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1 Abstract—This paper presents a novel analytical method 
based on improved Gaussian mixture model (GMM) to solve 
the probabilistic load flow problem. The proposed method 
accounts for the uncertainty introduced due to increasing 
percentages of renewable generation. First, the joint 
probability density function of several wind farms outputs is 
derived by using the improved GMM with the estimated 
parameters obtained by genetic algorithm (GA) in this paper, 
which could improve the accuracy of the probabilistic model. 
Next, the analytical expressions between the output power of 
wind farms and line power of power system are deduced by 
linearizing load flow equations. And, the joint probability 
density function and joint cumulative distribution function of 
line power are obtained from linear load equation and joint 
probability density function of wind output power. Finally, the 
proposed method, Monte Carlo simulation (MCS) and 
traditional GMM based methods are all tested on a modified 
IEEE 39-bus system and a modified IEEE 118-bus system with 
multiple wind farms, which demonstrates the feasibility of the 
proposed method.  
 

Index Terms—gaussian mixture model, maximum likelihood 
estimation, genetic algorithm, density function, distribution. 

I. INTRODUCTION 

The random nature of power systems is accentuated with 
the increased penetration of large-scale renewable 
generation, such as wind farms and photovoltaic systems. 
Probabilistic load flow (PLF) is a more reliable approach for 
analyzing power systems considering the random nature and 
behavior of renewable generation, in comparison to the 
deterministic load flow methods.  

PLF was first proposed by Borkowska in 1974 [1]. With 
the PLF theory developing, there are a few methods for PLF 
[2-13]. At present, they are mainly including simulation 
method, the point estimation method and the cumulant 
method. Simulation method represented by Monte Carlo 
simulation (MCS) is generally accurate and is often used as 
a standard for testing other methods for PLF. The basic idea 
of point estimation method [2] is to generate deterministic 
sample points and their weights based on the first moments 
of each input random variable, and use these sample points 
and weights to find the moments of the output random 
variables. The advantage of this method is that the required 

samples are small and the calculation speed is fast. However, 
because only the information of the few front moments of 
the input random variable is used (such as the three-point 
estimation method utilizes the four order moments), there is 
a certain degree of error in the high order calculation of the 
output random variables. 
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PLF based on cumulant method uses algebraic operations 
instead of convolution operations, which has the advantages 
of simple calculations and fast calculations speed. Its 
specific calculation process [3] is: calculate the cumulant of 
each order according to the central moment of the input 
random variable; based on Taylor series expansion, the 
power flow equation is linearized at the reference operating 
point, and then the cumulants of the state variables such as 
the node voltage and the branch current are calculated. 
Finally, the probability density distribution of the state 
variables is fitted by Gram-Charlier series expansion, and 
the cumulative distribution curve can be obtained. However, 
after the introduction of large-scale wind power, the 
skewness and kurtosis of the state variables are likely to 
exceed a certain range, which limits the accuracy of the 
conventional Gram-Charlier series. Therefore, improved 
Gram-Charlier series was developed in [14], and the Beta 
distribution was used to describe the wind power fluctuation 
characteristics. However, wind power fluctuation cannot be 
fairly modeled by single probabilistic model, especially for 
non-Gaussian correlated random power variables. Besides, 
most current literatures focus on marginal distribution of 
active power on multiple transmission lines. Actually, it is 
the joint distribution of multiple transmission lines, rather 
than marginal distribution, that can provide more 
comprehensive and precise security assessment of power 
system [15]. 

Based on the above analysis, this paper proposes a novel 
analytical method based on improved Gaussian mixture 
model (GMM) to solve PLF considering random nature of 
renewable generation, which can solve joint distribution of 
multiple transmission lines to assess the security of power 
systems. GMM is an effective way to represent fluctuation 
characteristics of output power of renewable generation. 
Compared with single distribution models such as Weibull 
distribution and Beta distribution [13-14], GMM gives 
higher precision [15]. Obtaining GMM’s parameters is 
regarded as a maximum likelihood estimation problem, 
which can be solved by well-known expectation 
maximization (EM) algorithm [18-19]. However, EM 
algorithm is greatly impacted by the initial value, which 
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might lead it to give sub-optimal results. To overcome the 
disadvantages of EM algorithm, this paper proposes a 
method based on genetic algorithm (GA) to solve for 
GMM’s parameters. The linear analytical expressions 
between output power of several wind farms and power on 
several transmission lines can be deduced by linearizing the 
load flow equation. Therefore, the joint probability density 
function and the joint cumulative distribution function of 
line power can be correspondingly obtained.  

The rest of the paper is structured as follows. In Section 
II, the basic theory of GMM is introduced. The fluctuation 
characteristics of actual wind power are modeled by GMM, 
and parameters of GMM are solved by GA. In Section III, 
the linear analytical expressions of PLF are derived. The 
joint probability density function and joint cumulative 
distribution function of line power is obtained. Modified 
IEEE 39-bus and 118-bus system are used as the test system 
for this analysis as shown in Section IV. Section V 
concludes this paper. 

II. GAUSSIAN MIXTURE MODEL 

A.  Basic theory of Gaussian Mixture Model 

Gaussian Mixture Model (GMM) is a model that 
represents the mixed density distribution, and has been 
extensively used in pattern recognition and machine learning. 
It combines finite Gaussian distributions to model different 
types of non-Gaussian random variables. Thus, the GMM is 
used to model wind power output of several wind farms to 
characterize the wind power fluctuation characteristics in 
this paper. Its probability density functions are shown as 
follows, 
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where, X is input variable vector, representing output power 
of several wind farms. m  is weight coefficient of the mth 

Gaussian component, which belongs to [0,1]; and m m are 

mean and variance (or mean vector and covariance matrix in 
multivariate case) of the mth Gaussian component. 
Parameters to be estimated are m   and , which can 

be solved by parameter maximum likelihood estimation 
(MLE) method. The MLE problem can be solved by well-
known Expectation Maximization (EM) algorithm [16-17]. 
The basic idea is to iteratively estimate the model 
parameters by re-estimating the formula, leading the 
likelihood function to maximum. Given 

m m

 1{ , }, NX X X  

representing sample of output power of wind farms, the 
likelihood function can be developed as shown in (3) and (4). 
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B.  Genetic Algorithm (GA) 

The estimated parameters of GMM describing the wind 
farms outputs can be obtained by EM algorithm. However, 

EM algorithm is affected by the initial value, which might 
make it converge to the local optimal solution instead of the 
global optimal solution. GA has less dependence on the 
initial value of the problem with better global search ability 
[20]. It can quickly search out the entire solution in the 
solution space without falling into local optimal solution. 
Therefore, GA will be used in this paper instead of EM 
algorithm to solve MLE problem. 

The core idea of GA is the survival of the fittest. By 
evaluating the fitness of each individual (likelihood function 
of wind power), it judges whether the individual should be 
inherited or eliminated, and then a global optimal solution 
can be determined. The specific calculation process of GA 
with the help of likelihood function is developed according 
to [20]. 

III. ANALYTIC METHOD BASED ON IMPROVED GMM 

A  Analytical Expressions 

Linearization method of the power flow equation has 
been extensively used for probabilistic load flow [13]. The 
linear expressions are obtained by spreading the power flow 
equation at the reference point in Taylor series and ignoring 
higher order items greater than one: 
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where U is the voltage amplitude and phase angle vector, 
X is the output power of wind farms, W is the power on 
transmission lines, the subscript 0 represents the reference 
point, S0 is the inverse matrix of Jacobin matrix, where 
T0=G0S0, 
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Vector U0, W0 and Jacobin matrix can be obtained 
through deterministic load flow calculation, and then T0 and 
S0 can be obtained correspondingly. To better introduce 
following contents, a general equation formula that 
represents the linear relationship between wind power 
output X and power on transmission lines W derived from 
equation (5) is given in (6), where T0=B, 0 0 0C W T X .  

                                      W BX C                                 (6) 

B.  Probability distribution of power on transmission lines 

In probability theory, the linear transformation of random 
variables obeying Gaussian distribution still obeys Gaussian 
distribution. When wind farms output X is modeled by the 
multivariate Gaussian distribution  XmN , the transmission 

lines power W that is the linear transformation of X as 
indicated in (6) obeys multivariate Gaussian distribution 
with mean vector B Cm  and covariance matrix . 

Therefore, the joint PDF of W is given as follows:  
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where K represents the number of transmission lines. 
Therefore, there is no need to use the series expansion 
method [4] to fit the probability distribution of lines power. 
It is only necessary to calculate the mean vector and 
variance matrix of wind power outputs by the improved 
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GMM, and then the mean vector and variance matrix of 
lines power can be determined by (7), and then the 
corresponding probability distribution can be developed.  

According to (7), the joint cumulative distribution 
function (CDF) of W can be obtained by several integrals: 
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According to (1), when the probability density of output 
power X is modeled by GMM, according to total probability 
formula (9), the joint CDF of transmission lines power W 
can be obtained as shown in (10): 
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Correspondingly, the joint PDF can be obtained by 
differentiating (10): 
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Compared with marginal distribution, the joint CDF and 
joint PDF as indicated in (10) and (11) can provide more 
comprehensive and exact assessment for security of power 
system. In conclusion, the proposed method in this paper 
can be summarized as shown Fig. 1. 

 

 
Figure 1. Calculation process of the proposed method 

IV. PERFORMANCE ANALYSIS 

A.  Comparisons of algorithms 

In this section, Gaussian Mixture Model (GMM) is 
modeled by the EM and GA respectively based on three 
month’s actual wind power output in a certain region. This 
wind power sample was measured by PMUs, and was 
sampled at 10 minute intervals. The probability density 
function (PDF) is shown in Fig. 2, which is based on a 
normal kernel function [21]. 

 
Figure 2. PDF of the actual wind power 

 

Then, the GMM with 3 components of wind power is 
obtained by the EM algorithm and GA respectively, as is 
shown in Fig. 3. 
 

 
Figure 3. The comparison of results 

 
In Fig. 3, the histogram represents the probability density 

of the data sample obtained by normal kernel function; the 
dotted line is the probability density obtained by the EM 
algorithm; the solid line is the probability density obtained 
by the GA improvement. Intuitively, results of EM 
algorithm have a large deviation from the actual data, 
especially on the abscissa 1.8-2.1, and the probability 
density obtained by GA matches very closely with the actual 
wind power. In order to quantitatively compare fitting effect 
between the two methods, the average root mean square 
(ARMS) and maximal absolute error (MAE) are used to 
verify the higher accuracy of the proposed method. ARMS 
and MAE are defined as: 
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where MSi and GMi denote the ith point on the PDF curve 
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obtained by EM and GA, and N represents the number of 
points. The ARMS and MAE obtained by EM are 0.0161 
and 4.2368, and ARMS and MAE obtained by GA are 
0.0011 and 0.7331, which verifies that the fitting effect of 
GA is better than EM algorithm and the ability of GA to 
seek optimal solutions is indeed better in maximum 
likelihood estimation. Thus, GMM can precisely represent 
probability density of unknown distribution. 

TABLE II. PARAMETERS OF GMM OBTAINED BY EM 

1 1 2 2
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B.  Modified IEEE 39-bus System 

The proposed probabilistic load flow method is tested on 
a modified IEEE 39-bus system to demonstrate its feasibility 
and effectiveness. The modified IEEE 39-bus system is 
shown in Fig. 4. Since the location of wind farms do not 
affect the results obtained by the proposed method, two 
wind farms named WF1 and WF2 are assumed to be 
integrated at bus 30 and bus 35 arbitrarily. There are no 
available wind power output samples for two wind farms. 
Thus, without losing generality, the data sample of two wind 
farms outputs X are constructed by the Nataf technique [10], 
under the assumption that the marginal distributions of X 
obey Beta distributions. Other detailed parameters of the 
system can be found in [22]. In the following test, the Monte 
Carlo simulations (MCS) are used as test standard to 
demonstrate the proposed method. Meanwhile, the method 
based on GMM modeled by EM is also simulated to 
compare with the proposed method improved by GA. 

Figure 5. JPDF of two wind farms output 

 
The number of lines does not affect the results obtained 

by the proposed method. Hence, firstly, oneline power 
between buses 2 and 3 is randomly selected to determine its 
PDF and CDF. Linear relationship between the wind farms 
output and line power can be obtained shown in (13) by 
linearizing method mentioned in (6). 
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Thus, according to the linear transformation invariance of 
Gaussian distribution and JPDF of wind farms output 
obtained by EM and GA, the PDF and CDF of selected line 
power can be determined as shown in Fig. 6 and 7. 
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Figure 6. PDF of one-line power in modified 39 bus system Figure 4. Modified IEEE 39-bus system 

  

 

Two wind farms output X is modeled by 2 Gaussian 
components GMM with the help of GA to determine its 
joint probability density function (JPDF). The parameters of 
GMM are shown in table I, and the figure of JPDF of X is 
shown in Fig. 5. Meanwhile, the wind power output is also 
modeled by EM based GMM shown in table II. 

 
TABLE I. PARAMETERS OF GMM OBTAINED BY GA 

1 1 2 2

0.3378 0.5430
=0.5571, = =0.4429, =

0.6186 0.8344
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   Figure 7. CDF of one-line power in modified 39 bus system 
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Figure 8. JCDF and JPDF of two lines in modified 39-bus system with two wind farms 

 
The weight, mean and variance obtained by EM and GA 

respectively are shown in table III. In Fig. 6 and 7, the blue 
line and red line are respectively obtained by EM and GA; 
the black line is obtained by MCS with 10000 iterations. 
The blue lines obtained by EM have large deviation from 
black lines obtained by MCS. However, the red lines 
obtained by the proposed method match well with black 
lines. In Fig. 7, the ARMSs of the proposed method and the 
method based on EM are 0.00019 and 0.027 respectively, 
and the MAE of the proposed method and the method based 
on EM are 0.019 and 0.18. Hence, it can be concluded that 
the proposed method gives higher accuracy for PLF results. 

 
TABLE III. PARAMETERS OF LINE POWER 

1 1 1

2 1 2

0.5571, =2.3302, 0.0071

0.4429, =2.4551, 0.0087
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Then, to further verify the feasibility of the proposed 

method, the active power on two transmission lines between 
buses 2, 3 and 6, 7 are randomly selected to determine their 
JPDF and joint cumulative density function (JCDF). 
Transmission line between buses 2 and 3 is recorded as line 
1, and transmission line between buses 6 and 7 is recorded 
as line 2. By linearizing the power flow equation according 
to (5), the linear relationship (14) between line power on 
two transmission lines and two wind farms outputs can be 
obtained: 

0.6283 0.0118

0.1575 0.1074
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TABLE IV. PARAMETERS OF TWO LINES POWER 
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Thus,
 and GA can be obtained as shown in Fig. 8. MCS with 

10000 iterations are also tested to verify the accuracy shown 
in Fig. 8. The weight, mean vector and covariance matrix of 
line power obtained by the proposed method are shown in 
table IV. 

1 1 2 2

51
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5.1516 5.0964
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In Fig. 8, the X-axis and Y-axis are the active power on 

th

TABLE V. ERROR ANALYSIS OF TWO METHODS IN 39-BUS SYSTEM 

e two transmission lines respectively, and the height of the 
six figures is shown by the right color column, representing 
the JPDF and JCDF of the active power on two transmission 
lines. The yellow area is maximum area of JPDF and JCDF, 
followed by green and blue. The probability distribution of 
the active power on multiple transmission lines can be 
determined simultaneously from the JCDF and JPDF. The 
ARMS and MAE of two methods compared with MCS are 
shown in table V, which further verifies the higher accuracy 
of the proposed method. 

 

 ARMS MAE 
GA base F d PD 0.0039 0.1795 
GA based CDF 1.87×10-5 0.0169 
EM based PDF 0.0065 0.7198 
EM based CDF 0.0069 0.2136 

 
The above is the analysis of JPDF and JCDF for several 

line power. Then, the probabilistic distribution of voltage 
amplitude of the modified IEEE 39 bus system is analyzed 
in following section. The location and output power of the 
wind farms are the same as above. To demonstrate the 
results of the proposed method, bus 27 is selected randomly 
to solve its PDF and CDF by MCS with 10000 iterations, 
proposed method and EM based method respectively. Fig. 9 
is PDF and CDF of voltage amplitude of bus 27. 
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Figure 9. PDF and CDF of voltage amplitude in modified 39 bus system 
 

As is shown in Fig. 9, red lines represent the PDF and 
CDF obtained by the proposed method; blue lines are PDF 
and CDF of voltage amplitude obtained by EM; black lines 
are obtained by MCS. Intuitively, the proposed method 
matches closely with MCS compared with method based on 
EM. The ARMSs of the proposed method and the method 
based on EM are 0.00035 and 0.031 respectively, and the 
MAE of the proposed method and the method based on EM 
are 0.022 and 0.211. From the Fig. 9, the voltage fluctuation 
is extremely small, which indicates that wind power 
fluctuations of wind farms do not affect the wide range of 
voltage fluctuations. 

C.  Modified IEEE 118-bus system  

In this section, a modified IEEE 118-bus power system 
with 7 wind farms is used to further demonstrate the 
feasibility and effectiveness of the proposed method, as is 
shown in Fig. 10. In the system, synchronous generators 
connected to bus 10, 59, 61, 65, 66, 80, 89 are all replaced 
by wind farms. Since there are no available wind farms 
output data, in order not to lose generality and further verify 
the feasibility of the proposed method, the 7 wind farms 
outputs are all assumed to obey Weibull distribution [23-
24]. Other detailed parameters of the power system are 
shown in [25]. The GMMs with 4 components which are 
modeled by GA and EM respectively are used to model the 
7 wind farms outputs. In order to visualize the results 
obtained by MCS, proposed method and EM based method 
respectively. Voltage amplitude of bus 47 is selected to 
obtain their PDF and CDF shown in Fig. 11, and then active 
power on lines between buses 45 and 49 and lines between 
buses 2 and 1 are randomly selected to determine their JPDF 

and JCDF, as is shown in Fig. 12. Besides, in order to 
further demonstrate the effectiveness of the proposed 
method, active power on three lines, four lines and six lines 
are selected randomly to determine their JCDF, and the 
AMSE and MAE compared with MCS are shown in table 
VI. 
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Figure 10. Modified IEEE 118-bus system 
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Figure 11. PDF and CDF of voltage amplitude in modified 118 bus system 
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Figure 12. JCDF and JPDF of two lines in modified 118-bus system with seven wind farms 

 
TABLE VI. ERROR ANALYSIS OF TWO METHODS IN 118-BUS SYSTEM 
 ARMS of GA MAE of GA ARMS of EM MAE of EM 

2 lines 1.85×10-5 0.0067 0.0381 0.1371 
3 lines 2.51×10-5 0.0048 0.0276 0.2568 
4 lines 3.62×10-5 0.0059 0.0565 0.5443 
6 lines 2.63×10-5 0.0068 0.0337 0.4358 

 

In Fig. 12, the PDF and CDF of active power obtained by 
the proposed method match very closely with MCS, but the 
method based on EM gives deviations. The MAE and 
AMSE of the proposed method compared with MCS are 
0.087 and 0.0027. The MAE and AMSE of the EM based 
method compared with MCS are 0.218 and 0.0289. 
Meanwhile, It can be concluded form the table VI that the 
ARMS and MAE obtained by the proposed method in 
modified 118 bus system with 7 wind farms are still tiny and 
smaller than EM based methods, which verifies the 
feasibility of the proposed method.  

The calculation time of the proposed method are shown in 
table VII. MCS takes much more calculation time than the 
proposed method in the same system, and the calculation 
time of MCS increases greatly with the number of buses 
increasing. The proposed method in this paper meets the 
accuracy requirements completely and improves the 
accuracy of EM based method. More importantly, the 
proposed method in this paper performs less time than MCS, 
and calculation time does not increase greatly with the 
number of buses increasing. 

 
TABLE VII. COMPARISONS OF CALCULATION TIME 

 Modified 39-bus system Modified 118-bus system 
MCS 52 (S) 620 (S) 

Proposed 0.326 (S) 0.462 (S) 

V. CONCLUSION 

The following are the main contributions of the proposed 
method based on improved GMM: 

(1) The proposed method is less affected by the initial 

value, and can attain global optimality more easily, thereby 
improving the accuracy of GMM. 

(2) Probabilistic load flow can be quickly solved by 
analytical method based on improved GMM, and its 
accuracy meets MCS studies.   

(3) Joint distribution obtained by the proposed method 
can provide more comprehensive and exact assessment for 
the probability of multiple transmission lines being 
overloaded simultaneously. 
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