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1Abstract—This article presents a new methodology to 

implement a computational parallel scheme based on 
Differential Evolution (DE) algorithm through the use of 
Graphical Processing Units (GPU). A system application in 
which it is possible to perform an online monitoring of Power 
Quality Disturbances (PQD) in electric grids is presented as a 
case study, where a fitting of the parameters of a mathematical 
model is performed through this technique. Hyper-parameter 
optimization of the parallel Differential Evolution algorithm is 
performed for the assigned fitting function. As a result of this 
parallel implementation, a speed-up of 37 times compared with 
the serial implementation is achieved by using a single low 
budget GPU. The work presented shows a significant speed 
and accuracy improvement compared with Micro-Genetic 
Algorithm for Power Quality Analysis (MGA-PQA) technique. 
 

Index Terms—evolutionary computation, parallel 
programming, parallel processing, power quality, power 
system faults. 

I. INTRODUCTION 

Nowadays, parallel computation techniques allow to 
obtain an improvement on computation time and the 
processing of wide data sets. As a large number of 
computation cores exist, processing time can be diminished 
when an initial complex task can be decomposed into 
independent simpler subtasks assigning a processor core to 
each one, executing them simultaneously. Computational 
intensive tasks as meta-heuristic optimization 
algorithms[1]–[4] that were used to taking a significant 
amount of time for computational expensive evaluation 
functions, are processed more efficiently by the use of 
parallel computing scheme allowing their implementation to 
obtain on-line systems. Different parallel systems 
architectures as multi-core central processing units (CPU) 
and graphics processing units (GPU) are present these days 
in nearly every personal computer, while infrastructure as a 
service (IaaS) servers specifically built for this purpose can 
be easily accessed by Google Cloud Platform and Amazon 
Web Services. 

The meta-heuristic algorithms are used to obtain an 
approximate solution to a problem whose exact resolution 
method is unknown, where the classic algorithms are 
ineffective, or where it is very expensive to apply due to its 

computational time and resources needed. Differential 
Evolution (DE) is a technique within meta-heuristic 
algorithms, which allows obtaining an estimation for the 
solution of a multi-parametric continuous optimization 
problem. This technique is based on the evolution of a 
population through mutation and crossover operations 
between its agents, leading to a new population whose best 
agent score is equal or better for each new generation. Due 
to the population nature that DE has, this algorithm allows 
being directly implemented in a parallel computing 
environment taking the developers to an application able to 
solve multi-parametric optimization problems in a sped-up 
way by minimizing the impact on the resources 
consumption that its serial implementation implies. 
Particularly, an application in which this work will focus is 
given in a mathematical model fit to an electric signal 
containing power quality disturbances, a problem in power 
quality. 

 
1This work was supported by SEP-CONACyT 222453-2013 Project; 

CONACyT scholarship 783317; PRODEP UAQ-PTC-350 funding; the 
Universidad Autonoma de Queretaro. 

Power quality (PQ) is a research area focused on studying 
disturbances appearing in electric signals at power lines. 
Because now many key processes from the continuous 
manufacturing industry, commerce and services are 
dependent on the electric supply, this research area has 
increased its popularity. The continuous monitoring and 
conditioning of the power line signals prevent fails that 
would lead to significant losses [5], which can be 
economical in the case of the continuous manufacturing 
industry or fatal in a hospital building. In the PQ field, 
various disturbances can appear at voltage electric signals 
such as constant amplitude variations, harmonic contents, 
and flickers. Different sources responsible for causing 
disturbance events are present with a considerable portion of 
them because of customer loads [6]. These can cause 
harmonic content (due to nonlinear loads), poor power 
factor (due to highly inductive loads), flicker (due to arc 
furnaces), transients (due to device switching) and others. 
Power quality monitoring and conditioning should be 
considered for economic benefits. For example, a present 
disturbance like harmonic content at the power line could 
lead to a reduction of a 30% of life expectancy of a 
capacitor [7]. Because sampling frequency necessary for 
obtaining a valid signal for the power quality analysis is by 
the range of 6 kHz to 8 kHz [8], the quantity of data 
generated is very large. So, an on-line fitting process on a 
mathematical model which represents the various 
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disturbances that can appear in the electric signal has not 
been studied yet. In the literature simplifications are taken in 
the actual model implementations, for instance, by declaring 
the fundamental wave frequency as a constant to get 
solutions in a shorter time. However, through this way, real 
power signals are not adequately adjusted. Nowadays, the 
online monitoring of power signals is a tendency where the 
monitoring system response delay is reduced to be able to 
detect and quantify power quality disturbances in a fast and 
accurate way [9]–[12]. The reported methods for the 
mathematical model adjustment focused on PQD detection 
are widely computational expensive. Regarding the meta-
heuristic techniques, these could be used for the power 
quality analysis. Therefore, it would be desirable to develop 
a methodology which has a parallel distributed 
computational cost as well as an on-line implementation. 

The contribution of this paper is the development of a 
new methodology based on differential evolution for a 
mathematical model fitting of power quality disturbances. 
Parallel implementation is achieved through the use of GPU. 
A mathematical model that describes power quality 
disturbances in an electric voltage signal is used as the case 
study. Parallel implementation of this new methodology 
leads to an on-line signal parameters estimation for high-
frequency sampled signals. Validation is run for synthetic 
and real power signals and a comparison is performed with 
MGA-PQA method [13]. The outcome of this study 
represents a significant advance in power quality field. 

II. RELATED WORK 

Recently, parallel implementations of meta-heuristic 
algorithms have been published [14]–[19]. They are known 
to be a computational intensive task, as well, development 
of GPU based solutions for signal processing [20], [21] and 
FPGA based ones [22]–[24] show that parallel programming 
fits at the Signal Processing applications empowering 
researchers with the fastest tools for their experiments, 
situating the solutions at the area of High-Performance 
Computing (HPC). 

The use of evolutionary algorithms (EA) as a multi-
parametric optimization  algorithms is instantiated at signal 
processing research area [25]–[27], where differential 
evolution (DE) has been used for feature subset selection in 
conjunction with other artificial intelligence classification 
algorithms [28]–[31] to obtain the input variable set that 
maximizes the classification process accuracy. The idea of 
DE comes from genetic algorithms (GA), which follows the 
idea of principles of evolution. This algorithm has been 
studied extensively and new variants are being published 
recently [32]. In the predictive maintenance area, DE is used 
for obtaining an estimation of uncertain ranged bearing-
related physical values [33]. Examples are shown in the 
literature where a meta-heuristic algorithm is used in 
conjunction with other techniques for solving optimization 
problems [34]–[36].The monitoring and the identification of 
the power quality disturbances present in power lines must 
be performed. Different methods were recently published 
where the estimations of the phase offset 

1
  and the 

fundamental frequency 
1

f  are done in separate processes (or 

even considered fixed as in the standards) [11], [13], [37]–

[39]. The accuracy of the results is acceptable for test cases 
presented at those studies but an improvement is needed for 
these methodologies by using a full time-dependent 
parametric model, in order to obtain a higher accuracy at 
Power Quality Disturbances detection and characterization. 
The EN 50160 standard [40] specifies a nominal frequency 
of 60Hz (50Hz for Europe) with deviations (using 
measuring periods of 10s) of  over a year and 1% 6%  for 
each measuring period at interconnected systems. Given 
that, the frequency may vary over time, the decision of 
estimating frequencies at a calibration stage that only runs 
once or fixating it at the standard nominal frequency leads to 
a self-imposed lower-bound at fitting error. Mathematical 
models for signals with Power Quality Disturbances where 
the frequency value is taken as a function of time has been 
presented lately [41], [42], these works present the most 
complete modelization. However, the frequency and the 
phase are fixed at a posterior step because of the complexity 
of the model presented and the computing time needed to 
manage signal processing with it. This error is aggravated 
during harmonic content parameters estimation because of 
the nature of their frequency being a multiple of the 
fundamental one [43], [44]. Also, an incorrect frequency 
filter band could lead to attenuation of these important 
disturbances. Having the correct phase and frequency of the 
fundamental waveform and the harmonic content ensures 
the accuracy of the power quality diagnostic tool because of 
the flexibility to adapt the synthetic signal to the real one 
and it has not been done before. Considering the 
aforementioned, there is a need on developing an on-line 
robust methodology capable of providing these parameters 
accurately for reaching the best fitting of the PQ 
parameterized model with the minimal computational 
resources required, and in the lowest time, though a parallel 
structure, compared with the current solution based on the 
micro-genetic algorithm power quality analysis (MGA-
PQA) proposed in [13]. The present work introduces a new 
methodology that performs PQD detection and 
characterization considering a parametric mathematical 
model where the frequency and the phase offset are 
considered as time-dependent variables and their values are 
estimated with accuracy at first. The proposed approach is 
based on two main techniques. A combination of both 
makes up a more accurate fitting: DE and moving root mean 
squared (MRMS). DE algorithm has been parallelized using 
OpenCL, and a flexible parallel C++ library has been 
developed for future implementations of the algorithm. The 
algorithm has been studied considering different variants of 
it and internal parameters tuning for the sinusoidal 
waveform fitting with the aim of obtaining the configuration 
that minimizes the number of generations computed for 
reaching a goal relative squared error (RSE)  . The MRMS 
technique detects the voltage sag and the voltage swell for 
each half cycle by the use of a precise number of points 
defined by the previous DE block output.  

A parallel implementation has been done for a power 
quality event classifier leading to a greater event detection 
accuracy, lowering misclassification rate as a consequence, 
even for a mixture of PQD events. The electric events 
detected and characterized are voltage sag, voltage swell, 
flicker, harmonic content and disturbance mixture. A 
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statistical study on the outcomes obtained was accomplished 
to prove the goodness of the methodology proposed, by 
using randomly generated voltage power signals. A 
comparison was performed with the MGA-PQA 
methodology, which considers the frequency and the phase 
values as time-invariant, by using real power signal data 
from a hospital in Spain and from the IEEE 1159.2 working 
group database, where the proposed methodology returns 
faster and more accurate results. 

III. METHODS 

A. Differential Evolution algorithm 

DE algorithms [45]–[47] are a family of evolutionary 
algorithms designed to solve optimization problems by 
using a population-based approach. The algorithm is 
iterative, at an initial step a population matrix  

containing 

 0

,

0

a p A P
x


X

A  different agents, where each one of them has 
P  parameters, the dimensions of the problem, is randomly 
generated by using a random variable following a 

normalized distribution. The use of random values 
allows to avoid the grid search and locates the initial 
population in certain solutions, that if they are close enough 
to the global solution, they will converge to it. These 
parameters are randomly distributed as the classical way that 
it is done for genetic algorithms [48], [49]. In this study, 
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The stop conditions of the algorithm indicate when it has 
already finished the computation and must return a result. A 
certain number of maximum generations G  is defined. A 
generation counter increases at each iteration of the 
algorithm's main loop starting at 0  where a check of the 
goal condition is performed in the beginning. 
In the main loop a population g

X  previously defined, a 
matrix of neighbors  is generated,  is 

dependent on the strategy (or scheme) selected. A 
population  is created by crossover and 

mutation. A selection is done by pairs, where each agent 
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using the fitting function value of the agents for the 
comparison. Once the stop condition is reached, the best 
agent is returned as the best fit solution found. A flowchart 
of the algorithm is shown in Fig. 1. 

The schemes used in the study are presented and the new 
trial parameter expression is shown for each one of them. 
The differential process is the core of the proposed 
methodology and the factor  0,1F   determines the 

behavior of the crossover (graduates how much noticeable is 
the change at the parameters). 

The name of the strategies is defined by considering the 
used crossover technique and the count of neighbors pairs 
used at this stage. The DE/Rand/N and DE/Best/N sets are 
the family of strategies analyzed in this research, where a 
vector of unique neighbors is created for each agent, taking 

,1
g
an

popu

 as the agent with the lowest score in the main 

the strategy name refers to how many pairs of agent are 
appended to the vector, leading to Λ 1 2N   as the 
cardinality of the vector of neighbors for e t. For the 
p -th parameter, the trial parameter w  of the agent a  at 
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s 

N
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Figure 1. m flowchart 

For each -th agent of the main po ne n 
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rameter is fixed where the index of the parameter is 

v
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which is taken from a discrete uniform distribution  1, P . 

For each parameter p  , a random c  is generated u n sing a
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variable for each parameter and the agent of the 

tion in the crossover stage the strategy is named with 
a * mark at the end of its name (DE/Best/N* and 
DE/Rand/N*). 

B. Analytical s

la

tudy of the sinusoidal it waveform defin ion 

A study of the sinusoidal waveform definition needs to be 
ne for the selection of the optimization method that will 

be used with the aim of obtaining an approximate solution. 
Given a signal  r t  based on a sinusoidal waveform, with 

the formula shown in (2), it is necessary to obtain a 
synthetic signal  r̂ t  that minimizes the error.  

   sinr t t        2) 

The err r is describe

 3) 

The equat n (4) shows the objecti opt ize 

(

(

im

o

io

d in the integral part of (3) for a 
give

by

n standard sine wave. This expression must be 
converted to its discrete form to work with it. 
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 using s  as the sampling rate and r  as the raw signal data 

vector, with 
p

r  as its p -th component, and  
, ,

,
w w s w e

I I I  as 

the time int rval wh re the waveform pe e arameters are 
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estimated and  
w

I  is the interval of discrete sample 

indexes correspo  to 
w

nding I . The parameters   and   are 

defined as the frequency and the phase o fset o the 
waveform, respectively, and t  is a variable representing 
time.  
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g. 2 where the RSE between the real and the estimated 

signal, calculated by applying the equation (7) and by using 
r  as the mean of the raw signal data mean (must be equal to 

ro for this methodology), measures waveform fitting. 
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reached at (60Hz,   radians) as expected. 
 

Figure 2. Objective function contour plot for 
1

f (60Hz,

e n p em 
so

π rads) 

The DE algorithm will find out th  optimizatio robl
lution stated by (4), using (5) and (6) as constraints. This 

particular algorithm was chosen because it is able to solve 
optimization problems with multiple continuous variables as 
the present problem, whereas its population nature makes its 
implementation in parallel a straightforward process. 
Furthermore, recent evidence reveals the prevalence of 
meta-heuristic algorithms for solving this kind of problem, 
as particle swarm optimization (PSO) in [34], gravitational 
search algorithm (GSA) in [35] and harmony search (HS) in 
[36]. 

C. Micro-genetic algorithm for power quality analysis 

A methodology focused on power quality disturbances 
detection and measuring named as Micro-genetic algorithm 
for power quality analysis (MGA-PQA) has been studied in 
[13]. This methodology will be used for comparison 
purposes with the proposed methodology. 

The approach presented in the article is based on the use 
of low population size genetic algorithms for parameter 
estimation. Mathematical model fitting by using MGA is 
performed at different steps of the methodology showing 
results that outperform the PSO and classical 
methodologies. 

IV. METHODOLOGY 

In this section, the proposed methodology is described 
and the system implementation is presented. The system 
shown in Fig. 3 is proposed as an online power quality event 
classifier, where the characterization of sag, swell, flicker 
and harmonic content can be done. Furthermore, unbalance 
and asymmetries between phases [50] can be accomplished 
with no extra steps. The proposed approach is also able to 
determine if an unknown disturbance is present at the 
system because of the fitting error that distinct DE blocks 
may return. The simplicity of the methodology which is 
mainly based on DE blocks, band-pass filters and moving 
RMS blocks is a key point for the ease of its 
implementation. 

 

 
Figure 3. Main block diagram of the system 

 
The presented block diagram is designed for a three-phase 

signal which is most common at continuous manufacturing 
industry, a different diagram could be built for being used in 
two-phase systems where the multiplicity of the components 
in the acquisition and analysis modules is changed. The 
methodology takes a raw stationary voltage power signal 
which is composed of three phases, this is sampled through 
ADC systems and the data is stored in a Random-Access 
Memory (RAM) using a sampling rate s , after certain 
number of samples a window phase signal data vector  is 

obtained for each phase 

p
r

p . These vectors  are submitted 

to the analysis module where fundamental signal estimated 
waveform parameters 

p
r

 
,1

ˆ
p p

 
,1

ˆ ,

,0p
v

 and moving RMS of the 

signal are calculated. Harmonic content characterization is 
conducted where moving RMS  of each of them is 

obtained. Moreover, flicker characterization is performed, 
where its moving RMS, , is taken as the result. Once all 

outputs of the analysis module are calculated, different 
thresholds are applied to accomplish with the event 
detection. 

p
h

A. Phase Analyzer module 

An extended description of the Phase Analyzer is needed 
in order to understand the proposed methodology. This 
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module is the main block of the methodology, where the 
logic of the method is contained, it is shown in Fig. 4. In the 
Primary module, a band-pass filter is needed in order to 
attenuate frequencies far from the fundamental frequency. 
Once applied, the resulting signal  is taken as input for a 

DE block and the system proceeds to an estimation of 
 parameter set. The Moving RMS by a half 

fundamental cycle sliding window (with 

,1p
r

 ,1 ,1
,

p p
  

,1
ˆ/

p
 

,1p

pu

 as length) of 

the raw phase signal data (formerly v ) is performed. A 

threshold analysis is performed at  where for each value 

  a sag is present if , a swell is present 

if  and an interruption is present if 

,1p
v

0.9 
,1p

v  v

1.1pu v

0.1pu v

1.8pu  0.1puv  . 
This method allows an accurate detection and 
characterization for these voltage variation disturbances by 
each half of a period or more as the standard claims [8]. 
There is no need for syncing by using phase offset because 
moving RMS does the calculation independently of it. 

A flicker module is present at the phase analyzer. The 
primary module output signal is filtered by a band-pass in 
order to erase frequencies outside the flicker expected range. 
A DE block proceeds with the estimation of flicker 
parameters . By obtaining an estimated frequency 

close to the search lower bound could be a sign of flicker 
absence. Otherwise, a flicker effect correction must be done 
at 


, 0 , 0

ˆˆ ,
p p

  

,1pv  to avoid detecting flicker cycles as voltage sags and 

voltage swells (because it can be seen as voltage falling and 
voltage rising, continuously). A moving mean is used to 
center the filtered signal at 0V. The Moving RMS by a half 
flicker cycle sliding window is calculated (formerly ) 

using last step output. A flicker present at the time window 
analyzed lead to a DC signal at . 

,0p
v

, 0p
v

 

 
Figure 4. Phase Analyzer block diagram 
 

The harmonic modules are implemented as well, where 
each one of them performs the analysis of one harmonic, by 
receiving the raw phase signal  and returning a moving 

RMS signal , from Fig. 4 harmonic content modules are 

replicated 

p
r

,p h
h

H  times with H  being the number of harmonic 
content to analyze. This module composition leads to a 
linear growth of the system architecture taking the number 
of harmonic content orders to analyze as the parameter. A 
threshold is set for harmonic module output signal  to 

show the presence of harmonic content. There is the need of 
having the fundamental frequency estimation done before 
analyzing harmonic content, the reason is that this method 
relies on it for creating the harmonic filter and moving RMS 
sliding window. A flowchart of the process performed at 
phase analyzer block is shown at Fig. 5. 

,p h
h

B. Differential evolution parameters estimation block 

The most compute expensive part of the methodology is 
the DE parameters estimation block. Given that the fitting 
function evaluation shown in (7) is computationally 
expensive when the sampling frequency of the signal is high 
( kHz), summed up to the presence of this block at 
different parts of the system. A study has been directed for 
reducing the computation time required for fitting waveform 
signals.  

8

Because DE is a generation-based algorithm, the lowest 
number of generations needed to obtain a fit, whose sum of 
square errors (SSE) is expected to be lower than certain   is 
desired. This goal could be reached by increasing the 
population size or by modifying the random generation of 
the initial agents. The first approach is discarded because of 
a not efficient use of the computational resources would be 
done. Given that signals present at the system are not 
supposed to change over time and similar frequencies 
between the last processed time window signal and the 
current one is expected, DE modules are designed in a way 
that feedback of the best agent found at last time window is 
stored for using it at the creation of the new initial 
population. 

 
Figure 5. Flowchart of Phase Analyzer block 
 

A study was driven in the DE block for waveform fitting, 
where different parameters of the algorithm were tuned to 
achieve a better fit in fewer generations. The results of the 
study by population size are summarized in Table I where 
each test case is defined using a population size, a mutation 
strategy, a crossover probability C  and a differential factor 

F . Each line represents the minimum generations, g , 

needed to reach the lower bound defined as  (0.5% 0.005 
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mean square error). The phase shift, , is defined as the 
sum of the mean and the standard deviation of the MSE for 
that row using 100 samples per each. The table shows that 
for 25 agents as population size test case 
(DE/Best/3*,1,0.25) with 20 as the generations needed using 
3 pairs of neighbors (and the best agent) for the mutation 
strategy, for all the population sizes tested the case 
(DE/Best/1*,1,0.25) appears at the top in the first or the 
second position. This case will be named the general 
optimum configuration. 

Φ

Also, a comparison is done between a serial and a parallel 
GPU OpenCL implementation (both present at the C++ 
library developed in this study), where parallel 
implementation shows a significant difference of running 
time required for 80 generations. Tests were run defining 
200 agents as population size for the general optimum 
configuration, (Best,1,1,0.25,1), a mean speed-up of up to 
37 times is reached when using the GPU parallel 
implementation. In Fig. 6 is shown that, this speed-up will 
probably increase for larger window sizes. 

The maximum parallel implementation throughput is 
achieved by the subdivision of the process in independent 
tasks, taking advantage of the fact that computation of the 
population scores is an independent process between agents. 

 
TABLE I. GENERATIONS NEEDED BY DE CONFIGURATION TO ACHIEVE 

0.5%   RSE 

Pop. Size Strategy C  F  ε

g  Φ  (%) 

25 DE/Best/3* 1 0.25 20 0.43317 

25 DE/Best/1* 1 0.25 24 0.42089 

25 DE/Best/1  0.75 0.25 24 0.44026 

50 DE/Best/1* 1 0.25 9 0.31885 

50 DE/Best/2* 1 0.25 9 0.49077 

50 DE/Best/3* 1 0.25 9 0.4943 

100 DE/Best/1* 1 0.25 5 0.35433 

100 DE/Best/2* 1 0.25 6 0.30329 

100 DE/Best/1* 0.75 0.25 6 0.37286 

200 DE/Best/1* 1 0.25 3 0.46988 

200 DE/Best/2* 1 0.25 4 0.32843 

200 DE/Best/3* 1 0.25 4 0.46404 

 

 
Figure 6. Speed up by window size by the use of a Tesla K80 GPU on 
Amazon Web Services Elastic Cloud Computing 

V. VALIDATION USING SYNTHETIC POWER SIGNALS 

To test the validity of the methodology in a simulated 
environment a synthetic power signals battery of tests is 
performed. 

Detection of PQDs using larger windows is done with a 

gain of accuracy in disturbance classification compared with 
the MGA-PQA methodology proposed in [42] where a fixed 
standard frequency is taken. 

For each test case a synthetic signal that contains a set of 
PQD is generated, after that, MGA-PQA and proposed 
methodology are both applied using the raw signal as input. 
Using the output fit from each methodology the error values 
are calculated by using (7) and (8). 

 Δ , maxˆ
k k

k

r r r r  ˆ     (8) 

Synthetic signals were created by using the mathematical 
model shown in [51], analysis and reconstruction of each 
signal are done by the MGA-PQA and the proposed 
methodology. These tests have run taking 60 Hz and 59.7 
Hz as the fundamental frequency and the next disturbances 
present for each test: 0.6pu sag, 1.2pu swell, 20 Hz and 
0.3pu flicker, harmonic content of third and ninth order with 
an amplitude of 0.1pu and 0.2pu respectively. A signal with 
a 0.6pu sag, 20 Hz and 0.2pu flicker and fifth order 
harmonic content of 0.1pu is analyzed at 60 Hz fundamental 
frequency as well.  

The tracking error comparison is done by using maximum 
absolute difference, which is calculated as shown in (8) 
using  as the raw signal and   as the reconstructed 
estimated signal, which is the output of the proposed 
methodology based on DE. The results of the fitting quality 
by both methodologies are summarized in Table II. 

r r̂

The disadvantage of analyzing a signal using a fixed 
frequency at the model is noticeable even more when 
analyzing high order harmonic content, because the error of 
the fundamental frequency is multiplied so automated 
analysis is now possible under these uncertain conditions. 

Analysis of the signal with a combination of disturbances 
shows that a flicker is detected, a correction at the signal 
RMS must be done to detect the sag component. After the 
correction is done, the sag is detected correctly 
independently from the flicker as two distinct events as 
shown in Fig. 7. The proposed methodology is able to 
extract the flicker as well. 

 
Figure 7. Flicker corrected RMS analysis of mixed signal 

 
A study has been driven to analyze the importance of 

using good fixed frequency parameter in the MGA-PQA 
method. A synthetic 60Hz sine waveform is generated, and 
the RSE is calculated for different fixed frequencies set for 
the MGA-PQA method. The results of the study can be seen 
in Fig. 8. The results reveal the important use of the correct 
fixed frequency parameter for the estimation of the 
waveform. Furthermore, real power signals are not constant 
in frequency, what leads to an estimation of this parameter 
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for each window. 

 
Figure 8. RSE for different fixed frequencies set for the MGA-PQA method 
on a 60Hz sine waveform 

 
TABLE II. RESULTS OF SYNTHETIC SIGNALS TESTS 

60 Hz 59.7 Hz Test 
Signal 

Method 
  %Δ   RSE %    %Δ   RSE %  

MGA-PQA 29.355 0.306 38.599 5.145 
Sag 

Proposed 30.718 0.3132 32.171 0.283 
MGA-PQA 13.385 0.0863 38.894 4.259 

Swell 
Proposed 14.196 0.091 13.418 0.099 

MGA-PQA 11.49 0.439 45.553 5.069 
Flicker 

Proposed 7.866 0.31 8.183 0.308 
MGA-PQA 6.677 0.05 52.801 7.644 Harm. 

content Proposed 2.238 0.01 0.268 0 
MGA-PQA 20.248 0.666 33.314 2.491 

Mixed 
Proposed 17.25 0.178 15.898 0.219 

59.4 Hz 58.8 Hz Test 
Signal 

Method 
  %Δ   RSE %    %Δ   RSE %  

MGA-PQA 42.089 4.981 69.756 16.234 
Sag 

Proposed 32.828 0.601 31.07 0.587 
MGA-PQA 75.381 17.698 117.41 50.342 

Swell 
Proposed 15.179 0.103 15.204 0.105 

MGA-PQA 80.565 17.332 118.64 48.953 Flicker 
Proposed 8.337 0.309 8.429 0.309 

MGA-PQA 83.32 19.71 109.26 50.065 Harm. 
content Proposed 0.419 0 0.853 0 

MGA-PQA 54.203 6.126 76.811 17.814 Mixed 
Proposed 14.96 0.229 13.639 0.222 

VI. VALIDATION USING REAL POWER SIGNALS 

With the purpose of validating the proposed methodology 
in a real environment after it has been validated with 
synthetic signals, real power signals are being processed by 
the implementation of the system: a signal from IEEE and 
another from a hospital in Spain. 

With the aim of comparing the proposed methodology 
and MGA-PQA methodology, the raw signal has been given 
to each of these methods. After a fit is obtained for each 
methodology, errors are calculated by using (7) and (8). 

A. Laboratory power signal from IEEE 

With the aim to provide a standard signal, a real power 
signal from the IEEE 1159.2 Working Group database, 
phase B from wave 1 in their dataset, was used to validate 
the proposed method showing an accurate detection for 
disturbances sag and harmonic content. 

In Fig. 9.a it could be seen that the signal shows a 
disturbance between 0.3-0.4 seconds, normalized RMS falls 
to 24.75% with the proposed methodology and a sag is 
detected as shown in Fig 9.b. No flicker has been detected at 
the signal so no correction is needed for the signal 
normalized RMS. In Figure 9.c tracking error is present as 
shown for the MGA-PQA methodology and the proposed 
methodology showing a result of  

for the proposed methodology and  
for the MGA-PQA methodology. Harmonic content is 
estimated by the proposed method, an amplitude of 

Δ 21.009%, 0.578%RSE 

Δ 39.562%, 1.749%RSE 

5.82% 0.87%  is estimated for the third order, 3.44% 0.38%  
for  the fifth order, 2.46% 0.28%  for the seventh order and 

 for the ninth order. 0.38% 0.1%

Because of this signal is generated under a controlled 
environment, its frequency is about to 60Hz; at the 
fundamental waveform DE block, a frequency of 59 Hz 
is estimated. By the use of a longer time window, the MGA-
PQA is expected to fail at voltage sag estimation if the 
disturbance is present at some point where the phase offset 
difference of the waveform generated by the fixed frequency 
method and the fundamental waveform is relatively high in 
magnitude. 

.9521

 

 
Figure 9. a. Raw signal 

 
Figure 9. b. RMS analysis 

 
Figure 9. c. Tracking error 
Figure 9. IEEE Working Group signal analysis by the proposed method 

B. Power signal from a hospital in Spain 

Having as a goal to provide a second real power signal 
test, a sanitary facility study has been done. The analysis of 
an uncontrolled environment power signal obtained by a 
proprietary acquisition system from a hospital at Valladolid, 
Spain, has been accomplished. Having in mind that this 
signal was acquired in Spain the fundamental frequency is 
expected to be 50 Hz, estimation by the proposed 
methodology solved it as 50.0209 Hz. The raw signal is 
shown in Fig. 10.a. A voltage sag is detected by the 
proposed methodology in 0.16-0.24 seconds time range as 
shown in Fig. 10.b. The tracking error of the MGA-PQA 
methodology and the proposed methodology could be seen 
in Fig 10.c where the proposed methodology tracking error 
seems lower compared with the other methodology, 
confirmed by the numerical results of 
Δ 21.009%, RS 0.57828%E 

.562%,

 for the proposed methodology 

and Δ 39 1.735%RSE   for the MGA-PQA 
methodology.  
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Harmonic content is analyzed by the proposed 
methodology showing an amplitude of 1.  for the 
third order, 0.  for the fifth order,  
for the seventh order and  for the ninth order 
respectively.  

12% 0.28%

0.36%49% 0.11% 0.07%

0.52% 0.05%

 
Figure 10. a. Raw signal 

 
Figure 10. b. RMS analysis 

 
Figure 10. c. Tracking error 
Figure 10. Hospital signal analysis by the proposed method 

VII. DISCUSSION AND ANALYSIS 

An analysis of the results of the previous section is 
needed. In this section, analysis and discussion of the results 
is performed. 

In section IV.B a group of strategies for DE are presented. 
These strategies are studied where using DE/Best/1* as the 
mutation strategy shows generally more favorable results for 
high population sizes, where only 3 generations are needed 
to obtain a 0.16% RSE for a population of 400 agents with 
no previous information of the signal. The number of 
generations needed is expected to decrease when initial 
population parameters are distributed centered on last 
window values. A new statistical distribution based on a 
constrained normal distribution is presented for this process. 

A test suite has been performed showing the mean and the 
standard deviation of maximum absolute difference ( ) and 

RSE by the use of the MGA-PQA methodology and the 
proposed methodology using 60 Hz standard. Also, 
fundamental frequencies deviations of  and  
were tested. Ten iterations per configuration are run, where 
a configuration is represented by a synthetic signal 
generated: a sag with amplitude in the range of 

Δ

0.5%,1 %, 2%

 0.

.10

8, 0.9 pu 

and a length in the range of s, a swell with 

amplitude in the range of 

0.05, 0

 1.21.1, pu and a length in the 

range of  0.05, 0.10 s, a flicker with a frequency in the range 

of  10, 20 Hz and an amplitude in the range of  0.30.2, pu, a 

3rd harmonic content with an amplitude in the range of 
 00.05, 0.1 pu, a 9th harmonic content with an amplitude in 

the range of  .100.05, 0 pu and a combination of the sag, 

flicker and 9th harmonic content described before. The 
results of this test suite are shown in Table III. 

For each test-case 100 signals were generated. After 
applying the proposed methodology and the MGA-PQA 
methodology on each one, a fit is obtained. The error vector 
is calculated by using (7) and (8). Average and standard 
deviation of the errors vector are calculated for each 
methodology. 

TABLE III. RESULTS OF THE TEST SUITE PERFORMED 
60 Hz Test 

signal 
Method 

Δ  (%) RSE (%) 
MGA-PQA 12.37±2.117 0.09±0.017 

Sag 
Proposed 11.04±3.183 0.04±0.031 

MGA-PQA 10.28±1.411 0.07±0.004 
Swell 

Proposed 13.77±6.136 0.11±0.236 
MGA-PQA 18.43±1.25 1.08±0.189 

Flicker 
Proposed 9.4±0.956 0.42±0.077 

MGA-PQA 6.14±0.998 0.04±0.008 
3rd H. 

Proposed 0.54±0.015 0±0 
MGA-PQA 5.65±1.032 0.04±0.008 

9th H. 
Proposed 0.47±0.007 0±0 

MGA-PQA 18.79±1.909 1.08±0.101 
Mixed 

Proposed 14.14±4.883 0.45±0.107 
59.7 Hz Test 

signal 
Method 

Δ  (%) RSE (%) 
MGA-PQA 37.77±0.989 4.78±0.152 Sag 
Proposed 10.24±2.216 0.04±0.03 

MGA-PQA 38.76±1.672 4.65±0.157 Swell 
Proposed 12.09±2.905 0.03±0.015 

MGA-PQA 47.95±0.801 5.73±0.153 
Flicker 

Proposed 9.06±1.111 0.39±0.083 
MGA-PQA 45.84±1.854 4.9±0.117 3rd H. 
Proposed 0.18±0.029 0±0 

MGA-PQA 38.88±1.563 5.14±0.16 
9th H. 

Proposed 0.32±0.008 0±0 
MGA-PQA 49.51±1.454 6.39±0.272 Mixed 
Proposed 15.04±3.236 0.48±0.07 

59.4 Hz Test 
signal 

Method 
Δ  (%) RSE (%) 

MGA-PQA 68.44±0.838 17.51±0.444 Sag 
Proposed 11.57±4.426 0.07±0.125 

MGA-PQA 69.19±0.928 16.49±0.59 Swell 
Proposed 12±4.823 0.08±0.153 

MGA-PQA 88.01±1.213 18.01±0.314 Flicker 
Proposed 8.91±1.114 0.37±0.089 

MGA-PQA 75.33±1.543 17.36±0.117 3rd H. 
Proposed 0.24±0.035 0±0 

MGA-PQA 72.02±1.16 17.28±0.115 9th H. 
Proposed 0.25±0.032 0±0 

MGA-PQA 92.01±1.335 18.5±0.631 Mixed 
Proposed 14.44±3.72 0.5±0.099 

 
The proposed methodology shows more accurate results 

compared with the MGA-PQA methodology even when 
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using 58.8 Hz as the fundamental frequency. 
Differences between the MGA-PQA methodology and the 

proposed methodology presented in section IV lead to 
different results. By using the MGA-PQA methodology a 
DE parameter search is conducted for each half cycle, using 
zero crossings as the indicator, resulting in a peak amplitude 
value. The assumption of the standard frequency presence at 
the fundamental waveform could drive to a low accuracy 
signal fitting where PQD could not be detected and 
characterized. A fundamental frequency difference for a 
60Hz standard, a 5% difference, has shown a high loss of 
accuracy in the previous fixed frequency method, showing 
an interruption when a flicker is present. Through the 
frequency and the phase estimation of the signal 
fundamental waveform by time window, a new level of 
stability is reached where the proposed methodology adapts 
itself effectively to real power signals in an automated way. 
The results obtained from the analysis of synthetic and real 
power signals are as they were expected to be, given that 
frequency search space is compliant with valid fundamental 
waveform frequency range. 

Given that harmonic content frequencies are multiples of 
the fundamental waveform frequency a precise estimation of 
the last one must be performed in order to design and 
calculate the total harmonic distortion (THD). As the order 
of the harmonic content grows error does as. 

VIII. CONCLUSIONS 

After the assessment of the results presented in this 
research, several conclusions are reached. These conclusions 
are related to the parallel implementation of the algorithm 
and the use of DE as a method for fitting the PQD 
mathematical model used. 

In conclusion, current research presented a new 
methodology based on a parallelization scheme for 
minimizing the computational resources that the 
computationally intensive technique of definition evolution 
requires. This parallel structure allows a decrease in a 
significant amount the processing time by applying 
calculations in parallel structures at high speed diminishing 
the computational effort by the use of hardware dedicated to 
graphics processing through CUDA and OpenCL libraries. 
Nevertheless, the architecture introduced shows simplicity 
as one of its characteristics in an open architecture.  

The presented methodology uses differential evolution as 
its main module for its construction. Through the 
implementation of libraries that allow the use of graphics 
processing units, a parallelization of this technique is 
reached. As a consequence of the computational scheme 
shift, the result of this case study, a complete mathematical 
model fitting of a signal, is a speed-up of 37 times. 
Demonstrating the power in the use of both techniques 
together, leading to a minimization of the resources needed 
for the processing. 

The implementation of the methodology in the case study 
leads to an on-line monitoring power quality system with 
high accuracy in the measurement of power disturbances. 
This new methodology has been validated through tests 
using synthetic and real power signals, which contain 
different types of disturbances such as isolated and mixed. A 
remarkable improvement has been obtained compared with 

the MGA-PQA methodology, reaching a precision gain of 
5% for signals whose fundamental wave frequency is equal 
to the fixed standard and a precision gain of 69% when 
dealing with signals whose fundamental wave frequency 
differs by 1% from the standard frequency. 

It has been demonstrated that the proposed methodology 
is capable of making a considerable contribution to the 
scope of power quality monitoring. Computation of 
evaluation function values in the differential evolution 
algorithm has been accelerated by the use of parallel 
computing obtaining an on-line power quality monitoring 
system as a result. The future aims for using parallel 
computing along with meta-heuristic and artificial 
intelligence algorithms. The compound of these techniques 
would illuminate the various uncertainties that are currently 
present in the field of power quality.  

REFERENCES 
[1] Y. Ma, X. Yu, and Y. Niu, “A parallel heuristic reduction based 

approach for distribution network fault diagnosis,” Int. J. Electr. 
Power Energy Syst., vol. 73, pp. 548–559, Dec. 2015, 
doi:10.1016/J.IJEPES.2015.05.027. 

[2] A. Delévacq, P. Delisle, M. Gravel, and M. Krajecki, “Parallel Ant 
Colony Optimization on Graphics Processing Units,” J. Parallel 
Distrib. Comput., vol. 73, no. 1, pp. 52–61, Jan. 2013, 
doi:10.1016/J.JPDC.2012.01.003. 

[3] K. Luu, M. Noble, A. Gesret, N. Belayouni, and P.-F. Roux, “A 
parallel competitive Particle Swarm Optimization for non-linear first 
arrival traveltime tomography and uncertainty quantification,” 
Comput. Geosci., vol. 113, pp. 81–93, Apr. 2018, 
doi:10.1016/J.CAGEO.2018.01.016. 

[4] S. Iwata and Y. Fukuyama, “Verification of Dependability on Parallel 
Differential Evolution Based Voltage and Reactive Power Control,” 
IFAC-PapersOnLine, vol. 49, no. 27, pp. 140–145, Jan. 2016, 
doi:10.1016/J.IFACOL.2016.10.733. 

[5] P. Salmerón Revuelta, J. Prieto Thomas, and S. Pérez Litrán, Active 
power line conditioners : design, simulation and implementation for 
improving power quality. Academic Press, 2016. 

[6] M. A. S. Masoum and E. Fuchs, Power quality in power systems and 
electrical machines, 2nd ed. Academic Press/Elsevier, 2015. 

[7] S. Chattopadhyay, M. Mitra, and S. Sengupta, Electric power quality. 
Springer, 2011. 

[8] Institute of Electrical and Electronics Engineers, “IEEE Std 1159-
2009 (Revision of IEEE Std 1159-1995).” 2009, 
doi:10.1109/IEEESTD.2009.5154067. 

[9] M. Naglic, L. Liu, I. Tyuryukanov, M. Popov, M. A. M. M. van der 
Meijden, and V. Terzija, “Synchronized measurement technology 
supported AC and HVDC online disturbance detection,” Electr. 
Power Syst. Res., vol. 160, pp. 308–317, Jul. 2018, 
doi:10.1016/J.EPSR.2018.03.007. 

[10] M. Lopez-Ramirez, E. Cabal-Yepez, L. Ledesma-Carrillo, H. 
Miranda-Vidales, C. Rodriguez-Donate, and R. Lizarraga-Morales, 
“FPGA-Based Online PQD Detection and Classification through 
DWT, Mathematical Morphology and SVD,” Energies, vol. 11, no. 4, 
p. 769, Mar. 2018, doi:10.3390/en11040769. 

[11] O. P. Mahela and A. G. Shaik, “Recognition of power quality 
disturbances using S -transform based ruled decision tree and fuzzy 
C-means clustering classifiers,” Appl. Soft Comput., vol. 59, pp. 243–
257, Oct. 2017, doi:10.1016/j.asoc.2017.05.061. 

[12] P. Kanirajan and V. Suresh Kumar, “Power quality disturbance 
detection and classification using wavelet and RBFNN,” Appl. Soft 
Comput., vol. 35, pp. 470–481, Oct. 2015, 
doi:10.1016/j.asoc.2015.05.048. 

[13] A. Y. Jaen-Cuellar, L. Morales-Velazquez, R. de J. Romero-
Troncoso, D. Moriñigo-Sotelo, and R. A. Osornio-Rios, “Micro-
genetic algorithms for detecting and classifying electric power 
disturbances,” Neural Comput. Appl., vol. 28, pp. 379–392, 2017, 
doi:10.1007/s00521-016-2355-z. 

[14] W. Bożejko, M. Uchroński, and M. Wodecki, “Parallel metaheuristics 
for the cyclic flow shop scheduling problem,” Comput. Ind. Eng., vol. 
95, pp. 156–163, May 2016, doi:10.1016/J.CIE.2016.03.008. 

[15] Z.-H. Hu, “Heuristics for solving continuous berth allocation problem 
considering periodic balancing utilization of cranes,” Comput. Ind. 
Eng., vol. 85, pp. 216–226, Jul. 2015, doi:10.1016/J.CIE.2015.03.017. 

       21

[Downloaded from www.aece.ro on Wednesday, July 02, 2025 at 03:24:39 (UTC) by 172.69.7.112. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 19, Number 2, 2019 

 22 

[16] T. Dokeroglu, “Hybrid teaching–learning-based optimization 
algorithms for the Quadratic Assignment Problem,” Comput. Ind. 
Eng., vol. 85, pp. 86–101, Jul. 2015, doi:10.1016/J.CIE.2015.03.001. 

[17] W. Niu, Z. Feng, C. Cheng, and X. Wu, “A parallel multi-objective 
particle swarm optimization for cascade hydropower reservoir 
operation in southwest China,” Appl. Soft Comput., vol. 70, pp. 562–
575, Sep. 2018, doi:10.1016/j.asoc.2018.06.011. 

[18] D. R. Penas, J. R. Banga, P. González, and R. Doallo, “Enhanced 
parallel Differential Evolution algorithm for problems in 
computational systems biology,” Appl. Soft Comput., vol. 33, pp. 86–
99, Aug. 2015, doi:10.1016/j.asoc.2015.04.025. 

[19] D. M. Pedroso, M. R. Bonyadi, and M. Gallagher, “Parallel 
evolutionary algorithm for single and multi-objective optimisation: 
Differential evolution and constraints handling,” Appl. Soft Comput., 
vol. 61, pp. 995–1012, Dec. 2017, doi:10.1016/j.asoc.2017.09.006. 

[20] P. Nejedly, F. Plesinger, J. Halamek, and P. Jurak, “CudaFilters: A 
SignalPlant library for GPU-accelerated FFT and FIR filtering,” 
Softw. Pract. Exp., vol. 48, no. 1, pp. 3–9, Jan. 2018, 
doi:10.1002/spe.2507. 

[21] G. Zhou et al., “A novel GPU-accelerated strategy for contingency 
screening of static security analysis,” Int. J. Electr. Power Energy 
Syst., vol. 83, pp. 33–39, 2016, doi:10.1016/j.ijepes.2016.03.048. 

[22] S. Luthra, “High Level Synthesis and Evaluation of an Automotive 
RADAR Signal Processing algorithm for FPGAs,” University of 
Windsor, 2017. 

[23] C. Liu, R. Ma, H. Bai, F. Gechter, and F. Gao, “A new approach for 
FPGA-based real-time simulation of power electronic system with no 
simulation latency in subsystem partitioning,” Int. J. Electr. Power 
Energy Syst., vol. 99, pp. 650–658, 2018, 
doi:10.1016/j.ijepes.2018.01.053. 

[24] M. S. Ben Ameur and A. Sakly, “FPGA based hardware 
implementation of Bat Algorithm,” Appl. Soft Comput., vol. 58, pp. 
378–387, Sep. 2017, doi:10.1016/j.asoc.2017.04.015. 

[25] H. Setiadi, A. U. Krismanto, N. Mithulananthan, and M. J. Hossain, 
“Modal interaction of power systems with high penetration of 
renewable energy and BES systems,” Int. J. Electr. Power Energy 
Syst., vol. 97, pp. 385–395, 2018, doi:10.1016/j.ijepes.2017.11.021. 

[26] M. Singh, V. Telukunta, and S. G. Srivani, “Enhanced real time 
coordination of distance and user defined over current relays,” Int. J. 
Electr. Power Energy Syst., vol. 98, pp. 430–441, 2018, 
doi:10.1016/j.ijepes.2017.12.018. 

[27] H. M. G. C. Branco, M. Oleskovicz, D. V. Coury, and A. C. B. 
Delbem, “Multiobjective optimization for power quality monitoring 
allocation considering voltage sags in distribution systems,” Int. J. 
Electr. Power Energy Syst., vol. 97, pp. 1–10, Apr. 2018, 
doi:10.1016/j.ijepes.2017.10.011. 

[28] P. Baraldi, G. Bonfanti, and E. Zio, “Differential evolution-based 
multi-objective optimization for the definition of a health indicator for 
fault diagnostics and prognostics,” Mech. Syst. Signal Process., vol. 
102, pp. 382–400, Mar. 2018, doi:10.1016/J.YMSSP.2017.09.013. 

[29] M. Z. Baig, N. Aslam, H. P. H. Shum, and L. Zhang, “Differential 
evolution algorithm as a tool for optimal feature subset selection in 
motor imagery EEG,” Expert Syst. Appl., vol. 90, pp. 184–195, Dec. 
2017, doi:10.1016/J.ESWA.2017.07.033. 

[30] M. Pal and S. Bandyopadhyay, “Many-objective feature selection for 
motor imagery EEG signals using differential evolution and support 
vector machine,” in 2016 International Conference on 
Microelectronics, Computing and Communications (MicroCom), 
2016, pp. 1–6, doi:10.1109/MicroCom.2016.7522574. 

[31] T. Niu, J. Wang, K. Zhang, and P. Du, “Multi-step-ahead wind speed 
forecasting based on optimal feature selection and a modified bat 
algorithm with the cognition strategy,” Renew. Energy, vol. 118, pp. 
213–229, Apr. 2018, doi:10.1016/J.RENENE.2017.10.075. 

[32] E. Osaba, F. Diaz, E. Onieva, R. Carballedo, and A. Perallos, 
“AMCPA: A population metaheuristic with adaptive crossover 
probability and multi-crossover mechanism for solving combinatorial 
optimization problems,” Int. J. Artif. Intell., vol. 12, no. 2, pp. 1–23, 
2014. 

[33] W. He, Q. Miao, M. Azarian, and M. Pecht, “Health monitoring of 
cooling fan bearings based on wavelet filter,” Mech. Syst. Signal 
Process., vol. 64–65, pp. 149–161, Dec. 2015, 
doi:10.1016/J.YMSSP.2015.04.002. 

[34] K. Y. Chan, T. S. Dillon, and E. Chang, “An Intelligent Particle 
Swarm Optimization for Short-Term Traffic Flow Forecasting Using 
on-Road Sensor Systems,” IEEE Trans. Ind. Electron., vol. 60, no. 10, 
pp. 4714–4725, Oct. 2013, doi:10.1109/TIE.2012.2213556. 

[35] R.-C. David, R.-E. Precup, E. M. Petriu, M.-B. Rădac, and S. Preitl, 
“Gravitational search algorithm-based design of fuzzy control systems 
with a reduced parametric sensitivity,” Inf. Sci. (Ny)., vol. 247, pp. 
154–173, Oct. 2013, doi:10.1016/J.INS.2013.05.035. 

[36] J. Saadat, P. Moallem, and H. Koofigar, “Training Echo State Neural 
Network Using Harmony Search Algorithm,” Int. J. Artif. Intell., vol. 
15, no. 1, pp. 136–179, 2017. 

[37] I. Sillitoe, M. Button, and E. Owhonda, “An Intelligent, multi-
transducer signal conditioning design for manufacturing 
applications,” Robot. Comput. Integr. Manuf., vol. 47, pp. 61–69, Oct. 
2017, doi:10.1016/J.RCIM.2016.12.001. 

[38] Y. Kabalci, S. Kockanat, and E. Kabalci, “A modified ABC algorithm 
approach for power system harmonic estimation problems,” Electr. 
Power Syst. Res., vol. 154, pp. 160–173, Jan. 2018, 
doi:10.1016/J.EPSR.2017.08.019. 

[39] M. Seera, C. P. Lim, C. K. Loo, and H. Singh, “A modified fuzzy 
min–max neural network for data clustering and its application to 
power quality monitoring,” Appl. Soft Comput., vol. 28, pp. 19–29, 
Mar. 2015, doi:10.1016/j.asoc.2014.09.050. 

[40] CENELEC, “EN 50160: Voltage characteristics of electricity supplied 
by public distribution systems.” 2015. 

[41] M. A. Rodriguez-Guerrero, R. Carranza-Lopez-Padilla, R. A. 
Osornio-Rios, and R. de J. Romero-Troncoso, “A novel methodology 
for modeling waveforms for power quality disturbance analysis,” 
Electr. Power Syst. Res., vol. 143, pp. 14–24, Feb. 2017, 
doi:10.1016/J.EPSR.2016.09.003. 

[42] M. A. Rodriguez-Guerrero, A. Y. Jaen-Cuellar, R. D. Carranza-
Lopez-Padilla, R. A. Osornio-Rios, G. Herrera-Ruiz, and R. de J. 
Romero-Troncoso, “Hybrid Approach based on GA and PSO for 
Parameter Estimation of a Full Power Quality Disturbance 
Parameterized Model,” IEEE Trans. Ind. Informatics, pp. 1–1, Aug. 
2017, doi:10.1109/TII.2017.2743762. 

[43] B. Xie, S. Gong, and G. Tan, “LiPro: light-based indoor positioning 
with rotating handheld devices,” Wirel. Networks, vol. 24, no. 1, pp. 
49–59, Jan. 2018, doi:10.1007/s11276-016-1312-1. 

[44] H. A. Kloub and F. Alkhatib, “Impact of increased deployment of 
distributed photovoltaic systems on power grid in Jordan challenges 
and potential solutions,” in 2017 10th Jordanian International 
Electrical and Electronics Engineering Conference (JIEEEC), 2017, 
pp. 1–4, doi:10.1109/JIEEEC.2017.8051411. 

[45] R. Storn and K. Price, “Differential Evolution – A Simple and 
Efficient Heuristic for global Optimization over Continuous Spaces,” 
J. Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997, 
doi:10.1023/A:1008202821328. 

[46] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential evolution : 
a practical approach to global optimization. Springer, 2005. 

[47] V. Feoktistov, Differential Evolution: In Search of Solutions. Springer 
US, 2006, doi:10.1007/978-0-387-36896-2. 

[48] H. Maaranen, K. Miettinen, and A. Penttinen, “On initial populations 
of a genetic algorithm for continuous optimization problems,” J. Glob. 
Optim., vol. 37, no. 3, pp. 405–436, Jan. 2007, doi:10.1007/s10898-
006-9056-6. 

[49] W. F. Sacco and A. C. Rios-Coelho, “On Initial Populations of 
Differential Evolution for Practical Optimization Problems,” in 
Computational Intelligence, Optimization and Inverse Problems with 
Applications in Engineering, Cham: Springer International 
Publishing, 2019, pp. 53–62, doi:10.1007/978-3-319-96433-1_3. 

[50] L. H. B. Liboni, M. C. de Oliveira, and I. N. da Silva, “On the 
problem of optimal estimation of balanced and symmetric three-phase 
signals,” Int. J. Electr. Power Energy Syst., vol. 91, pp. 155–165, 
2017, doi:10.1016/j.ijepes.2017.03.002. 

[51] M. A. Rodriguez-Guerrero, R. Carranza-Lopez-Padilla, R. A. 
Osornio-Rios, and R. de J. Romero-Troncoso, “A novel methodology 
for modeling waveforms for power quality disturbance analysis,” 
Electr. Power Syst. Res., vol. 143, pp. 14–24, Feb. 2017, 
doi:10.1016/J.EPSR.2016.09.003.

 

[Downloaded from www.aece.ro on Wednesday, July 02, 2025 at 03:24:39 (UTC) by 172.69.7.112. Redistribution subject to AECE license or copyright.]


