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1Abstract—Wind power is one of the most promising means 

of power generation. But the time-varying of wind speed is the 
most fundamental problem for power generation control 
system. Therefore, accurate wind speed prediction becomes 
particularly important. However, traditional wind speed 
predictions often lack consideration of the influence of 
atmospheric dynamic system. And few papers have introduced 
VMD method into the field of wind speed prediction. Thus, 
combined with four neural networks, this paper develops a 
wind speed prediction method based on Lorenz system and 
VMD, obtains LD-VMD-Elman wind speed prediction model. 
Simulation results show that: 1) As for wind speed prediction, 
Elman neural network has higher prediction accuracy and 
smaller error. 2) The models which added Lorenz disturbance 
can describe the actual physical movement of wind more 
accurately. 3) VMD can abstract the changing rules of different 
wind speed frequencies to improve the prediction effect. This 
paper makes up for the lack of consideration of atmospheric 
dynamic system. The Lorenz equation is used to describe the 
atmospheric dynamic system, which provides a new thought 
for wind speed prediction. The LD-VMD-Elman model 
significantly improves the accuracy of wind speed prediction 
and contribute to the power dispatch planning. 
 

Index Terms—wind speed prediction, atmospheric dynamics 
system, Lorenz system, artificial neural network. 

I. INTRODUCTION 

In recent years, the energy and environmental problems 
such as air pollution is getting worse and worse. 
Unreasonable energy structure is one of the major factors 
that aggravate environmental problems. Fossil fuels are the 
most widely used energy source in the world, and their 
pollution to the environment is obviously serious. 
Vigorously developing new energy has become the 
inevitable course for global energy development and 
transformation. Wind energy, as a huge amount of clean 
energy, has attracted more and more attention from 
countries. The rapid development of wind power has led to 
an increase in wind power proportion in power grid. 
However, the random volatility of the wind leads to the 
instability of wind power. If the wind speed can be 
accurately predicted in advance when the wind power is 
connected to the grid, the dispatching of the power system 

can be prepared in advance and the dispatching operators 
can make effective decisions. Therefore, accurate wind 
speed prediction contributes to the large-scale development 
and utilization of wind power resources and promotes wind 
power integration.  
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Researchers have done a lot of work on wind speed 
prediction in recent years. The methods are roughly divided 
into three types: the physical method, the statistical method 
and the artificial intelligence method [1]. 1) The physical 
method mainly predict the wind speed through weather 
information such as terrain, air pressure and temperature. 
Numerical weather prediction (NWP), as a typical physical 
model, predicts the distribution of meteorological elements 
according to the actual atmospheric conditions, certain 
initial values and boundary conditions [2]. References [3-5] 
proposed wind speed prediction models based on physical 
methods. But the study found that physical method is only 
suitable for ultra-short-term wind speed prediction. 2) 
Statistical method mainly use historical data, pattern 
recognition, parameter estimation and model checking to 
build mathematical models to solve problems. Usually 
statistical models contain autoregressive models (AR), 
moving average models (MA), and autoregressive moving 
average models (ARMA). However, although the ARMA 
model can describe linear dynamic processes, it is only 
applicable to stationary random sequences with zero mean. 
The wind speed time series is non-stationary obviously. 
Therefore, when building ARMA model for wind speed 
prediction, the time series must be non-stationary by adding 
trend and periodicity. References [6] and [7] proposed 
different wind speed prediction models based on the 
statistical method. 3) Artificial Intelligence (AI) is a good 
prediction method developed in recent years. It is considered 
as one of the three most advanced technologies in the 21st 
century and has developed rapidly since the 1970s. At 
present, artificial intelligence technology applied in the field 
of wind speed prediction mainly includes the artificial 
neural network (ANN), fuzzy logic, support vector machine 
(SVM) and so on. References [8-11] proposed ANN-based 
wind speed prediction models. References [12-14] proposed 
wind speed prediction models based on the fuzzy logic. 
References [15-18] introduced wind speed prediction 
models based on SVM. 

Obviously, this classification is not absolute. There are 

       3
1582-7445 © 2019 AECE

Digital Object Identifier 10.4316/AECE.2019.02001

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:42:08 (UTC) by 54.198.146.13. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 19, Number 2, 2019 

few models that use only a single method for wind speed 
prediction. In order to optimize the prediction process and 
improve the result accuracy, hybrid models has gradually 
become popular. Reference [19-25] present wind speed 
prediction method based on hybrid models. 

However, on the one hand, almost all of them only 
improved the algorithm, but did not consider the influence 
of the atmospheric dynamic system on the wind and ignored 
the non-linear characteristics of wind. Atmospheric motion 
is a deterministic dynamic system and its behavior can be 
described by a set of Lorenz equations [26]. In fact, the 
motivation of Lorenz system approach has been mentioned 
in the author's past papers in this field. Reference [23] and 
[27] are our previous papers in the field of wind speed 
prediction. On the other hand, most scholars only use the 
traditional EMD or EEMD to decompose the wind speed 
sequence, and there are few papers that use the newly 
developed VMD which is noise robust to preprocess the 
wind speed sequence data [28-29]. At the same time, the 
nonlinear modeling approaches have been developed in 
recent years. Reference [30-33] listed some of them that 
have been proved to be effective in various fields. Wind 
speed series is a kind of nonlinear time series and the neural 
network has strong ability of nonlinear mapping, it can 
complete highly complex input and output non-linear 
mapping, which is incomparable with traditional wind speed 
prediction methods.  

Based on this, this paper proposes a wind speed 
prediction model based on VMD and Lorenz system. First, a 
set of Lorenz equations is used to describe the atmospheric 
dynamic system, and the equation is solved under given 
initial conditions and parameters to obtain the optimal 
disturbance coefficient. Secondly, the original wind speed 
sequence is decomposed into several IMF components by 
VMD. Then, each IMF is predicted by BP neural network, 
RBF neural network, Elman neural network and LSTM 
neural network, respectively. Finally, the predicted values of 
each IMF are summed up, and the predicted results are 
modified by the Lorenz optimal disturbance coefficient 
obtained in the first step, and the LD-VMD-X (X represents 
the undetermined neural network model) wind speed 
prediction model is obtained. The single wind speed 
prediction methods are compared vertically, and the results 
obtained by combining different neural networks are 
compared horizontally. Finally, the LD-VMD-Elman wind 
speed prediction model which get the highest prediction 
accuracy is obtained. The contributions and innovations of 
this paper are summarized as follows: 

(1) The Lorenz system is introduced into the wind speed 
prediction model to describe the effect of atmospheric 
motion on wind speed, which provides a new idea for the 
field of wind speed prediction. 

(2) This paper proposes an innovative wind speed 
prediction model named LD-VMD-Elman. Compared with 
other 11 wind speed prediction model, it achieved the 
highest prediction accuracy on all four data sets. 

(3) Using VMD that is noise robust to preprocess the 
wind speed sequence data, the wind speed volatility is 
reduced, which is helpful for primary wind speed prediction 
model to grasp the law of wind speed. 

(4) For LD-VMD-X prediction method, by trying 

different X predictions, LD-VMD-Elman with the highest 
prediction accuracy is obtained, which provides a new 
model selection method for the establishment of wind speed 
prediction model. 

The structure of this paper is as follows: section 2 
describes the theoretical process of Lorenz system and 
VMD. Section 3 introduces the establishment process of 
wind speed prediction model based on VMD and Lorenz, 
and gives the flow chart of the model establishment. In 
section 4, the results of the simulation experiment are 
introduced and the error is analyzed. Section 5 gives the 
conclusion 

II. LORENZ CHAOTIC SYSTEM AND VMD 

Lorenz chaotic system and VMD are the two important 
concepts of model proposed in this paper. In this section, we 
will introduce their theory and deduction process 
respectively. 

A.    Lorenz chaotic system 

In 1963, when American meteorologist Edward Lorenz 
studied the natural convection system under the action of 
temperature gradient, he calculated the non-periodic 
phenomenon from the determined equation (later known as 
Lorentz equation) and found the first chaotic attractor. The 
Lorenz system is the earliest dissipative system for chaotic 
motion found in numerical experiments [34-35]. Its state 
equation (1) (the Lorenz equation) is a simplified model of 
weather forecasting. 

( )x x y

y xz rx y

z xy bz

   
    
  





                           (1) 

Where x  denotes the convection motion amplitude, y  

denotes the horizontal temperature difference between the 
ascending and descending fluid in the convection, and  
denotes the deviation of the vertical temperature difference 
caused by convection from the equilibrium state without 
convection (convective equilibrium). 

z

 , and  are the 
Prandtl number, the Rayleigh number (or Reynolds number), 
and the parameter related to the size of the container 
(representing the range of the microclimate area). 
When

r b

10  , 8 / 3b  and , the system appears as 
chaotic, and its solution is unstable and sensitive to the 
initial conditions. In fact, such a solution is chaos [26]. 

28r 

In this study, the solution vector in the chaotic state of the 
Lorenz system is used as the wind speed disturbance 
sequence, and the obtained disturbance sequence is applied 
to revise predictions of different models. Figure 1 shows the 
Realization of Lorenz disturbance sequence. 

In figure 1, denotes the initial condition, denotes the 

wind speed number, ( ,
0h n

, )k k kx y z ( 1,2, )k 
' ' ', ,n n n

...,n are the 

solvation of Lorenz equations, x y z

min in, ,

represent the 

normalized values of three solutions, m minx y z and 

max max max, ,x y z

, ,

denote minimum value and maximum value 

of x y z respectively, indicates kh ' '( , ,n n
' )nx y z D, denotes 

Lorenz disturbance sequence that we need. 
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Algorithm 1: Realization of Lorenz disturbance sequence 
Initialize 0 (1.1,1,1), 10, 8 / 3, 28h b r     

    Solve Lorenz equations (1): 

Input: initial parameters 0 , , ,h b r  and wind speeds n

get ( , , )k k kx y z ( 1,2,..., )k  n sequence  

Repeat 
for  do 1:k n

Standardize : kh

' min

max min

k
k

x x
x

x x





 

' min

max min

k
k

y y
y

y y





                                                     (2) 
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Calculating Lorenz disturbance sequence : D
' 2 ' 2 ' 2

0 0 0 0( ) (( ) ( ) ( ) )
k k kkD h h x x y y z z       2/1

 (3) 

end for 
Figure 1. Realization of Lorenz disturbance sequence 

B.    Variational mode decomposition 

The wind speed sequence is a non-linear time series, and 
data preprocessing can effectively improve the prediction 
accuracy [36]. Variational mode decomposition (VMD) is a 
signal decomposition method proposed by Dragomiretskiy 
and Zosso in 2014 [37-38]. It is a new adaptive signal 
processing technology and has excellent noise immunity. Its 
performance is better and more stable compared with the 
ensemble empirical mode decomposition (EEMD) and the 
empirical mode decomposition (EMD). VMD decomposes 
the signal into mode with different scales. It has specific 

sparse characteristics while generating the main signal. And 
assume that each mode can be concentrated near the center 
pulsation

ku

k

k determined during the decomposition process.  

In order to obtain the mode bandwidth, the following 
steps should be satisfied: 1) Calculating the analytical signal 
associated with the modal by Hilberthuang transform to 
obtain a unilateral spectrum. 2) Adding an exponential term 
adjusts the center frequency of the modality and shifts the 
modal spectrum to the baseband. 3) The demodulation 
signal is processed by H1-Gauss smoothing to estimate the 
bandwidth. A variational constraint problem is obtained by 
the above three steps: 

 2
2

{ },{ }
[( ( ) ) ( )]min k

k k

j t
t ku

j
t u t e

tk







                             

. .s t ( )k
k

u f t                                                       (4) 

Where ( )f t

1,...,k K

denotes the decomposed main signal, 

and{ }: { }u u u 1{ }: { ,..., }k K   represent the set 

containing all modes and their center frequencies, 
respectively, ( )t denotes the Dirac distribution,  denotes 

the convolution. 
Then, we add the quadratic penalty term  and the 

Lagrange multiplier  to make the problem unconstrained. 
The combination can benefit from the good convergence 
properties of the finite weight quadratic penalty function and 
the strict constraint imposed by the Lagrange multiplier. 
Therefore, the above optimization problem becomes the 

following unconstrained one: 
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The alternate direction method of multipliers (ADMM) 
which is shown in figure 2 is then used to solve the 
minimization problem of equation (5) by finding the saddle 
point of the augmented Lagrangian in a series of iterative 
sub-optimizations.  



Algorithm 2: ADMM optimization for VMD 

Initialize 
1 1 1{ },{ }, , 0k ku n    

Repeat 
1n n    

for 1:k K  do 

Update : ku
1 1arg min ({ },{ },{ }, )

k

n n n
k i k i k

u
u u u n n

i  
           (6) 

end for 
for 1:k K do 

Update k : 

1 1 1arg min ({ },{ },{ }, )
k

n n n
k i i ku



n n
i k     

        (7) 

end for 
Dual ascent: 

1 (n n n
k

k

f u      1)
                              (8) 

until convergence: 
2 21

2 2
/n n n

k k k
k

u u u     

Figure 2. ADMM optimization for VMD 

According to ADMM, the VMD process should be 

implemented by updating and minimizing and ku k . The 

iterative process is as follows: 

1
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Where n represents the number of iterations, 
ˆ ( )f  , 1ˆ ( )n

ku  , ˆ( )  , ˆ ( )iu  represent the Fourier transform 

of ( )f t , ,1( )n
ku t ( )t , respectively. ( )iu t

III. WIND SPEED PREDICTION MODEL BASED ON VMD AND 

LORENZ DISTURBANCE 

Based on the Lorenz chaotic system and VMD introduced 
in the section II, this section will introduce the establishment 
process of the wind speed prediction model, including the 
details of the original wind speed series, the setting of model 
parameters, the prediction process and evaluation index. 

A. Original wind speed datasets 

The wind speed data came from the Sotavento wind farm 
in Galicia, Spain in 2018 [39]. A total of 4 data sets were 
selected. The starting points were 0:00 on January 2, 0:00 on 
April 2, 0 on July 2 and 0 on October 2, respectively. Time 
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interval is 10 minutes, the first 900 data (about 6 days and 6 
hours) are used as training set, and the last 100 data (about 

16.7 hours) are used as test set. Figure 3 shows the original 
wind speed sequence for the four data sets. 

 
Figure 3. Original wind speed series 

As shown in figure 3, the blue line representing wind 
speed in April has a large value on the whole. It has an 
average value of 9.023 m/s and a maximum value of 21.93 
m/s. It indicates that the spring wind speed reached the 
highest level in the year. The red line representing wind 
speed in January and the yellow line representing wind 
speed in October are at medium levels among 4 lines. Their 
average values are 6.04m/s and 6.14m/s, respectively. The 
average value of the green line representing the wind speed 
in July is 4.61m/s, which is the lowest of the four data sets. 

B. parameter setting 

For the models involved in this paper, their parameter 
settings are given in Table I, Table II and Table III. 

TABLE I. PARAMETER SETTING OF LORENZ DISTURBANCE 
Parameter Value 

initial value of (x, y, z) (1.1, 1, 1) 
  10 

b  8/3 

r  28 

TABLE II. PARAMETER SETTING OF VMD 
Parameter Value 

Moderate bandwidth constraint   2000 
Noise-tolerance   0 

Modes number 3 

TABLE III. PARAMETER SETTING OF DIFFERENT NEURAL NETWORKS 
Network 

Parameter 
BP RBF Elman LSTM 

Layer number 3 3 4 3 
Number of 

hidden Layer 
neurons 

3 3 3 18 

Activation 
function 

Logsig, 
purelin 

Gauss 
function, 
purelin 

Logsig, 
purelin 

Sigmoid, tanh 

Training function tranlm \ tranlm 
back-

propagation 
through time 

C. Prediction process 

Based on the theories of Lorenz chaotic system and VMD 
introduced in section II, we give the process of selecting and 
establishing wind speed prediction model in this part. 

Step 1. The initial Lorenz values, the parameters in Table 
1 and the first 900 original wind speed series are brought 
into the Lorenz equation, thus the Lorenz disturbance 

coefficient is obtained by solving the equation. 
Step 2. Enter the parameters in Table 2 and the first 900 

original wind speed series into VMD, The decomposition 
sequences (iu 1,2,3i  ) is obtained by computer iteration 

under the condition of tolerance less than 1*10-7 according 
to equation (2). Decomposition results are shown in figure 4. 

Step 3. Setting the parameters of each neural network 
according to Table 3. The first 900 numbers of each 
subsequence serve as training sets for neural networks, and 
the next 100 serve as test sets.  

Step 4. For each data set, each sequence are predicted by 
BP neural network, RBF neural network, Elman neural 
network and LSTM neural network, then the prediction 
results of the same prediction model with different 
subsequences from the same data set are added up, thus  the 
prediction results of VMD-BP, VMD-RBF, VMD-Elman 
and VMD-LSTM are obtained. 

Step 5. The Lorenz disturbance coefficient obtained in 
step 1 is directly added to the preliminary prediction results 
obtained in step 4, thus the preliminary prediction results are 
corrected and prediction models LD-VMD-BP, LD-VMD-
RBF, LD-VMD-Elman and LD-VMD-LSTM are obtained. 
The flowchart of model establishment is shown in Figure 5. 

D. Model evaluation and comparison index 

The commonly used evaluation indexes of the model's 
prediction accuracy are mean absolute error (MAE), root 
mean square error (RMSE), and mean absolute percentage 
error (MAPE). In this paper we use MAE and RMSE to 
evaluate the prediction effect. The specific calculation 
formulas are as follows: 

 
1

1
ˆ( ) ( )

n

t

MAE y t y t
n 

                       (11) 

2

1

1
ˆ( ( ) ( ))

n

t

RMSE y t y t
n 

                  (12) 

Where ( )y t denotes original wind speed,  denotes 

wind speed predictions, indicates the sample size. 

ˆ( )y t

n
We first compare the MAE and RMSE of different 

models on the same dataset to obtain the model with the 
highest prediction accuracy, and then carry out experimental 
verification on multiple datasets to avoid the exceptions 
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caused by a single dataset. 

 
(a) VMD decomposition result of 1000 wind speeds in January 

 
(b) VMD decomposition result of 1000 wind speeds in April 

 
(c) VMD decomposition result of 1000 wind speeds in July 

 
(d) VMD decomposition result of 1000 wind speeds in October 

 
Figure 4. 1000 wind speed VMD decomposition result on 4 data sets 

 
 

Figure 5. Flow chart of model building 

       7

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:42:08 (UTC) by 54.198.146.13. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 19, Number 2, 2019 

IV. EXPERIMENTAL RESULTS AND ERROR ANALYSIS 

After introducing the process of model establishing, in 
this section we simulate different models on several data 
sets. Firstly, on the wind speed data set of January 2018, 
VMD and Lorenz disturbance are used to improve various 
prediction models in turn, and verifying the effect of VMD 
and Lorenz disturbance on model predictions. Then, by 
comparing MAE and RMSE, the best prediction model is 
obtained. Finally, the model is tested on multiple data sets to 

verify its universality. 

A. Preliminary comparison between neural network models 
and other models 

We first compare 4 neural networks with the persistence 
method, the ARMA prediction model, and the SVM 
prediction model. The prediction results on the four data sets 
are shown in Figure 6, and their MAE and RMSE are 
calculated separately as shown in Table IV. 

 
(a) Prediction results of persistence method, ARMA, SVM, BP, RBF, Elman and LSTM on January 

v(
m

/s
)

 
(b) Prediction results of persistence method, ARMA, SVM, BP, RBF, Elman and LSTM on April 

0 10 20 30 40 50 60 70 80 90 10
t(10min)

0
3

4

5

6

7

8

9

10

v(
m

/s
)

Original wind speed

Persistence method

ARMA

SVM

BP

RBF

Elman

LSTM

 
(c) Prediction results of persistence method, ARMA, SVM, BP, RBF, Elman and LSTM on July 
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(d) Prediction results of persistence method, ARMA, SVM, BP, RBF, Elman and LSTM on October 

Figure 6. (a)-(d) Separately depict prediction results of persistence method, ARMA, SVM, BP, RBF, Elman and LSTM on 4 different datasets 

TABLE IV. MAE AND RMSE OF PERSISTENCE METHOD, ARMA, SVM, BP, RBF, ELMAN AND LSTM ON FOUR DATA SETS 

 January April July October 

persistence method 0.4847 0.8969 0.4488 0.3779 
ARMA 0.4918 1.2213 0.4771 1.8384 
SVM 1.2939 1.4792 1.2116 1.0099 
BP 0.4953 0.9697 0.5749 0.3873 
RBF 0.4733 1.0496 0.4993 0.4147 
Elman 0.4767 1.0014 0.4604 0.3801 

MAE 

LSTM 0.4951 1.1667 0.5797 0.5271 
persistence method 0.6034 1.2121 0.6104 0.4800 
ARMA 0.6180 1.5855 0.6359 2.1640 
SVM 1.5369 1.8688 1.4638 1.1946 
BP 0.6285 1.2826 0.8794 0.5038 
RBF 0.5975 1.4013 0.7083 0.5262 
Elman 0.6029 1.2931 0.6552 0.4865 

RMSE 

LSTM 0.6091 1.4775 0.7660 0.6480 

 
The predictable time of the persistence method is too 

short (usually within one hour and in this paper is 10 
minutes), so its application is limited. In this paper, it is only 
used as a comparison standard to measure the prediction 
effect of other prediction models. And from Figure 6 and 
Table IV we can see that SVM performs worst in all data 
sets. On April dataset and October dataset, the MAE and 
RMSE of ARMA and SVM are both much larger than those 
of other models (these data are underlined in the table). 4 
neural networks and persistence methods perform well on 
every data set. Therefore, the prediction effect of the neural 
network wind speed prediction model on any data set is 
obviously better than that of other comparative models. 

Next, we will optimize the wind speed prediction model 
based on 4 neural networks in order to obtain a hybrid 
model with higher prediction accuracy. 

B. Optimal neural network prediction model 

On the wind speed data set of January 2018, based on BP, 
RBF, Elman and LSTM prediction models, we optimized 
them and corrected the predictions respectively. Figure 7 
shows the prediction results. 

In Fig. 7, (a) is the prediction results of BP neural 
network and its optimized models, (b) is that of RBF neural 
network and its optimized models, (c) is that of Elman 
neural network and its optimized models, (d) is that of 
LSTM neural network and its optimized models. The black 
fold lines are the original wind speed, blue lines are the 
prediction results of X (X denotes one of BP, RBF, Elman 
and LSTM), red lines represent the prediction results of 

VMD-X, green lines are the results of LD-VMD-X. 

 
(a) Prediction results based on BP 
 

 
(b) Prediction results based on RBF 
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 (c) Prediction results based on Elman 

 
(d) Prediction results based on LSTM 

Figure 7. (a) - (d) Separately depict wind speed prediction result on January 
based on BP, RBF, Elman, LSTM 

It can be seen from figure 7 that the one-step hysteresis of 
prediction results of the single model is obvious. After 
adding VMD, the hysteresis is obviously weakened, and the 
prediction result is closer to real wind speed. After imposing 
Lorenz perturbation correction on VMD-X, the green line of 
LD-VMD-X is the nearest to original wind speed. 

We calculated MAE and RMSE for 12 models (BP, 
VMD-BP, LD-VMD-BP, RBF, VMD- RBF, LD-VMD- 
RBF, Elman, VMD-Elman, LD-VMD-Elman, LSTM, 
VMD-LSTM and LD-VMD-LSTM), the results as shown in 
Table V. 

In Table V, for the BP, RBF, Elman, and LSTM 
prediction models, both MAE and RMSE are significantly 
reduced after adding VMD and Lorenz disturbance. 
Moreover, regardless of MAE or RMSE, it is the smallest of 
LD-VMD-Elman, which is 0.2872 and 0.3717 respectively. 
This shows that LD-VMD-Elman's prediction effect is the 
best in Spain's January 2018 wind speed data set. Compared 
to Elman, its MAE was reduced by 39.8% and RMSE was 
reduced by 38.3%. Compared to VMD-Elman, its MAE was 
reduced by 10.1% and RMSE was reduced by 7.1%. 

C. LD-VMD-Elman's universality 

We experimented with the best-performing LD-VMD-
Elman model on multiple datasets to verify the universality 
of the model. The prediction results are shown in Figure 8.  

In Figure 8, (a) shows the prediction results of Elman, 
VMD-Elman and LD-VMD-Elman on January wind speed 
data set (representing winter), (b) is that on April  wind 
speed dataset (representing spring), (c) is that on July wind 
speed data set (representing summer), (d) is that on October  
wind speed data set (representing autumn). The black lines 
are the original wind speed, the blue lines represent Elman 
prediction results, the red lines represent VMD-Elman 
prediction results, and the green lines represent LD-VMD-
Elman prediction results. 

As can be seen from figure 8, regardless of which data 
set, the prediction results of the VMD-Elman model are 
much closer to the true wind speed sequence than Elman's. 
After the Lorenz disturbance correction, the prediction result 
of the LD-VMD-Elman model further improves the 
prediction accuracy. The green line representing LD-VMD-
Elman is the closest line to the original wind speed line 
which is black on any sub-graph. 

 

TABLE V. MAE AND RMSE OF EACH MODEL’S PREDICTED RESULTS ON JANUARY 
 Error  

Prediction modes MAE RMSE 
BP 0.4553 0.5885 

VMD-BP 0.3869 0.4909 Modes based on BP 
LD-VMD-BP 0.3162 0.3900 

RBF 0.4133 0.5375 

VMD- RBF 0.3323 0.4098 Modes based on RBF 
LD-VMD- RBF 0.3104 0.3977 

Elman 0.4767 0.6029 

VMD- Elman 0.3194 0.4001 Modes based on 
Elman 

LD-VMD- Elman 0.2872 0.3717 

LSTM 0.4951 0.6091 

VMD- LSTM 0.4792 0.5801 Modes based on 
LSTM 

LD-VMD- LSTM 0.4332 0.5607 

 

 
(a) Prediction results based on Elman on January 

 
(b) Prediction results based on Elman on March 
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(c) Prediction results based on Elman on July 

 
(d) Prediction results based on Elman on October 

Figure 8. (a)-(d) Separately depict prediction results of Elman, VMD-Elman and LD-VMD-Elman on 4 different data sets 

TABLE VI. MAE AND RMSE OF ELMAN, VMD-ELMAN AND LD-VMD-ELMAN ON FOUR DATA SETS 

 MAE RMSE 

Elman 0.4767 0.6029 

VMD- Elman 0.3194 0.4001 January 
LD-VMD- Elman 0.2872 0.3717 

Elman 1.0014 1.2931 

VMD- Elman 0.8416 1.0285 April 
LD-VMD- Elman 0.8011 1.0107 

Elman 0.4604 0.6552 

VMD- Elman 0.2510 0.3410 July 
LD-VMD- Elman 0.2413 0.3309 

Elman 0.3801 0.4865 

VMD- Elman 0.3015 0.3849 October 
LD-VMD- Elman 0.2622 0.3335 

 
We calculated the MAE and RMSE for the prediction 

results of Elman, VMD-Elman, and LD-VMD-Elman on the 
four data sets, the results as shown in Table VI.  

In Table VI, VMD-Elman’s MAE and RMSE are smaller 
than Elman’s, and LD-VMD-Elman's MAE and RMSE are 
smaller than VMD-Elman’s. This shows that the VMD and 
Lorenz disturbances can improve the accuracy of the wind 
speed prediction model, which is true on all data sets. More 
specifically, LD-VMD- Elman's MAE is 0.1817 less than 
Elman's MAE, and the RMSE is reduced by an average of 
0.2477 on four data sets. The smallest MAE and RMSE 
appear on the July data set. 

V. CONCLUSION  

Accurate wind speed prediction is crucial for power 
dispatch planning, maintenance scheduling and regulation. 
Therefore, this paper proposes the LD-VMD-Elman wind 
speed prediction model. First, a set of Lorenz equations is 
used to describe the atmospheric dynamic system, and the 
equation is solved under given initial conditions and 
parameters to obtain the optimal disturbance coefficient. 
Secondly, the original wind speed sequence is decomposed 
by VMD to obtain IMFs. Then, considering the 
characteristics of neural network that can deal with highly 
non-linear time series, the IMF components are predicted by 
BP, RBF, Elman and LSTM neural network. Finally, the 
optimal disturbance coefficient obtained in the first step is 
used to correct the prediction result. And compared with 
other models, the LD-VMD-Elman wind speed prediction 
model with the highest prediction accuracy is obtained. 
Simulation results show that the addition of VMD and 

Lorenz disturbance can significantly improve the prediction 
accuracy of the initial model, LD-VMD-Elman is the most 
accurate prediction model in 12 wind speed prediction 
models. The contribution of this paper is that the 
atmospheric dynamic system is considered into the wind 
speed prediction model, and the wind speed prediction 
results are modified by Lorenz disturbance. After combining 
VMD and different neural networks, the LD-VMD-Elman 
wind speed prediction model proposed in this paper can 
improve the prediction accuracy by up to 49.5% compared 
with the other 11 models. It does contribute to the large-
scale development and utilization of wind energy. 
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