoperability. However, in dynamic environments such as 
IoT, where data generated by many devices must be processed, 
an ontology leads to a system performance degradation owing 
the overhead of the resource mapping mechanism. In this 
study, we propose a semantic IoT framework based on the 
Resource Description Framework graph extension scheme. We 
utilize an aggregator based on the oneM2M standard platform. 
All data are represented as an RDF graph, and reconfigured 
dynamically through semantic queries. The proposed semantic 
IoT gateway provides a user-based rule management 
mechanism via the Web, thereby enabling rule configuration to 
be dynamically tailored to user requirements. Finally, the 
performance is evaluated compared with a solution that utilizes 
an ontology in a real IoT system. 
 

Index Terms—inference mechanisms, information science, 
internet of things, semantic web, standardization. 

I. INTRODUCTION 

The Internet of Things (IoT) provides various solutions 
by interconnecting “things” such as sensors, devices, and 
gateways. The conventional IoT relies on vertically 
developed machine-to-machine (M2M) solutions, optimized 
for data processing and communications between 
applications and devices. These solutions allow limited 
interactions between IoT domains, because of the various 
protocols, data types, and data formats that they utilize. To 
overcome the problem of the fragmented IoT market, seven 
Standards Development Organizations (SDOs) have 
established the oneM2M global initiative [1]. oneM2M 
defines the Common Service Functions (CSFs) for the 
horizontal service layer, and supports them with the 
RESTful Application Programming Interface (API) of the 
oneM2M platform. The oneM2M service layer guarantees 
communication-level interoperability between IoT service 
domains on a global scale [2]. 

To provide intelligent services, IoT solutions should be 

able to interact with both people and things [3]. Semantic-
level interoperability is necessary to achieve interoperability 
between different data schemes and convert them to a 
common vocabulary to be interpreted by machines. In 
current IoT solutions, the server or gateway only receives 
syntactic data for events that occur on the device or end 
products. That is, the service platform knows whether events 
have occurred, but does not understand what the events 
mean. Using semantic technology, syntactic data can be 
represented as semantic data that can be understood by 
machines. The service platform can understand the meaning 
of contextual data through semantic data, which enables a 
suitable processing of data and facilitates decision-making. 

 
1 This work was supported by Institute for Information & 

communications Technology Promotion(IITP) grant funded by the Korea 
government(MSIT) (No.2017-0-00167, Development of Human 
Implicit/Explicit Intention Recognition Technologies for Autonomous 
Human Interaction). 

Previous studies have utilized ontologies as IoT solutions 
for semantic interoperability. An ontology is a tool for 
implementing a semantic Web for organizing and 
representing information, and has advantages in terms of 
information integration, information retrieval, and 
knowledge management [4]. Many ontologies are available 
in IoT, such as the Smart Application REFerence ontology 
(SAREF), Semantic Sensor Network (SSN), and Sensor 
Observation Sampling Actuator ontology (SOSA) [5-7]. An 
ontology provides a metadata schema based on explicitly 
defined semantic vocabularies. This schema allows the 
service platform to interpret the meanings of events or data 
that occur. For example, a movie ontology can be employed 
in a movie information service platform to manage related 
information, such as movie titles, directors, and actors. In 
addition, the service provider can recommend movies of 
similar genres and related queries to the user. Ontologies 
provide efficient querying and reasoning in static 
environments, where data creation and update intervals are 
infrequent. However, in dynamic environments such as IoT, 
where data generated by many devices must be processed, 
ontologies are not suitable, owing the overhead of the 
resource mapping process and query rewriting, which leads 
to a system performance degradation. 

In IoT, an ontology mapping process should be performed 
to understand all the syntactic data generated by many 
devices and sensors. In addition, because not all devices and 
sensors can be described with a single ontology, integration 
with other ontologies is necessary. The ontology integration 
process requires ontology alignment via a matching 
algorithm to associate all ontologies with the same semantic 
vocabulary [8-10]. Ontologies are efficient for resource 
sharing and management, but have limitations in describing 
and managing all the data generated by devices and sensors 
as semantic data. In addition, because the range of semantic 
interoperability is limited to platforms’ own ontologies, it is 
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necessary to integrate ontologies to enable interactions with 
other platforms. 

In this study, we propose an IoT framework based on the 
Resource Description Framework (RDF) graph extension 
scheme. Data are integrated via an aggregator based on the 
oneM2M-based platform, to enable interoperability of 
communication levels in the vertical IoT domains. The 
integrated data are represented by an RDF graph on the 
semantic IoT gateway and autonomously managed through a 
selective semantic query-based mechanism. In addition, the 
gateway provides a user-based rule management mechanism 
that allows users to dynamically create or modify rules. The 
proposed IoT framework achieves semantic level 
interoperability in a dynamic environment, such as IoT, via 
these mechanisms. 

The remainder of this paper is organized as follows. In 
Section 2, we discuss how to ensure full interoperability in 
IoT, and review related work. In Section 3, we describe the 
RDF graph extension scheme, and semantic data 
management mechanism for guaranteeing semantic 
interoperability in the proposed semantic IoT framework. In 
Section 4, we evaluate the performance of the proposed 
scheme in a real IoT environment by comparing it with an 
existing ontology-based solution. Finally, we present the 
conclusions of this study and discuss future work in Section 
5. 

II. RELATED WORK 

In this section, we discuss how to ensure interoperability 
and review related work. Moreover, we discuss why 
ontologies are not suitable for IoT, and present conditions 
for semantic interoperability in IoT. 

A. Interoperability 

Interoperability is the property that one system can be 
utilized compatibly with other systems of the same or 
different kinds. There are many layers of interoperability, 
such as business process, semantic, organizational, and 
communication [11-12]. To provide intelligent and 
autonomous services, IoT solutions should ensure various 
levels of interoperability. For interoperability in IoT 
environments, communication-level interoperability should 
be ensured to allow each device to share and integrate 
resources with other devices. In addition, to process data 
autonomously, resources should be represented through 
explicitly defined vocabularies that can be shared and 
reused. Therefore, semantic-level interoperability should 
also be ensured, to make service platforms able to 
understand the meanings of occurred events and exchanged 
resources. We focus on guaranteeing these two levels of 
interoperability in IoT systems. 

Communication-level interoperability is a substantial 
problem in vertical silo domains. Vertically developed M2M 
solutions that employ heterogeneous protocols, data types, 
and data formats cannot communicate with each other 
without a proxy or human intervention. To solve this 
problem, seven SDOs, in Korea (TTA), Europe (ETSI), 
China (CCSA), USA (ATIS/TIA), and Japan (TTC/ARIB), 
have established the oneM2M global initiative. To minimize 
fragmentation in the M2M service layer, oneM2M defines 
IoT CSFs.  

Fig. 1 illustrates the oneM2M system architecture, where 
systems are divided into four functional node types: 
Infrastructure Node (IN), Middle Node (MN), Application 
Service Node (ASN), and Application Dedicated Node 
(ADN). Each functional node has a Common Service Entity 
(CSE) or Application Entity (AE) [13]. A CSE is a logical 
entity that is instantiated in each functional node and 
consists of a CSF. A CSE includes the defined IoT CSFs, 
such as device management, registration, and resource 
management. An AE is an entity that provides application 
logic to facilitate M2M solutions such as remote control and 
monitoring. Services provided by a CSE and AE are 
represented in resource form. The oneM2M resource is 
uniquely specified by a Uniform Resource Identifier (URI). 
oneM2M provides a horizontal service layer based on CSFs 
and the application logic used in functional nodes. Through 
the represented URI, the common service layer performs 
Create, Retrieve, Update, Delete, and Notify (CRUDN) 
using a RESTful API. In addition, it supports protocol 
bindings including Constrained Application Protocol 
(CoAP), Message Queue Telemetry Transport (MQTT), and 
Hyper Text Transfer Protocol (HTTP), and interworking 
with technologies such as 3rd Generation Partnership 
Project (3GPP), Open Connectivity Foundation (OCF), and 
Lightweight M2M (LwM2M). The oneM2M is a global 
initiative to ensure the interoperability of communication 
levels.  

 
Figure 1. oneM2M standard architecture 

 
The semantic Web is an extended Web technology that 

enables machines to integrate and exchange information 
through machine-readable vocabularies [14]. Semantic 
technology enables machines to understand the meaning of 
data and infer new knowledge through relationships between 
data. Linked open data (LOD) is the most fundamental 
concept for realizing semantic Web technologies [15]. Fig. 2 
shows the building blocks of the semantic Web 
technologies. The RDF for representing the LOD concept 
was standardized by the World Wide Web Consortium 
(W3C). This RDF enables the association and integration of 
the relationships between multiple resources through 
standardized identifiers [16]. An RDF graph consists of 
RDF triples, which each consists of a subject, a predicate, 
and an object. Fig. 3 presents an example of an RDF graph. 
The subject and each object are connected through a 
predicate, which indicates the relationship. The object can 
also be a subject, and connected with an RDF triple or 
object.  
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Figure 2. Building blocks of semantic Web technologies 
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Figure 3. Example of RDF graphs 

 
The data storage and management schema in the 

DataBase Management System (DBMS) must define the 
relationships between the tuples to be connected in the table 
configuration step, and further work is required on related 
tuples to add relations with new tuples. To search related 
data, the DBMS requires complex query statements. In 
contrast, the RDF can use predicates to represent resource 
relationships. Moreover, an RDF graph can be searched 
using a semantic query statement, and it is easy to search for 
related resources. Compared to a DBMS, RDF graphs have 
advantages in terms of data management and expansion. 

Ontology Web language (OWL) and RDF schema 
(RDFS) are machine interpretable knowledge representation 
languages standardized by the W3C for sharing and 
providing knowledge. RDFS provides a vocabulary for 
structuring RDF resources and representing relationships 
among resources. OWL provides a richer vocabulary than 
RDF and RDFS, providing a variety of sublanguages with 
properties of reasoning completeness and time complexity. 
Semantic protocol and RDF query language (SPARQL) 
supports queries composed of RDF triples. Using SPARQL, 
semantic queries on rules and knowledge can be performed 
on ontologies that are designed for OWL and RDFS. 
Semantic Web rule language (SWRL) is an OWL-based rule 
language that enables a high level of matching and 
reasoning to better query OWL vocabularies and 
relationships compared to SPARQL. Ontologies can be 
shared and reused through integration with other ontologies 
via ontology matching algorithms based on semantic 
annotations. In an IoT system, a machine can understand 
resources based on an ontology and can infer relationships 
between resources through the object properties or 
predicates of resources. 

B. Related work 

In [17], the Semantic Rule Engine (SRE) was proposed 
for industrial IoT gateways. The SRE consists of a semantic 
engine and a rule engine, and executes rules based on the 
Lua script language, which is a lightweight language that is 

available in the Java and C platforms. The rules rely on a 
device’s semantic annotations, and are not tied to the unique 
identifier or any other binding. Hence, even if the topology 
changes flexible and independent semantic functions can be 
performed. The SRE also provides life-cycle management of 
its rules, which can be managed in real time. Based on 
semantically annotated data, the rule engine compares a 
value with the threshold value and performs the operation 
according to the logic specified in the rule. The SRE 
provides a dynamic mechanism for a rule and matching via 
the rule engine and semantic engine. However, it does not 
address a dynamic mechanism for connecting devices or 
sensors. 

In [18], IoT-O was proposed to ensure semantic 
interoperability in the oneM2M architecture. IoT-O is a new 
ontology, which merges five ontologies for sensors, 
observations, actuators, actuations, and service models 
respectively. The main objective of the IoT-O ontology is a 
dynamic reconfiguration of CSE resources to interconnect 
applications according to semantic descriptions. Instances of 
IoT-O are generated based on the locations of oneM2M 
resources. However, IoT-O provides insufficient rules and 
resource management mechanisms, and requires predefined 
properties such as temperature, luminosity, and humidity to 
generate automated rules. 

The authors of [19] proposed IoT-Lite, which is a 
lightweight IoT model based on the SSN ontology. The 
authors noted that the detailed descriptions for facilitating a 
flexible description of the ontologies require heavy queries 
to perform semantic functions. IoT-Lite is designed as a 
core lightweight ontology, which excludes the nonessential 
components of SSN. Because IoT-Lite focuses on the 
semantic interoperability of multiple sensors and the 
processing of data generated by sensors, integration with 
other ontologies is required for use in a real IoT scenario. In 
addition, it does not address management mechanisms for 
dynamic configuration and semantic functions. 

In [20], the authors proposed a methodology for agnostic 
endpoints, which can provide interoperability through 
devices’ RESTful APIs. The endpoint analyzes the machine-
readable interface file and creates a semantic model of the 
service input/output of the vendor. The endpoint can create a 
unified model by defining common vocabularies for service 
models from multiple vendors, and users can send requests 
to a device through a generic input model and receive 
services in an output model. The detailed implementation 
and mechanism of the proposed methodology were not 
described in that work. However, the methodology, which 
manages the agnostic endpoint vendor API as an integrated 
model and represents it through semantic data, can solve the 
fundamental problem of semantic vocabulary definition. 

Several other studies have considered interoperability 
issues. In [21], a vision of how data and knowledge levels of 
interoperability can be resolved in IoT was presented. The 
authors of [22] discussed how to employ an ontology and 
process semantic data to facilitate interoperability in IoT 
environments. An ontology analyzes semantic annotations, 
and can describe them as semantic data. Semantic 
interoperability between vertical silos can be provided based 
on the semantic annotation of IoT and legacy devices. 
However, it is difficult to semantically annotate all data, and 
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semantic annotations do not include knowledge of M2M 
interactions. Therefore, ontologies that use semantic 
annotations are insufficient for handling large amounts of 
data distributed across multiple IoT silos. In addition, for 
ontology sharing and reuse, a semantic vocabulary matching 
process and a new resource mapping mechanism of the 
integrated ontology is needed are required. 

Here, we identify a further problem: To understand the 
data generated by all devices and sensors, we require an 
ontology mapping process to describe syntactic data as 
semantic data. IoT things generate a large amount of data. A 
single mapping process has a small overhead, but it can lead 
to a system performance degradation. In summary, an 
ontology suffers from large overhead caused by the 
ontology mapping process and the additional work required 
to share resources between ontologies. For this reason, 
conventional solutions based on ontologies have many 
limitations in achieving semantic interoperability in IoT 
environments. 

Previous research has focused on autonomous inference 
and resource management in a specified environment based 
on its ontology and interoperability is only ensured for 
limited resources. We propose the following conditions for 
achieving enhanced communication-level and semantic-
level interoperability in IoT. First, generated data should be 
integrated through an aggregator based on the IoT standard 
platform. Conventional approaches to defining semantic 
vocabularies for all devices and sensors have problems with 
reprogramming and hard coding. Second, semantic data 
should be represented based on a lightweight resource 
representation model. A resource model that includes 
detailed descriptions requires heavy queries to perform 
semantic functions. Third, semantic data management 
should be dynamically configurable according to the states 
of devices and sensors and the data generated by IoT things 
should be updated in real time to perform proper semantic 
functions. Finally, a knowledge management mechanism 
should be provided to enable rule reconfiguration according 
to user requirements. The user can manage the rules through 
the user interface of the Web or the application. 

All authors have to personally sign the copyright transfer 
form - with no exceptions. The signed copyright form has to 
be scanned and uploaded by using the corresponding 
interface on the website. There are some restrictions 
regarding the length of the copyright file, so please read 
carefully the instruction provided in the copyright file 
uploading interface. 

III. PROPOSED IOT FRAMEWORK 

Communication-level interoperability can be ensured via 
IoT standard platforms, such as OCEAN and IoTivity, 
which provide many protocol bindings and equivalent data 
formats. However, using ontologies to ensure semantic-level 
interoperability in IoT environments has many limitations. 
There is no ontology that provides a complete solution for 
semantic vocabulary matching and resource mapping for 
interactions on heterogeneous platforms, and it is difficult to 
select an ontology that matches the target environments 
among various existing ontologies. 

A. Aggregator  

In this study, we propose an IoT framework based on an 
RDF graph extension scheme for communication-level and 
semantic-level interoperability. In addition, to solve the 
limitations of ontologies in IoT, we design a semantic data 
model based on the oneM2M resource architecture. Fig. 4 
illustrates the architecture of the proposed IoT framework, 
which consists of an aggregator, a semantic IoT gateway, 
and a Web client. To describe syntactic data in terms of 
semantic data, a semantic vocabulary should be defined by 
analyzing communication protocols and message formats. 
The semantic vocabulary provides an equivalent 
representation of the data generated by vertical silos. 
However, defining an entire vocabulary requires expert 
knowledge and skills, and problems of hard coding and 
reprogramming arise when interconnecting new devices. In 
addition, an ontology that represents all IoT devices and 
sensors requires heavy queries to perform semantic 
functions. 

oneM2M
Translation

Rule 
Customizing

Aggregator Semantic IoT Gateway Web Client

Semantic
Monitoring
& Modeling

Interworking 
Interface

oneM2M
Database

Resource 
Monitoring

Rule Making 
& Matching

Semantic 
Exposing

Semantic 
Database

Device 
Control

Resource 
Viewer

RDF Graph

 
Figure 4. Semantic IoT framework architecture 

 
To overcome this problem, it is necessary to define a 

minimal semantic vocabulary to represent all data. An 
aggregator based on the oneM2M standard provides a 
solution for integrating data generated from vertical silos. 
oneM2M resources are organized in a hierarchical structure 
and identified by resource parameters. These resources can 
be described as RDF triples by analyzing the parameters. 
Because there is no need to define a semantic vocabulary for 
all data generated by devices and sensors, hard coding and 
reprogramming problems are prevented. In addition, the 
oneM2M standard supports various protocol bindings to 
perform interactions between heterogeneous platforms. The 
aggregator ensures communication-level interoperability 
and addresses fundamental problems for semantic-level 
interoperability. The aggregated data are translated into 
oneM2M resources, stored in the database, and managed. 
Events for the creation, deletion, and updating of resources 
generated by a device or sensor are reported to the gateway 
in real time in the resource monitoring module. Because IoT 
interconnects many devices and creates a large amount of 
data, it is necessary to reduce the delays that occur in all 
communications as much as possible. MQTT has a small 
communication overhead compared to HTTP and a lower 
delay compared to CoAP in a low-packet-loss environment 
[23-24]. Therefore, the aggregator reports all events that 
occur to the gateway using MQTT. The interworking 
interface module modularizes the information on the API of 
the vertical silos, and executes the device control command. 
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B. Semantic IoT gateway 

We propose an RDF graph extension scheme that can 
dynamically manage resources in an IoT environment. The 
semantic IoT gateway represents the integrated oneM2M 
resource in the aggregator as an RDF graph. Conventional 
IoT solutions based on ontologies focus on rule design and 
matching in a static environment with semantic modeling of 
all devices and sensors. However, they do not address a 
mechanism for dynamically managing connected devices. 
For example, if a sensor device that measures temperature is 
disconnected and there is no device to replace it, then the 
consequences of inference become meaningless. Therefore, 
it is necessary to have a mechanism that can dynamically 
manage devices based on the health of the connection states 
of the devices. The proposed semantic IoT framework for 
achieving semantic interoperability provides a dynamic 
configuration mechanism for connected devices. Fig. 5 
illustrates the proposed RDF graph model based on the 
oneM2M architecture. Various parameters are defined in 
oneM2M [13]. Semantic IoT gateways use ty (type), pi 
(parentId), ri (resourceId), and con (content) parameters and 
a URI to represent hierarchical resource structures as 
semantic data. The URI of the device and service graph 
refers to the URI of the oneM2M RESTful API, which 
represents the resource path within the oneM2M system. 
The ty parameter represents the entity to which the resource 
belongs. The gateway classifies the properties of resources 
based on ty values. The ri parameter is the identifier of a 
resource, and the pi parameter is the identifier of the parent 
resource. The gateway associates the relationship between 
the device and the service graph based on the ri and pi 
parameters. The con parameter represents a service’s status 
or value, such as temperature, humidity, or door status. The 
semantic IoT gateway describes the oneM2M resource in 
terms of semantic data based on the oneM2M resource 
parameters. In addition, the gateway understands an 
occurred event based on the op (operation), to (To), and fr 
(From) parameters of the oneM2M standard message 
specification. The op parameter is a value of post, get, put, 
or delete method. For example, when the op parameter is 1, 
this represents a message for a post method. The to and fr 
parameters indicate the receiver and originator of a 
oneM2M request message. 

Associating by 
semantic query

Predicate

Device

Type

Resource URI

Service List Service

Value

Command

Input
DataPoint

Output
DataPoint

Command 
Value

 
Figure 5. Proposed RDF graph model 

 
All oneM2M resources and events can be described by 

semantic vocabularies, and the gateway can understand the 
meanings of resources and generated events and 

dynamically generate semantic queries. Therefore, users can 
create or delete interaction rules between devices for 
services represented by semantic data. The command graph 
consists of the input and output datapoint, which refer to the 
resource URI of the service graph. Through semantic 
queries, the command value is associated with a value for 
the service graph as a condition of rule execution. 

Fig. 6 illustrates the RDF graph creation, updating, and 
deletion processes. The gateway searches all resources 
stored in the oneM2M database, and the semantic 
monitoring and modeling module creates RDF graphs. 
When a new device or sensor is registered as a oneM2M 
resource, the gateway performs a semantic query based on 
the reported syntactic data and creates an RDF graph using 
that query. If the device is disconnected, then the gateway 
deletes the RDF graph by performing a delete query via the 
same mechanism. When an updating event occurs for a 
service state, the semantic monitoring and modeling module 
deletes the value object from the service graph and 
regenerates the value object to update the graph. All RDF 
graphs are stored in the semantic database and are provided 
to the user via the Web client through the semantic exposing 
module. 

Semantic 
Gateway

Aggregator
Device 

(Sensor)

Device (Sensor) connected/ 
disconnectedEvent reporting

Web Client 
(Application) 

Resource retrieving

Provide resource

RDF graph creation

State (Value) update
Event reporting

RDF graph Updating

RDF graph exposing

RDF graph exposing

RDF graph creation/deletion

 
Figure 6. RDF graph creation, deletion, and updating processes for 
proposed framework 

 
Fig. 7 illustrates the process of user-based rule creation 

and matching. The user sends a creation rule request to the 
rule making and matching module through the Web client's 
rule customizing module. The rule making and matching 
module consists of a rule validator, rule manager, rule 
matcher, and comparator. The rule validator checks the 
validity of the rule requested by the user. For example, the 
rule “set the room temperature to 23 degrees when the 
temperature is below 25 degrees” causes the system to enter 
an infinite loop. The rule manager creates a command graph 
for rule creation requests that have passed validation. The 
command graph consists of input datapoint and output 
datapoint objects. The input datapoint is a condition object 
of the rule that executes the rule and is connected to the 
resource URI and the value object of the service graph 
through a semantic query. The output datapoint is connected 
to the resource URI and the value object of the actuator that 
executes the rule through a semantic query. When the 
resource monitoring module reports to the gateway on 
events that occur on devices and sensors, the rule making 
and matching module updates the RDF graph and searches 
for rules using the rule matcher. If there is an input datapoint 
for the resource URI of the updated service graph, the 
comparator evaluates the updated value with the value of the 
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input datapoint. Based on the comparison result, the 
oneM2M translator module composes a oneM2M message 
to updating the resource URI object of the output datapoint 
and sends it to the aggregator. The aggregator then performs 
the service by calling the API of the actuator managed by 
the interworking interface module. The rule manager 
reduces unnecessary system behavior by deactivating the 
rules of disconnected devices. 

RDF graph exposing

Semantic 
Gateway

Aggregator
Device 

(Sensor)
Web Client 

(Application) 

Rule graph 
creation/deletion

Request Rule creation/deletion  

Device (Sensor) connected/ 
disconnectedEvent reporting

Rule graph 
Activating/Inactivating 

State (Value) update

RDF graph updating 
& Rule matching

Event reporting

Send request message
Actuator control

 
Figure 7. Semantic rule creation and matching process of the proposed 
framework 

 
The RDF graph stored in the gateway’s semantic database 

is provided to the user via the resource viewer module. The 
Web client provides all the mechanisms for rule 
management. The user can easily create rules for all devices 
or sensors represented by RDF graphs via the Web UI, 
rather than creating rules through hard coding at the code 
level. Many previous studies have designed rules that meet 
the user’s requirements by hard-coding through rich 
expressions and conditions. The hard-coding method does 
not allow the user to dynamically manage the created rules, 
and additional work is required to create new rules. Through 
the rule customizing module of the proposed framework, the 
user can manage rules dynamically. In addition, the user can 
control the device through the gateway by requesting an 
update query for the device service status with the device 
control module. The Web client provides all the semantic 
functions through the Web UI, thereby eliminating the need 
for expert knowledge and skills and providing an endpoint 
that can satisfy the user requirements. 

C. Difference from conventional solution 

An ontology mapping algorithm should be utilized for the 
server or gateway to understanding the meaning of data. In 
the proposed scheme, the oneM2M standards-based 
aggregator integrates data from vertical silos. The gateway 
analyzes the oneM2M resource parameters and describes 
them in an RDF graph. Therefore, the gateway does not 
have to define a semantic vocabulary for all devices and can 
manage resources by performing semantic queries 
dynamically. The gateway performs semantic functions to 
minimize the mapping process for the semantic vocabulary 
through the lightweight RDF graph model illustrated in Fig. 
5. Therefore, the semantic execution is faster compared to 
ontology-based solutions and more suitable for the IoT 
environment. In addition, the RDF graph extension scheme 
provides a mechanism for dynamically managing semantic 
data for M2M interactions through RDF graphs and 
semantic queries. 

IV. PERFORMANCE EVALUATION 

The aggregator is implemented based on Mobius, which 
is an opensource platform provided by OCEAN. We utilize 
the Jena Framework to develop semantic functions, which is 
a library for Java that supports RDF, OWL, Database, and 
SPARQL [25]. We employ the Mosquitto MQTT broker, 
and the MQTT client is implemented based on the Eclipse 
Paho library. The aggregator operates on Linux OS with 
Ubuntu, and the semantic IoT gateway operates on 
Raspberry Pi 3 B+. We also implement an ontology-based 
IoT framework for comparison experiments with the 
proposed framework.  

Fig. 8 shows the classes, object properties, and data 
properties of the ontology, which was designed using 
Protege [26]. We designed the ontology based on the RDF 
graph model shown in Fig. 5, to perform the experiment 
under similar conditions. In addition, all resource and rule 
management are performed using the same mechanism for 
both the ontology-based framework and the proposed 
framework. We perform three comparative experiments to 
evaluate the proposed IoT framework and the ontology-
based framework. All experiments are performed in a real 
IoT environment and are used to evaluate the latency of 
performing semantic functions. The latency is measured for 
each module from the time at which the report on the event 
is received from the aggregator to that at which the function 
is completed. 

 
Figure 8. Designed ontology based on RDF graph model in Figure 5 

 
In the first experiment, we evaluate the resource update 

function according to the number of devices. We measure 
the execution time for resource updating by increasing the 
number of devices from 50 to 1000. The average latency is 
calculated based on 200 measurements in every case. Fig. 9 
illustrate the results for latency of the update process as a 
function of the number of devices. In experiments with less 
than 200 devices, there is little change in the latency for 
either framework. However, in experiments with over 300 
devices, the latency of the proposed framework increased by 
approximately 20 ms, whereas that of the ontology-based 
framework increased by approximately 66 ms. The latency 
difference between the two frameworks results from the 
overhead in the resource mapping process of the ontology-
based framework. As the number of RDF triples increases, 
the overhead of the resource mapping process increases the 
semantic function time of the ontology-based framework. 
The proposed framework demonstrates a performance 
improvement of between 26.8% and 40.1% in all 
experiments compared to the ontology-based framework. 
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Figure 9. Execution time for resource updating according to the number of 
devices 

 
In the second experiment, we measure the latency of 

resource creation and deletion with 200 devices. We assume 
that each device has one service. Fig. 10 presents the 
execution time results for each resource creation and 
deletion process. The proposed framework generates six 
triples to represent each device. In contrast, the ontology-
based framework uses 97 triples to represent an ontology, as 
illustrated in Fig. 8, and generates eight triples to represent a 
single device. The proposed framework generates 1200 
triples to represent 200 devices and the ontology-based 
framework generates 1697 triples. In Fig. 10, the sums of 
the latencies for generation and deletion differ by 
approximately 52 ms and 71 ms, respectively, from the 
results in Fig. 9. These differences in latency represent the 
overheads that result from storing and managing the RDF 
triples at the gateway. In this experiment, this involves a 
tiny overhead of 0.04 ms per RDF triple. From the results of 
the experiment, we can conclude that the number of RDF 
triples does not have a noticeable effect on the latency of 
performing semantic functions. 
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Figure 10. Execution time for semantic functions when 200 devices 
connected 

 
In the final experiment, we evaluate the rule matching 

execution time as a function of the number of rules. We 
perform the experiment by increasing the number of rules 
from 50 to 1000. The average latency is calculated from 50 
measurements in each case. Fig. 11 shows the execution 
time for matching according to the number of rules. As 
observed in the previous two experiments, there is a 
difference in latency owing to resource mapping and triple 
management overhead in the ontology and the proposed 
framework improves performance by up to 27%.  
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Figure 11. Execution time for rule matching according to the number of 
rules 

 
As the number of RDF triples increases, the latency 

increases in the ontology-based solution owing to the 
overhead of the resource mapping process. However, 
because the proposed solution minimizes overheads of a 
mapping mechanism, the latency for semantic function 
execution is less affected by the number of triples. In IoT, 
the number of RDF triples can increase exponentially, as 
many devices are connected and devices have multiple 
services. The proposed solution is more efficient in 
processing all the data generated by devices or sensors than 
the solution that utilizing the ontology. 

We constructed an IoT environment as illustrated in Fig. 
12 for rule-based interactions between heterogeneous 
platform devices. The experimental environment consists of 
five IoT platforms, namely Nest, Foobot, SmartThings, 
Alljoyn and Philips, and a sensor that was developed with 
Raspberry Pi 3B+. Each platform device performs device 
registration, service registration, and resource creation based 
on the oneM2M standard, without knowledge of the 
semantic vocabulary used in the semantic gateway. 

 
Figure 12. IoT environment for interaction between heterogeneous 
platforms 

 
Fig. 13 shows the results for rule-based interaction 

between the Thermostat device of the Nest platform and the 
LIFX device of the Alljoyn platform. We previously created 
the following rule: "If the brightness of LIFX exceeds a 
specified level, then the thermostat's target temperature 
service controls the temperature to 28 degrees". When the 
gateway receives a report concerning an event occurring in 
LIFX, it searches the rule by understanding the meaning of 
the event. If there is a rule as shown in Fig. 13, then the 
comparator of the gateway checks the rule condition value 
and executes the service defined in the output datapoint. 
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