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1Abstract—This paper proposes a novel pupil segmentation 

method for robust iris recognition systems. The proposed 
method uses orientation fields to accurately detect an initial 
pupil center, and applies radial non-maximal suppression to 
remove non-pupil boundaries. Finally, we repeatedly fit the 
pupil boundary by radius-updating, center-shifting and region 
of interest (ROI) shrinking adjusting the radius and center of a 
circular model, and the estimated pupil boundary is 
approximated with a novel elliptic model. By the elliptic 
approximation, the pupil boundaries are more correctly 
segmented than those of circular models. The detection hit 
ratio is largely improved due to robust detection of the initial 
centers. The experimental results show that the proposed 
method can accurately detect pupils for various iris images. 
 

Index Terms—image edge detection, image segmentation, 
image texture analysis, iris recognition, pattern analysis. 

I. INTRODUCTION 

Iris recognition systems have been widely developing for 
biometrics to personal identification because of its high 
reliability and accuracy [1-3]. Iris recognition is more 
accurate and reliable than fingerprint recognition and face 
recognition, because the individual’s iris pattern is complex, 
unique and stable. Iris recognition is performed through the 
following steps: iris image capturing, preprocessing, iris 
segmentation, iris normalization, feature extraction and 
feature matching, sequentially [4,5]. In these steps, iris 
segmentation is an essential step in iris recognition because 
false segmentation may lead to improper feature extraction 
[6-9].  Especially, a small error near pupils may be fatal 
since the most significant and meaningful information of iris 
is distributed in these regions. Therefore, it is very important 
to correctly estimate the inner boundaries of irises as shown 
in Fig. 1, where the normalized image using circle 
estimation has the pupil textures so small amount of errors 
in estimating the inner boundaries can be critical.  
 

 
(a) 

 
1 

 
(b) 

Figure 1. Iris segmentation (left) and normalization (right): (a) circle 
estimation of pupil; (b) ellipse estimation of pupil. 

 
To detect iris inner boundaries, various methods, such as 

integro-differential operator [10,11], edge detection [1,8,12-
14], Hough transform [15,16], active contour [15,17], and so 
forth, are commonly used. Iris segmentation methods based 
on integro-differential operator, edge detection, Hough 
transform and active contour may lead improper 
segmentation owing to features of less discriminative 
regions such as sclera, eyelids, eyelashes, pupil, reflection, 
and so forth [18]. Especially, pupil regions may be shown as 
bright gray color or small reflection region by the various IR 
(infra-red) illuminations.  

The detected boundaries are estimated by circular or 
elliptic models in the most of the iris recognition systems. 
However, weak edges, various illuminations and specular 
make it difficult to estimate the parameters, describing the 
circles or ellipses. In recent years, the methods based on 
active contour have been widely used; however some 
methods should be manually set the initial mask, and these 
methods may falsely segment for unsharp or low contrast 
iris images. 

In this paper, to develop accurate pupil segmentation 
method for various illumination and acquired conditions, 
orientation fields formed through gradient information are 
used to detect the initial center of the pupil. After that, radial 
non-maximal suppression and boundary fitting are adapted 
to estimate the boundary shapes of pupils. Additionally, an 
elliptical model is used, where the parameters are estimated 
by a novel approximation method. 

II. DETECTION OF THE INITIAL PUPIL CENTER 

The proposed pupil segmentation method is performed by 
the following steps: 1) an initial pupil center is detected 
using orientation fields, 2) edges are suppressed and 
detected using the direction toward the initial pupil center, 
and 3) the elliptic pupil boundary is fit by radius-updating, 
center-shifting, and ROI (region of interest) shrinking until 
the consecutive error is sufficiently small as shown in Fig. 2. 
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Figure 2. Flowchart of the proposed pupil segmentation method. 

 
To estimate the local orientation field, we use gradient 

information. A tangential direction for each pixel is 
computed using the horizontal and vertical gradients as 
follows: 
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where xG  and  are the horizontal and vertical gradients 

calculated by Sobel operator. 
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To make the orientation fields, 8×8 non-overlapped 
blocks are used; the block orientation is calculated using the 
average of the doubled orientation, which is high efficient 
and robust for noisy samples [19,20], given by 
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where  is the pixel index within a block and i i  is the 

tangential direction for the i th pixel. To accurately compute 
the orientation fields, pixels with low gradient magnitudes 
are not used and their reliabilities are set to zero. For the 
remaining pixels with non-zero reliabilities, reliabilities are 
computed using the Pythagorean trigonometric identity. For 
the same angle, the sum of squares of sine and cosine equals 
to one, and the sum for different angles cannot be greater 
than two. So we calculate the reliability of orientation as 
follows: 
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where  is the number of pixels within a block. An example 
of orientation fields can be seen in Fig 3, where the 
tangential directions of the pupil, iris, and eyelids can be 
clearly observed.  

n

To detect an initial center, a center map is generated by 
voting a potential center with normal directions ( / 2   
and / 2  ) and a possible radius range for blocks with 
reliability values greater than a threshold. And the local 

maxima greater than a minimum voting threshold, are 
selected as the initial center candidates. For candidates with 
voting values greater than 90% of the highest voting value, 
the pixel with greater symmetry and an average brightness 
less than a threshold is selected as the initial center, where 
the symmetry of the pixel 0 0( , )x y  is calculated by 
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where I  is the grey-level intensity ranging [0,255], s  is the 
search range, and N  is the number of pixels used in the 
summation. To reduce the effect of illumination-reflected 
pixels, pixels with intensity values greater than a threshold 
are not used for the symmetry computation. Examples of a 
pupil center map and initial center detection are shown in 
Fig. 3, where the blue numeric values show the candidate 
index, symmetry, and average brightness from left to right. 

 

  
Figure 3. Example of initial pupil center detection. 

III. RADIAL NON-MAXIMAL SUPPRESSION 

To detect the pupil boundaries, both vertical and 
horizontal gradient values are computed, and radial non-
maximal suppression is performed using the following two 
suppression criteria: 

0) (x y( , , ) ,x y                          (5) 
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where ( , )x y  is the normal direction of a gradient at 

( , )x y , 0 ( , )x y  is the radial direction from the initial center 

to ( , )x y ,   is a threshold, and ( , )G x y  is the gradient 
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magnitude. Because we use digital images, 

0( cos , sin )0     is applied as eight types: (-1,-1), (-1,0), (-

1,+1), (0,+1), (+1,+1), (+1,0), (+1,-1), and (0,-1). 
Additionally, connected component labeling is applied to 
remove small connected edges in the suppressed edges. An 
example is shown in Fig. 3, where non-zero dark pixels are 
the pixels removed by the labeling.  

IV. PUPIL SEGMENTATION 

An initial pupil radius is detected from a radial histogram 
of the edges, which is a discrete function [ ] rH r n

rn

, where 

 is the distance from the pupil center and  is the number 

of edge pixels having distance r . And the initial pupil 
radius  is determined as the nearest local maximum of the 

smoothed radial histogram 

r

0R

H  from . An example is 
shown in Fig. 3, where the magenta circle is the initial pupil 
formed from the initial center and radius.  

0r 

To accurately detect pupils, we use radius-updating, 
center-shifting, and ROI shrinking by adjusting the radius 
and center of a circular model as follows 
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where  is the average radius of the pupil at updating time 

, x
tC y

tC and  are the x  and  coordinates of the pupil 

center, respectively, e k  is the th edge position,  

and  are the 

y
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respectively,  is the number of edges, DieN st( , )A B  is the 

distance between   and , and A B ( )c k  is the direction of 

the th edge to the center. k
 

 
Figure 4. Elliptic model for pupil boundary. 

 
To improve the accuracy of pupil segmentation, an 

elliptic model as shown in Fig. 4 is used to approximate the 
ellipse as follows: 1) the average of the distance to the 
center for every point on the curve is R , 2) the average of 
the distance to the center for points whose distance is greater 
than  is , 3) the average of the distance to the center 
for points whose distance is less than R  is , 4) R

R R

R   is 
approximated by the weighted average of the semi major 

axis ( ) and R , 5) Ra   is approximated by the weighted 
average of the semi minor axis ( ) and R , and 6) the 
rotation direction (

b

p ) is approximated by the average 

orientation of points whose distance to the center is greater 
than R . 

By applying the above approximations, a  and  can be 
estimated by 
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where  is an approximation weight, we use , and k 0.5k 

p  is estimated by 

 

 
1

sin 2

o




1

,
2 c s 2

k
k

k
k

 
   
 
 




tan
p                     (12) 

where k  is the orientation of points whose distance to the 

center is greater than . R
An initial ROI is used as the maximum dilation of the 

initial boundary, the ROI is shrunk by reducing the dilation 
mask, and the ROI at updating time t  is the dilation region 
of the pupil boundary at time . Updating is terminated 
when the consecutive difference values for radius and center 
are smaller than a predefined error threshold.  

1t 

V. EXPERIMENTAL RESULTS 

To evaluate the proposed method, we tested the proposed 
method using two commonly used datasets: CASIA-Interval 
v3.0 (CASIA v3.0 dataset, Institute of Automation Chinese 
Academy of Sciences) and IITD (Indian Institute of 
Technology Delhi). 

A procedure example of the proposed method is shown in 
Fig. 5, where the initial center of the pupil is not correctly 
detected, but the final pupil boundary is corrected by 
adjusting the radius. In Fig. 6, the repetitive adjusting 
processing of radius-updating, center-shifting, and ROI 
shrinking is shown, where the white circle of the top image 
shows the initial circle and the bottom images show the first 
and second repetitions, respectively, it is adjusted with two 
repetitions in this case; however ten or more repetitions are 
needed for most cases. 

The results of the proposed method on CASIA-Interval 
v3.0 are shown in Figs. 7 and 8, where most images are 
correctly segmented as shown in Fig. 7, while the three 
worst results are shown in Fig. 8. For all 2639 images of 
CASIA-Interval v3.0, only two images resulted in large 
errors shown in the two bottom results of Fig. 8 and all 
pupils were detected without missing. Comparisons between 
circle pupils and ellipse pupils are shown in Fig. 9, where 
circle boundaries have some large uncovered areas. 
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Figure 5. Example of pupil segmentation procedures. 

 

  
Figure 6. Example of radius-updating, center-shifting, and ROI shrinking. 

 

 
Figure 7. Pupil segmentation results (some correctly segmented results). 

 

 
Figure 8. Pupil segmentation results (the three worst results). 

 

 
Figure 9. Pupil segmentation results (the left images show the ellipse pupils 
and the right images show the circle pupils). 

 
Objective performance was measured by the uncovered 

area (UC), over-covered (OC), and false-covered (FC) ratios 
as reported in [8] and [19], and the results were compared 
with four other methods: Monro [13] (circle pupil), Huang 
[8] (radial suppression, irregular shape), Miyazawa [17] 
(ellipse pupil), and Krishnamoorthi [14] (orthogonal 
polynomials, irregular shape). As shown in Table I, the most 
accurate method is the proposed method. The results of the 
proposed method using circular pupils were even more 
accurate than the Monro and the Miyazawa methods. 
Although the comparison test using same 200 sample 
images was not performed, the replicas’ performances for 
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the Monro, the Huang and the Miyazawa methods may be 
decreased. Therefore, we compared the performances for the 
worst 200 images and the best images as shown in Table I. 
Even though the results for the worst 200 images are not 
more accurate than the results of the Huang and the 
Krishnamoorthi’s methods, the detection hit ratio of our 
method is 100% in all 2639 images. 

 
TABLE  I. COMPARISON WITH OTHER METHODS ON CASIA-INTERVAL V3.0. 

Method OC UC FC Note 

Monro [13] 2.36 2.73 3.24 
For 200 selected 

images 

Miyazawa [17] 0.82 0.77 1.03 
For 200 selected 

images 

Huang [8] 0.16 0.18 0.21 
For 200 selected 

images 

Krishnamoorthi 
[14] 

0.15 0.17 0.21 
For 100 selected 

images 

Proposed  
(circle pupil) 

0.13 0.21 0.32 For all 2639 images 

Proposed  
(ellipse pupil) 

0.09 0.07 0.15 For all 2639 images 

Proposed 
 (ellipse pupil) 

0.23 0.20 0.40 
For the worst 200 

images 

Proposed 
 (ellipse pupil) 

0.04 0.0  4 0.07 
For the best 200 

images 

	
The results of the proposed method on IITD are shown in 

Fig. 10 and Table II. As shown in the two bottom images of 
Fig. 10, defocused image and irregularly-shaped pupils even 
resulted in acceptable detection.  

 

 
Figure 10. Pupil segmentation results for IITD (the two bottom images are 
resulted in high FC ratios). 
 
TABLE II. PUPIL SEGMENTATION PERFORMANCE ON IITD (FOR 2108 IMAGES 

EXCLUDING PUPILS COVERED BY EYELIDS). 

Method OC UC FC 

Proposed (circle pupil) 0.06 0.34 0.38 

Proposed (ellipse pupil) 0.05 0.20 0.23 

 
The average processing time of the proposed methods 

tested on a PC (Intel, i7-4790 CPU @ 2.60 GHz) is shown 
in Table III. Because a large amount of information is 
calculated for pupil segmentation, the processing time 
including iris limbus boundary segmentation, eyelid 
detection and normalization may take less than 150 ms. 

TABLE III. AVERAGE PROCESSING TIME (MS) FOR THE PROPOSED METHOD 

Dataset CASIA (320×280) IITD (320×240) 

Average processing 
time 

77.67 66.06 

 

 
Figure 11. Pupil segmentation results (CASIA-Thousand and CASIA-
Lamp). 

 

 
Figure 12. Iris segmentation results. 

 
All CASIA-Interval v3.0 and IITD results and some other 

results of CASIA-Thousand and CASIA-Lamp, where these 
some results are shown in Fig. 11, can be found at the 
website; https://sites.google.com/site/khuaris/home/pupil-
segmentation. 
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In addition, the limbus boundary segmentation and 
normalization are performed to show the ability capable of 
being used in iris recognition systems as shown in Figs. 12 
and 13. The limbus boundary segmentation is performed by 
the same manner with the pupil segmentation. In the results, 
the limbus boundaries of irises are well segmented for 
unclear limbus images in Fig. 12 and the normalized images 
do not have the pupil textures in Fig. 13. Therefore, the 
proposed method can be used for iris recognition systems 
with high performances.  

 

 
Figure 13. Iris normalization results. 
 

To evaluate more general conditions, we tested on 
variable challengeable conditions, which were reported in 
[21], shown in Figs. 14 and 15, where various size pupils 
were correctly segmented, and non-visible pupils such as 
closed eyes or partially visible pupils were not segmented 
because of the minimum voting threshold for detecting an 
initial pupil center.  
 

 
Figure 14. Pupil segmentation results for various size pupils. 

 

 
Figure 15. Pupil segmentation results for closed eye and non-visible iris 
images. 

VI. CONCLUSION 

We have proposed a novel method of pupil segmentation 
for iris segmentation and recognition. To accurately detect 
the initial pupil center, orientation fields were used. By this 
accurate initial center, radial non-maximum edges were 
successfully suppressed. Pupil boundaries were accurately 

detected as elliptic models using a novel elliptic 
approximation. Therefore, the proposed method could be 
widely used for iris recognition systems with a high degree 
of accuracy. 
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