
Advances in Electrical and Computer Engineering Volume 18, Number 2, 2018

An Efficient MPTCP-Based Congestion Control
Scheme for HBDP Networks

Kwangsue CHUNG, Junyeol OH
Department of Electronics and Communications Engineering,

Kwangwoon University, Seoul, South Korea
kchung@kw.ac.kr

1Abstract—With the widespread distribution of devices with

multiple network interfaces, interest in multi-path transmission
techniques has increased. The Internet Engineering Task Force
(IETF) published Multi-path TCP (MPTCP) as a standard for
multi-path transmission techniques and many researchers have
studied multipath means of transmitting data efficiently, with
each path having different characteristics. However, today’s
networks have been shown to exhibit high bandwidth-delay
product (HBDP) characteristics but MPTCP does not match
the requirements of HBDP networks. Many researchers have
proposed solutions to overcome this problem, but the solutions
have had the drawbacks of ineffective load balancing
mechanisms and a trade-off problem between improving
throughput and preventing loss events. In this paper, we
propose an efficient MPTCP-based congestion control scheme
in HBDP networks. Our scheme consists of two main
mechanisms. One is to mitigate trade-off problems observed in
previous works and the other is to enhance traffic migration
according to the conditions of each path. Simulation results
have shown that our scheme achieves those goals and enhance
performance in HBDP networks.

Index Terms—data transfer, packet loss, quality of service,
TCPIP, transport protocols.

I. INTRODUCTION

Along with the increased interest in the multi-path
transmission techniques due to the widespread distribution
of devices with multiple network interfaces, path diversity
has increased because Internet environments have become
more complex. So, researches have studied multipath
transmission techniques in order to transmit data efficiently
in each path having different characteristics [1-3].

The Internet Engineering Task Force (IETF) published
Multi-path TCP (MPTCP) as a standard for multi-path
transmission techniques. MPTCP can increase the
throughput by transmitting data simultaneously through
different paths, with multiple TCP subflows [4]. However,
MPTCP is not friendly with single-path TCP or have
mechanisms for load balancing.

To solve such problems and to take full advantage of
multipath transmission techniques, many kinds of
congestion control mechanisms have been studied. The
previous schemes can be categorized as being either
MPTCP improvement schemes or MPTCP variant schemes.
MPTCP improvement schemes have been studied to
guarantee the friendliness with single-path TCP and provide
loading balancing by controlling increment of congestion
windows [5-10]. In these regards those schemes have been
shown to improve performance compared to that of bare

MPTCP. However, they work based on the AIMD
mechanism of legacy TCP. Therefore they spend too much
time occupying available bandwidth in high bandwidth-
delay product (HBDP) networks. With MPTCP variant
schemes, designs for high-speed TCP were extended to the
multi-path environment, to improve bandwidth utilization in
HBDP networks [11-13]. They can guarantee not only load
balancing but also friendliness with single-path TCP.
However, they work based on high-speed TCP mechanisms
that increase congestion window size aggressively, which
results in frequent congestion in HBDP networks.

These new congestion control schemes show improved
performance with regard to friendliness with single-path
TCP and load balancing. However the trade-off problem
between improving throughput and preventing loss events
remained unsolved. Also, it is difficult to provide efficient
load balancing in accordance with path characteristics
because of the dependence on particular parameters.

In this paper, we propose an efficient MPTCP-based
congestion control scheme for HBDP networks. Our scheme
consists of congestion control and load balancing
mechanisms which are respectively based on router buffer
states and expected throughput. The purpose of the former
mechanism is to adapt the congestion window by mitigating
the trade-off problem of previous works and the purpose of
the latter mechanism is effective traffic migration through
consideration of the characteristics of each path.

The rest of this paper is structured as follows. Section 2 is
a brief discussion of some related works and summarizes the
problems and requirements of HBDP networks. Then, we
describe details of our scheme in Section 3. In Section 4, we
quantify how well our scheme satisfies RTT fairness by
using a mathematical model. Section 5 presents the results
of a performance evaluation. Finally, Section 6 gives some
conclusions from our current work.

II. RELATED WORK

In this section, we introduce MPTCP and two
representative implementations of it, and point out the
problems that are encountered in HBDP networks.

A. Multi-path TCP (MPTCP)

MPTCP is a modified version of TCP that allows the
concurrent use of multiple available paths for data
transmission, in a manner that is transparent to the
application. Multi-path transport has been shown to be
beneficial for bandwidth aggregation and to increase end-
host robustness by creating subflows across the potentially
disjoint paths. However, there is no congestion control

 41
1582-7445 © 2018 AECE

Digital Object Identifier 10.4316/AECE.2018.02006

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:29:43 (UTC) by 3.239.83.89. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 2, 2018

mechanism in the MPTCP level and all subflows perform
the congestion control mechanism independently; there are
no considerations about load balancing and friendliness with
single-path flows. Therefore it is hard to effectively utilize
the innate benefits of multi-path flows.

To utilize benefits of MPTCP, the IETF defined the
following three requirements to capture the desirable
properties of a multi-path congestion control mechanism [6],
[14]: first, improving throughput; a multi-path TCP user
should perform at least as well as a TCP user that uses the
best available path. Second, friendliness with single-path
flow; a multi-path TCP user should never take up more
capacity from any of its paths than a regular TCP user.
Third, load balancing; a multi-path TCP algorithm should
transfer traffic away from congested paths to less congested
ones whenever possible. To satisfy the three requirements,
many congestion control mechanisms have been proposed.
These schemes can be categorized as being either MPTCP
improvement schemes or MPTCP variant schemes.

B. Linked Increase Algorithm (LIA)

Several congestion control algorithms have been
proposed for MPTP. Four of them are included in the Linux
kernel implementation: LIA [7], OLIA [15], BALIA [16]
and wVegas [17]. LIA is the default congestion control
scheme. LIA is one of the major MPTCP improvement
schemes that originated from TCP Reno’s additive
increase/multiplicative decrease (AIMD) mechanism. The
goal of LIA is to satisfy the three MPTCP requirements.
LIA regulates traffic by adjusting the sending winof each
subflow. Assume that a connection consists of set of
subflows R where each subflow may take a different route
through the Internet. Each subflow rR maintains its own
congestion window wr and ŵr represents the value at
equilibrium. During congestion avoidance MPTCP will:

Upon reception of each ACK on subflow r, increase the
window on that subflow by min(α/wtotal, 1), where wtotal

denotes the total congestion window across all subflows.
Upon each loss on subflow r, reduce the window on that

subflow by 1/wr.
Here

 2

r RTT
w

RTT

w

total

r

r

2
r

r Rrmax
w=α

∑ ˆ

ˆ |
ˆ

 (1)

The parameter α controls the aggressiveness for satisfying
the three MPTCP requirements. We describe how to satisfy
these requirements by using α. To meet the two
requirements, throughput and friendliness with single-path
flow, the LIA incorporates the following relationship:

 Rrmax=
r

TCP
r

r

r

RTT
w

r RTT
w |ˆˆ∑ (2)

 ŵr
TCP denotes congestion window size of regular TCP at

equilibrium. To get the parameter α which satisfies Eq. 2,
the LIA uses balance equations. At equilibrium, the balance
is expressed by:

2

w
p=

w

α
p-1 r

r
total

r

ˆ

ˆ
 (3)

pr denotes a probability of a dropped packet. Making the
approximation that 1- pr ≈1, and writing ŵr

TCP equal to
square root of 2/pr,

TCP
r

rtotal w=
ww

ˆ
ˆˆ

 (4)

By substituting Eq. 4 in Eq. 2, LIA derives parameter α as
shown in Eq. 1. Hence, LIA can guarantee the throughput
and single-path friendliness requirements.

Regarding the last of the requirements, load balancing,
LIA assumes that a congested path may suffer from packet
loss events more frequently than an uncongested path. Also,
RTT is one of the components determining increments of
the congestion window for each path. Therefore, the LIA
can transfer traffic by taking RTT and loss events into
account.

C. Multi-path Cubic (MPCUBIC)

MPCUBIC is one of the major MPTCP variant schemes
which extended HBDP TCP for application to multiple
paths, to improve bandwidth utilization in HBDP networks
[12]. To improve throughput, MPCUBIC adapted the
regular Cubic TCP mechanism [18] which uses concave-
convex growth functions. During congestion avoidance,
MPCUBIC regulates traffic by adjusting the sending
window of each subflow. MPTCP will:

Upon reception of each ACK on subflow r, increase the
window on that subflow by min(δC(tr-Kr)

3+ Wr
max, C(tr-

Kr)
3+ Wr

max), where C denotes a constant in regular Cubic,
δ is a linking parameter between paths, tr denotes the time
elapsed from the last packet loss event on path r, and Kr
denotes the period of time between two consecutive packet
loss events.

Upon each loss on subflow r, reduce the window on that
subflow by the factor β as used in regular Cubic.

To ensure friendliness with regular Cubic, MPCUBIC’s
window increment per path does not exceed that of regular
Cubic by using the right argument in min(.). If MPCUBIC’s
window increment does not exceed that of regular Cubic,
subflows of MPCUBIC perform the congestion control
mechanism of Cubic. On the other hand, MPCUBIC has to
set δ to use min(.).

Like the LIA, MPCUBIC also incorporates conditions for
satisfying the requirements of throughput and single-path
friendliness. In this case, MPCUBIC matches its friendliness
to that of regular Cubic TCP:

∑ |
ˆˆ

r
r

Cubic
r

r

r Rr
RTT

w
max=

RTT

w

 (5)

To derive a δ which can satisfy Eq. 5, we summarize the
relationship between ŵr and ŵr

Cubic in [12]:

Cubic
r

r
r w=
δ

w
,wmax 1

ˆ
ˆ

ˆ
4

 (6)

By substituting ŵr
Cubic in Eq. 5, MPCUBIC derives the

parameter δ:

 4

r RTT
w

4

RTT
w

r

r

r

r Rrmax
=δ

∑ ˆ

ˆ |
 (7)

To meet the third IETF requirement, for load balancing,
MPCUBIC assumes that not only the congested path suffers
from packet loss events more frequently but also that
uncongested paths have larger window sizes. Therefore, δ
must be based on both the congestion window size and

 42

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:29:43 (UTC) by 3.239.83.89. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 2, 2018

throughput (i.e. ŵr/RTTr). Therefore MPCUBIC modifies
Eq. 7 to Eq. 8, and then r places δ wit δe h r.

 4

r RTT
w

RTT
w

r

r

r

k-4
r r

∑ ˆ

ˆ |
k
rr

Rmax
w=δ ˆ (8)

MPCUBIC considers congestion window size and
throughput for transferring traffic with consideration of the
congestion levels of paths. Therefore, MPCUBIC can
enhance bandwidth utilization and satisfy the three MPTCP
requirements.

D. Problems of previous works and requirements for
HBDP networks

 Adaptiveness
LIA and almost all MPTCP improvement schemes have

inherited the properties of TCP Reno. They show low packet
loss rates compared to HBDP TCP schemes because of the
AIMD mechanism of TCP Reno. However, they spend too
much time occupying the available bandwidth [19]. On the
other hands, MPCUBIC and most MPTCP variant schemes
have inherited the properties of high-speed TCPs. They do
not spend much time occupying the available bandwidth.
However, they cause lots of packets to be dropped because
of the aggressiveness of high-speed TCP. MPTCP
improvement schemes and MPTCP variant schemes have
the trade-off problem between improving throughput and
preventing loss events.

HBDP networks have the properties of high bandwidth
and large buffer sizes [20]. A proper algorithm should
guarantee aggressive increase of the congestion window to
quickly occupy available bandwidth. Plus, the buffer
overflow should be prevented especially in HBDP networks
because these networks produce many dropped packets due
to large buffer size when the overflow occurs. To guarantee
both properties, a congestion control scheme should
intelligently adapt the congestion level to mitigate the trade-
off problem that was encountered in previous works.

 Load balancing
For effective load balancing, the congestion condition of

each path has to be estimated accurately and the traffic
should be transferred to uncongested paths as soon as
possible. For determining the congestion condition, the LIA
uses RTT only whereas MPCUBIC uses RTT and the
congestion window of the subflow. These parameters can
lead to wrong decisions because their use does not apply
path conditions accurately. To prevent wrong decisions for
dealing with congestion conditions, the sender has to
consider the property of the path only, and exclude
consideration of the properties of the subflow.

 For transferring traffic, RTT fairness is important, to
transfer traffic quickly from one path to the other path.
Window-based congestion control schemes update their
window size after receiving an acknowledgement packet.
This update period depends on the RTT of the path. RTT
unfairness may cause poor traffic transfer. For example,
there are two paths A and B. Path A has a large RTT and is
an uncongested path whereas path B has a short RTT but is
a congested path. Sender wants to transfer traffic from path
B to path A. But sender has an RTT unfairness and update

period of path A is too long compared to that of path B. The
difference of the congestion window size between both
paths increases slowly and the speed of traffic transfer is
also slow. Therefore, to transfer traffic quickly after making
a decision, sender has to guarantee RTT fairness.

III. EFFICIENT MPTCP-BASED CONGESTION CONTROL

SCHEME

After analyzing the problems of the schemes of the
previous works, we studied the design of an efficient
MPTCP-based congestion control scheme that fulfills the
three IETF requirements for MPTCP that are listed in
Section 2. We propose two key ideas. First, the sending rate
should be increased adaptively according to the congestion
level of each path to prevent packet loss and enhance
throughput. For example, if the link is uncongested,
increasing the sending rate should be aggressive to obtain
available bandwidth quickly. However, once the link is fully
utilized, the sending rate should be increased conservatively
to prevent overshooting. To control aggressiveness
according to the congestion level, we apply a congestion
control mechanism based on the router buffer states. This
mechanism can adjust its aggressiveness based on the
capacity of the bottleneck buffer and the existence of cross
traffic by observing packet delay. Second, load balancing
should be performed quickly and accurately among paths
that can be used by applying path conditions, not subflow
conditions. To perform load balancing quickly and
accurately, we apply an expected throughput based load
balancing mechanism. This mechanism can transfer traffic
based on relationships among paths. Eq. 9 shows our
proposed subflow congestion window growth function on
paths.

nw

nαnρnδ
,

nw

nαnρ
min=nΔw

r

rrr

r

rr
r 1 (9)

Δwr denotes the variation of congestion window size on
path r, ρr is a load balancing parameter on path r with
respect to the others, αr is an increment of the congestion
window size on path r and δr(n) is a friendliness parameter
on path r with single-path Cubic TCP on path r. ρr is
calculated from the expected throughput based load
balancing mechanism and δr is calculated from friendliness
using the Cubic TCP mechanism. Both ρr and δr can be
derived in the MPTCP level. αr is calculated from a router
buffer-based congestion control mechanism and can be
derived in the subflow level. After deriving the three
parameters, Δwr can be selected by using min(.). It allows
an upper threshold to keep friendliness with single-path
Cubic TCP and performs in congested states as a decision of
MPTCP.

A. Router buffer based congestion control mechanism

As explained earlier, a congestion control mechanism
based on router buffer states has to derive a proper value of
αr to control aggressiveness according to the congestion
level. To derive αr, the proposed scheme firstly checks
router buffer occupancy. By analyzing router buffer
occupancy and its variance, we predict the congestion level
and existence of cross traffic.

 43

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:29:43 (UTC) by 3.239.83.89. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 2, 2018

 Measuring router buffer occupancy
For checking congestion level of each path, we use diff

which denotes the number of packets backlogged in the
bottleneck queue and diffmax which denotes the bottleneck
queue size. diff is defined in TCP Vegas [21]. Fig. 1 shows
how to estimate diff and diffmax.

On each ACK:

Expected=win/baseRTT

Actual=win/RTT

diff=(Expected-Actual)baseRTT

If packet loss then

diff
max

=diff

Go to fast recovery phase

Else

Go to congestion avoidance phase
Figure 1. Pseudo-code for calculating diffmax

In Fig. 1, a state variable, called baseRTT, is maintained

as an estimation of the transmission delay of a packet over
the network path. Expected gives the estimation of the
throughput that we get if we do not overrun the network
path. Actual stands for the throughput that we really get.
Then, (Expected-Actual) is the difference between the
expected throughput and the actual throughput. When
multiplied by baseRTT, the product stands for the amount of
data backlogged in the bottleneck queue, diff. We assume
that all packet loss events occur because of overflow in the
bottleneck queue. Therefore diffmax sets the value of diff
calculated at the time that the packet loss event occurs.

 Control of the increment of congestion window size as
network load

Previous congestion control mechanisms of the subflow
cannot guarantee high bandwidth utilization and prevent
overflow simultaneously because of the trade-off
relationship between both. To overcome this trade-off, our
scheme controls the increment of congestion window size
by considering relationship between diff and diffmax. Fig. 2
illustrates the two-phase growth function of a subflow in our
scheme to guarantee high bandwidth utilization and prevent
overflow.

Figure 2. Growth function of the congestion window size

We denote Wm as the window size just before the last
window reduction which occurred due to overshooting.
After losing packets, window size decreases from Wm to W-
m(1-β). β is a constant multiplication decrease factor applied

for window reduction at the time of the loss event. At that
time, there are no backlogged packets in the bottleneck
queue. Therefore, the window size increases multiplicatively
until it reaches W0, to occupy bandwidth quickly (i.e. diff >
diffmin), where W0 denotes the window size which equals the
capacity of the bottleneck queue. After reaching W0, the
window size slows down its growth logarithmically as it
gets closer to Wm (i.e. diff diffmax), to prevent buffer
overflow and keep bandwidth utilization. For example,
when a delay-based scheme competes with a loss-based
scheme, their bandwidth utilization falls down as the
window size is reduced because of their early congestion
detection policy. If queueing delay increases, the increment
of window size is set to zero or becomes negative. But, our
growth function keeps increasing the window size by
considering the bottleneck queue limit. We designed the
algorithm as an increment function, f(diff) as in Eq. 10:

min
minmax

minminmax
2

minmax

minmaxminmax
1

2

1

min
r

diff-
α-α

)αdiff-(diff
=c

αα

α)αdiff-(diff
=c

else ,
diff+c

c

diff diff if ,
4

(n)w

1)Δw(nf(diff)

≤

 (10)

wr is the current window size, αmax and αmin are
thresholds of f(diff). If diff ≤ diffmin, the multiplicative
increase phase will be performed. In order to occupy
available bandwidth quickly after reducing window size,
f(diff) is set to the square root of wr. In the second condition,
the logarithmic increase phase will be performed. In order to
prevent overshoot and increase bandwidth utilization, f(diff)
is decreased as diff gets closer to diffmax, as shown in Fig. 3
which shows the relationship between the congestion level
and the increment of window size.

Figure 3. Graph for relationship between diff and α

 Setting the threshold of f(diff)

In real networks, both injecting and ejecting cross traffic
are general cases. The congestion level of a path varies with
the variation in the cross traffic. Therefore, an adaptive
scheme which can control the increment of congestion
window according to the variation in cross traffic is needed.
Previous schemes controlled the congestion window by
applying a fixed increment rate or range. With such schemes

 44

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:29:43 (UTC) by 3.239.83.89. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 2, 2018

it is difficult to perform adaptive congestion control with the
variation in the competing flows.

To solve this problem, our scheme proposes a mechanism
to set the threshold of f(diff) based on the expected fairness
index, Ḟ [22]:

i

i
i Δw

Δdiff
=F (11)

Consider a single link bottleneck traversed by n flows
with the same RTT when the total throughput of competing

flows is equal to bottleneck link capacity C where
i denotes the flow number. If any flow increases its
congestion window, the excess packets will be stacked in
the bottleneck queue. Suppose that all flows increase the
congestion window by the same Δw simultaneously. At the
end of one RTT, the bottleneck queue will have n·Δw
packets queued up. However, the actual number of
backlogged packets belonging to each flow will not be the
same unless all flows have the same congestion window size
and congestion control policy. Specifically, the number of
new packets of each flow contributed to the queue is

. This observation can be used to estimate the
fairness ratio. If a flow i increases the congestion window
when the link is fully utilized, it expects to see an increase in
the queuing delay. If the link is shared perfectly fairly, this
increase should be the same as if the flow had been alone in
a bottleneck link of capacity equal to w

∑ 1n
0=i i (t)w

∑ 1n
0=i i (t)wi(t)/w

i(t). Therefore, by
comparing the actual delay increase with the expected one,
the flow can deduce the status of the link. If the observed
delay increase is greater than expected, the flow is currently
using more than its fair share. And conversely, a smaller
than expected delay increase indicates a throughput below
the fair share of the flow.

Fig. 4 shows the pseudo-code to set the threshold of f(diff)
for fairness. We assume that the current bottleneck link is
busy and that there are backlogged packets in the bottleneck
queue. Therefore the pseudo-code of Fig. 4 only performs in
the logarithmic increase phase, during which the value of
diff is positive. If the value of Ḟ i is bigger than Ḟmax or
smaller than Ḟmin, f(diff) of flow i decreases or increases its
threshold values αmax and αmin by multiplying them by Ḟ i;
otherwise, flow i maintains its increment threshold of f(diff)
because flow i works fairly with the others. This operation
works continuously. So, all flows competing for the same
bottleneck link can be converged to a fair share range. Our
scheme can ensure fairness with competing flows and
efficiency for bandwidth occupancy by monitoring the
effects of its aggressiveness.

If ≤minF̂ F̂ ≤ then maxF̂

 αmax=αmax
 αmin=αmin
Else

 αmax=αmax· F̂

 αmin=αmin· F̂
Figure 4. Pseudo-code to set the threshold of f(diff) for fairness

B. Expected throughput-based load balancing mechanism

As explained earlier in Section 2, the load balancing
mechanism has to consider the properties of paths only and

not those of the subflows. With previous approaches, the
load balancing mechanism is included in the mechanism for
friendliness with single-path TCP as an additional function.
Therefore, its load balancing mechanism performance is
limited by its use of subflow parameters such as w and RTT.
So, both mechanisms have to be separated to properly
achieve their purposes. To check the properties of paths
only, we derive an expected throughput which is based on
the AIMD throughput in equilibrium states. It is a function
of the decrease/increase parameters α and β, RTT, and the
packet drop rate p. AIMD throughput in equilibrium states is
expressed as follows [23]:

pRTT2β

α-2
=Th

 (12)

Parameter α and β are properties of the subflow. So, we
initialize α to 1, β to 2/5, for removing the effects of
subflow. The equation can then be rewritten as the
following:

RTT
=Th

p
2

 (13)

After checking the expected throughput of each path by
using Eq. 13, our proposed mechanism sets the load
balancing factor ρ to transfer traffic efficiently. Fig. 5 shows
relationship between Th and ρ.

Figure 5. Graph for relationship between Th and ρ

After calculating the Th of each path, we can derive the

average expected throughput Thavg. Also, Thmax and Thmin
are the maximum and minimum expected throughputs. The
values of ρr, ρmax and ρmin can be expressed as follows:

avg

minavg
min

avg

maxavg
max

minminr
minmax

minmax
r

Th

ThTh
1=ρ

Th

ThTh
1=ρ

ρ+ThTh
Th-Th

ρ-ρ
=ρ

-
-

-
-

-

 (14)

C. Fairness with regular Cubic TCP

Previous schemes suggest a mechanism that makes the
total congestion window across all subflows equal to a
targeted single-path flow to guarantee friendliness with

 45

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:29:43 (UTC) by 3.239.83.89. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 2, 2018

single-path flow. Their total window size cannot exceed the
single-path flow’s own. With such a mechanism MPTCP
cannot increase its window size even though the occupancy
of the bandwidth is low or the available bandwidth is not
fully utilized. Then, it degrades the utilization of bandwidth.
To overcome this limitation, we propose a mechanism for
partial friendliness with single-path flows. It limits the
increment of MPTCP’s window size to single-path flow by
using a threshold parameter δ in Eq. 9, only when the
network is fully utilized. Our target is to match regular
Cubic TCP which is commonly used on the web. We can
derive δ as follows:

To achieve our goal, δ has to satisfy the IEFT’s MPTCP
requirements for throughput and single-path friendliness in
Eq. 5. So, we express our scheme’s throughput in
equilibrium states using Eq. 9:

β

w
p=

w

αρδ
p-1 r

r
r

rrr
r

ˆ

ˆ
 (15)

If we assume that 1-pr ≈ 1, we can write ŵr and pr,

2
r

rrr
r

r

rrr
r

w

βαρδ
=p

p

βαρδ
=w

ˆ

ˆ

 (16)

The average throughput of regular Cubic TCP is as
follows [11]:

 4

1

3
r

3
rCubic

r p4

RTTβ4C
=w

-
ˆ (17)

By simultaneously substituting the expression for pr in
Eq. 16 into Eq. 17, we can express the average throughput
of Cubic TCP:

4

1

3

w

βαρδ

3
rCubic

r

2
r

rrr4β

RTTβ4C
=w

ˆ

-
ˆ (18)

Finally we substitute Eq.18 into Eq. 5 and derive δr which
satisfies friendliness with single-path Cubic TCP,

 3

4

r

r

3
1

3
r

r RTT
w

rr

4β
RTTβ4C2

r

r

βαρ

Rrmaxw
=δ

∑ ˆ

-
∈|ˆ

 (19)

δr is a parameter to make the total window size across all
subflows equal to that of single-path Cubic TCP. It is only
applied in the logarithmic increase phase. When the network
is underutilized, our scheme increases the sending rate
quickly. After entering the logarithmic increase phase, δr
performs as a threshold value to help occupy the bandwidth
of single-path flow. Before entering the logarithmic increase
phase, our scheme does not harm single-path flow because
of our congestion control mechanism.

IV. ANALYSIS FOR RTT FAIRNESS

In this section, we want to quantify how well the
proposed scheme satisfies RTT fairness over multiple
subflows with different RTTs. In the following analysis, we
use a synchronized loss model. There is much evidence

showing that synchronized loss is common in high-speed
networks [23]. We verify our scheme based on a simple
network topology as shown in Fig. 6. Our scheme has two
window growth shapes, multiplicative increase and
logarithmic increase. We prove RTT fairness of our scheme
separately.

Droptail
Router

Droptail
RouterMPTCP

Sender
2

MPTCP
Sender

1

MPTCP
Receiver

2

MPTCP
Receiver

1

Figure 6. Network topology for analysis

A. Assumption

Before proving the RTT fairness, we demonstrate several
assumptions and equations needed for verification as below.

 Network topology

In Fig. 6, each MPTCP sender has two subflows and a
bottleneck link that is occupied by a subflow from different
sender. With this topology, the RTT of a subflow consist of
a propagation delay pd and queueing delay qd. If the total
throughput of subflows that occupy a bottleneck link do not
reach link capacity, qd =0, then qd will be increased when
their total throughput exceeds link capacity. There are two
flows: flow1 is a flow which has short RTT, RTT1, and flow2
is a flow which has large RTT, RTT2. We can summarize
the RTTs of these flows:

 1>εq+pε=RTT

q+p=RTT

dd2

dd1

 (20)

 Parameter tuning

For simplification of this proof, we do not use parameters,
ρ and δ in this section. We do not consider the case of
competing with single-path flow and transferring traffic for
load balancing. We are only interested in fair sharing
between flows with different RTTs. By excluding
unnecessary parameters, we can derive a suitable congestion
window growth function. Its increase factor α will be
determined by f(diff):

 nw

nα
+nw=1+nw

r

r
rr

 (21)

 Verification
We prove the RTT fairness over multiple subflows with

different RTTs in the multiplicative increase phase and
logarithmic increase phase separately. In this verification,
we use Jain’s fairness index [25], which is defined as:

2
i

2

i

xn

x
=xF (22)

Theorem 1: Two flows converge to their fair share under
the network model of Fig. 6 with different RTTs in the
multiplicative increase phase.

Proof. Let’s consider two flows, whose sending rates are

 46

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:29:43 (UTC) by 3.239.83.89. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 2, 2018

x1 and x2. We assume that x1 > x2. In Eq. 22, we see ΔF ≥ 0,
if and only if Δx1/x1 ≤ Δx2/x2. Additionally we can express
xi=wi/RTTi and Δxi= xi(n+1) - xi(n) = (wi+Δwi)/(RTTi+η) -
wi/RTTi; η denotes the increment of queueing delay after
updating the window size. So we summarize Δxi/xi as
below:

i

i

RTTix

The multiplicative increase phase works only when the
networ state is not busy, diff ≤ 0. We know that RTT η

, and also q

ii

iii

w

ηRTTRTT
ηwRTTΔw

i =
Δx -

-

 (23)

k
 and η 0 d 0. In this phase, Δxi = f(diff) =

2/iw using Eq. 10 fore, we rewrite Eq. 23: Δx /x. There 1 1

= 11 ww 2/ and Δx2/x2 = 22 ww 2/ . The relationship

betwee Δxn 1/x1 and Δx2/x2 can be shown by using a graph

f(t) = t /2t. If ti < ti+n, the value of f(ti) is greater than
f(ti+n). That means that Δx1/x1 ≤ Δx2/x2 because x1 is bigger
than x2; flow1 has a short RTT and a larger w than flow2.
Th

 6 with different RTTs in the
lo

. Note

ay components. We
summarize this relationship as below:

erefore, ΔF ≥ 0 in the multiplicative increase phase.
Theorem 2: Two flows converge to their fair share under

the network model of Fig.
garithmic increase phase.
Proof. Like Theorem 1, we prove that when x1 > x2, the

logarithmic increase phase can satisfy ΔF ≥ 0 or not

that qd >0 and η ≥ 0; the value of η depends on ∑
0=i iw

in a shared bottleneck. Fig. 1 shows that Δw

-1n

i is determined
by f(diff), and also f(diff) is determined in inverse proportion
to diff in Fig. 3. Fig. 3 shows how to determine diff and
confirms the relationship between f(diff) and parameters
such as the window size and del

di pεdiff
In Fig. 1, Actual can be written as w

iw
diff and

1
f(diff) ∝∝ (24)

 level is lower than that of flow1. Therefore ΔF ≥
0

ows
which occurred owing to RTT will decrease with time.

 the
co gestion level and friendliness with single-path flow.

i/(ε i·pd+qd+η) and
Expected can be written as wi/εipd because ε1 = 1 and ε2 >
1. Then, diff = wi(qd+η)/(ε i·pd+qd+η). At this point, note
that all subflows which occupy the same bottleneck link
have the same qd and η. Both parameters depend on the
number of backlogged packets in the queue. So, we ignore
effects of both to show RTT fairness easily. In our
assumption, RTT1 < RTT2, and w1 > w2. Therefore, flow1
encounters a congestion level higher than flow2. That means
that Δw2 is higher than Δw1. This situation may continue
until flow1 and flow2 have similar conditions. That means
that Δx1/x1 ≤ Δx2/x2 because flow2 estimates that its
congestion

in the logarithmic phase increase.
By showing Theorem 1 and 2 and proving its RTT

fairness, we confirm that the difference between fl

V. EXPERIMENTS

To evaluate the performance of the proposed scheme in
comparison with LIA and MPCUBIC, we use NS2 for the
performance evaluation. The simulation topologies are
shown in Fig. 7. Our simulations are divided into three parts

which include load balancing, adaptiveness according to
n

Droptail
Router

Droptail
Router

Mb/s
ms

1000Mb/s
ms

MPTCP
Sender

MPTCP
Receiver

1000Mb/s
ms

Cross
Traffic

Receiver

Cross
Traffic
Sender

Cross
Traffic
Sender

Cross
Traffic

Receiver

(a)

Droptail
Router

Droptail
Router

Mb/s
ms

1000Mb/s
ms

MPTCP
Sender

MPTCP
Receiver

Cross
Traffic

Receiver

Cross
Traffic
Sender

Droptail
Router

Droptail
Router

Cross
Traffic
Sender

Cross
Traffic

Receiver

1000Mb/s
ms

1000Mb/s
ms

1000Mb/s
ms

(b)
opologies

A.

traffic and
nu ber of CBR flows vary as shown in Table I.

TA NU OF T F CC T

0-10 10-20 20-25 25-30 30-40 40-50

Figure 7. Simulation t

 Adaptiveness

In order to know how the proposed scheme adapts as the
congestion level varies, we consider the topology in
Fig. 7(a). We set ε1 = 20 and ε2 = 10. Fig. 8 shows the
congestion window fluctuation of congestion control
schemes when competing with cross traffic. In this scenario,
we use constant bit-rate (CBR) flow as cross

m

BLE I. THE MBER CROSS RAFFIC LOWS A ORDING O TIME

Time (s)

N f
Flows

0 2 0 1 2 0
umber o

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40 45 50

C
o

n
g
e
s
ti

o
n

 W
in

d
o

w
 S

iz
e
 (

P
a
c
k
e
ts

)

Proposed scheme MPCUBIC

Time (s)

LIA

Figure 8. Congestion window with cross traffic

Fig. 8 shows that all schemes enter the congestion

avoidance phase at 1 second after overshoot in the slow start
phase. As we said in Section 2, the LIA spends a lot of time
occupying capacity because of the AIMD property and it
cannot control the increment rate based on network
conditions whereas MPCUBIC does not spend much time
occupying bandwidth available after packet loss events, but
it overshoots which causes lots of packet drops because it is
too aggressive. Even its congestion window size resets to 1

 47

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:29:43 (UTC) by 3.239.83.89. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 2, 2018

because of retransmission time-out (RTO) at 11 seconds.
We confirm that both schemes show trade-off problems
between preventing packet loss and throughput. With the
proposed scheme, it performs based on bottleneck capacity
and controls the increment rate according to the congestion
level. When the network is congested, it increases the
congestion window conservatively; with lower congestion
levels, the congestion window is increased aggressively.
Therefore, we know that it can reduce packet loss events and
occupy available bandwidth rapidly by considering network

B.

e
tw

5 pkt/s. Ideally traffic should transfer from path1 to
pa

path with a short RTT to another path with
a long RTT.

conditions.

 Load balancing

In order to evaluate the load balancing property of the
proposed scheme based on path properties and network
conditions, we consider the topology of Fig. 7(b). We us

o scenarios to evaluate the efficiency of load balancing.
The first scenario is to evaluate the ability to determine

path properties. We set ε1 = 10, ε2 = 40, ε3 = 1, p1 = 0.001
and p2 = 0.003 where pi denotes the random loss rate of path
i. It is not related to congestion loss. According to the
parameters of each path, we know that the expected
throughputs for path1 and path2 are respectively 223 pkt/s
and 107

th2.
Fig. 9 shows the congestion window fluctuations of

congestion control schemes in an environment over multiple
paths with different properties. MPCUBIC transfers its
traffic from path2 to path1 gradually because it determines
the path condition according to each path’s congestion
window size: path1 which has a low random loss rate
seldom experiences loss events and the congestion window
size of path1 increases continuously. Our sche-me transfers
traffic from path1 to path2 even though path2 experiences
random loss because it determines the path condition
according to expected throughput and allocates traffic per
path. Plus, the proposed scheme reduces packet loss events
better than MPCUBIC because of its control of the
increment of congestion level. The LIA seems to work
properly like ours. But it uses a fixed increment and suffers
from RTT unfairness. This means that the update period of
window size depends on the RTT. Therefore, it is difficult to
transfer from one

0

200

400

600

800

0 5 10 15 20 25 30 35 40 45 50

C
o

n
g
e
s
ti

o
n

 W
in

d
o

w
 S

iz
e
 (

P
a
c
k
e
ts

)

Time (s)

Subflow1 on path1 Subflow2 on path2

(a)

0

200

400

600

800

0 5 10 15 20 25 30 35 40 45 50

C
o

n
g
e
s
ti

o
n

 w
in

d
o

w
 s

iz
e
 (

P
a
c
k
e
ts

)

Subflow1 on path1

Time (s)

Subflow2 on path2

(b)

Subflow 1 on path 1

0

200

400

600

800

0 5 10 15 20 25 30 35 40 45 50

C
o

n
g
e
s
ti

o
n

 W
in

d
o

w
 S

iz
e
 (

P
a
c
k
e
ts

)

Time (s)

Subflow 2 on path 2

s
with different properties: (a) MPCUBIC (b) Proposed scheme (c) LIA

 scheme
can achieve higher total throughput than the others.

TABLE II. COMPARISON ULTIPLE PATHS WITH

ERENT PRO

(c)
Figure 9. Congestion window of the MPTCP scheme over multiple path

Table II shows the average throughput of each scheme

over multiple paths with different properties. Table II shows
that even though MPCUBIC transfers its traffic to path1, the
throughput of path1 is too low and does not take the
advantage of multi-path transmission. The proposed

OF THROUGHPUT OVER M
DIFF PERTIES

 Protocol
Path

LIA MPCUBIC
Proposed
scheme

path1 2.28 Mb/s 12.39 Mb/s 2.64 Mb/s

path2 89.56 Mb/s 151.22 Mb/s 187.92 Mb/s
Total 91.85 Mb/s 163.61 Mb/s 190.57 Mb/s

The second scenario evaluates the ability to transfer

traffic quickly. We set ε1 = 20, ε2 = 10; both paths have the
same properties. To check how well the MPTCP schemes
transfer traffic from congested paths to uncongested when
the congestion level of each path is changed continuously,
we control the congestion level of the path by inserting cross
traffic into path1 as shown in Table III. Ideally, if we insert
cross traffic into path1, traffic transfers to path2. After
finishing the insertion of cross traffic to path1, the same
mount of traffic is inserted into each path gradually.

TABLE III. THE F CROSS C FL COR O TIME

0 10 3

a

NUMBER O TRAFFI OWS AC DING T

Time (s) -10 -30 0-45

Number of flows 0 2 0

 48

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:29:43 (UTC) by 3.239.83.89. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 2, 2018

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40 45

C
on

ge
st

io
n

w
in

do
w

 s
iz

e
(P

ac
ke

ts
)

Time (s)

Subflow1 on path1 Subflow2 on path2

(a)

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40 45

C
o

n
ge

st
io

n
 W

in
d

o
w

 S
iz

e
(P

ac
ke

ts
)

TIme (s)

Subflow1 on path1 Subflow2 on path2

(b)

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40 45

C
o

n
ge

st
io

n
 w

in
d

o
w

 s
iz

e
(P

ac
ke

ts
)

Time (s)

Subflow1 on path1 Subflow2 on path2

(c)

Figure 10. Congestion window of MPTCP schemes versus the congestion
level of the path: (a) LIA (b) MPCUBIC (c) Proposed scheme

Fig. 10 shows the congestion window fluctuation of

congestion control schemes versus the congestion level of
the path. In Fig. 10, with the LIA, after 10 seconds it
transfers traffic from path1 to path2. But, after finishing
inserting cross traffic, the increase rate of path2 is higher
than that of path1 even though the congestion level of path2
is higher than that of path1. After 30 seconds, both paths
have same condition and much traffic is inserted to path2.
So, we confirm that the LIA could not transfer traffic
adaptively as the congestion level varies. MPCUBIC shows
a dramatic shape on the graph. When cross traffic is inserted
to path1 suddenly, RTO occurs and the window size of that
path is initialized to 1. MPCUBIC determined the network’s
condition by using the current window size. Therefore,
MPCUBIC cannot use path1 until 30 seconds have passed.
With the proposed scheme, a lot of traffic is transferred from
path1 to path2 in 20 seconds. After 30 seconds, traffic
transfers from path2 to path1 and after 43 seconds, both
paths have the same traffic and work fairly.

C. Friendliness with single-path flow

In this section, we investigate proposed scheme’s
friendliness with regular Cubic TCP at a common
bottleneck. Two subflows share the bottleneck with a
regular Cubic TCP flow at a link as shown in Fig. 2(a). We
set ε1=20 and ε1=10. Fig. 11 shows that the proposed

scheme can share the bottleneck with regular Cubic TCP at
the bottleneck. The proposed scheme captures bandwidth
quickly until 15 seconds. But, when regular Cubic TCP
increases its congestion window size greedily to capture
more bandwidth, the proposed scheme increases its
congestion window size conservatively to guarantee
bandwidth occupancy of regular Cubic TCP. So, regular
Cubic TCP does not suffer from congestion loss events due
to competing flows. After 20 seconds, the proposed scheme
keeps its congestion window size below that of regular
Cubic TCP.

0

100

200

300

400

500

0 5 10 15 20 25 30 35 40 45

C
o

n
g
e
st

io
n

 W
in

d
o

w
 S

iz
e
 (

P
a
c
k
e
ts

)

Time (s)

Single-path Cubic Proposed scheme Subflow 1 Subflow 2

Figure 11. Comparison of congestion window between proposed scheme
and single-path Cubic TCP

VI. CONCLUSION

We have proposed an efficient MPTCP-based congestion
control scheme in HBDP networks. The goal of the
proposed scheme is to ensure that the three IEFT
requirements for MPTCP are met, while especially
overcoming the trade-off problems that were encountered in
previous works and enhancing the efficiency of load
balancing. Our proposed scheme can be divided into two
main mechanisms, the router buffer based congestion
control mechanism and the expected throughput based load
balancing mechanism. The former mechanism checks
congestion levels and its variation accurately by monitoring
router buffer states. After that it determines an increment of
the congestion window so as to occupy bandwidth without
wasting available bandwidth, by using a graph for the
relationship between the congestion level and the increment
of the congestion window. The latter mechanism estimates
the properties of each path and transfers traffic from one
path to the other properly by calculating the expected
throughput in each path. Simulations show that the proposed
scheme performs well in comparison with those of previous
works and achieves the above mentioned goals.

ACKNOWLEDGMENT

The work reported in this paper was conducted during the
sabbatical year of Kwangwoon University in 2017.

REFERENCES
[1] R. Stewart, “Stream control transmission protocol," IETF RFC 4960,

Sept. 2007.
[2] J. Iyengar, P. D. Amer, and R. Stewart, “Concurrent multipath

transfer using SCTP multi-homing over independent end-to-end
paths,” IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 951–964, Oct.
2006. doi:10.1109/TNET.2006.882843

 49

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:29:43 (UTC) by 3.239.83.89. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 2, 2018

 50

ntrol for Communication

on with multiple addresses,” IET

n control for shared bottleneck,” Proc. 7th

ols,” IETF RFC 6356, Oct. 2011.

-p

 Survey,” IEEE Commun. Surve

P,” Proc. IEEE Mediterranean

n., vol. E95-B, no. 6, pp. 1934–

 Proc. Int.

r high speed and/or long delay

with shared bottlen

ance issues and a possible

,

 Austin,

[3] P. Vo, T. Le, S. Lee, C. Hong, B. Kim, and H. Song, “mReno: A
Practical Multipath Congestion Co

dete

Networks,” Computing, vol. 96, no. 3, pp. 189–205, Mar. 2014.
doi:10.1007/s00607-013-0341-1

[4] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP
extensions for multipath operati F

sol

RFC 6824, Jan. 2013.
[5] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda,

“Multi-path congestio
PFLDNet Workshop, 2009.

[6] C. Raiciu, M. Handley, and D. Wischik, “Coupled congestion control
for multi-path transport protoc

ath
[7] D. Wischik, C. Raiciu, A. Greenhalgh, M. Handley, “Design,

implementation and evaluation of congestion control for multi
TCP,” Proc. 8th USENIX NSDI Conf., vol.11, pp.8–22, Mar. 2011.

[8] J. Zhao, C. Xu, J. Guan, H. Zhang, “A fluid model of multipath TCP
algorithm: Fairness design with congestion balancing,” Proc. IEEE
Int. Conf. on Commun., London, 2015, pp. 6965–6970.
doi:10.1109/ICC.2015.7249436

[9] C. Xu, J. Zhao, G. Muntean, “Congestion Control Design for
Multipath Transport Protocols: A ys
& Tutorials, vol. 18, no. 4, pp. 2948–2969, Apr. 2016.
doi:10.1109/COMST.2016.2558818

[10] R. Gonzalez, J. Pradilla, M. Esteve, C. E. Palau, “Hybrid delay-based
congestion control for multipath TC
Electrotechnical Conf., Limassol, 2016, pp. 1–6. doi:
10.1109/MELCON.2016.7495389

[11] T. Le, C. Hong, and S. Lee, “Multi-path binomial congestion control
algorithms,” IEICE Trans. Commu
1943, Jun. 2012. doi:10.1587/transcom.E95.B.1934.

[12] T. Le, C. Hong, and S. Lee, “MPCubic: an extended Cubic TCP for
multiple paths over high bandwidth-delay networks,” Conf.
on ICT Convergence, Seoul, 2011, pp. 34–39.
doi:10.1109/ICTC.2011.6082546

[13] B. P. Ha, B. Y. Tran, T. A. Le, C. H. Tran, “A hybrid multi-path
congestion control algorithm fo
networks,” Proc. 2014 Advanced Tech. Commun., Hanoi, 2014, pp.
452–456. doi:10.1109/ATC.2014.7043430

[14] S. Ferlin, Ö. Alay, T. Dreibholz, D. A. Hayes , M. Welzl, “Revisiting
congestion control for multipath TCP eck

ction,” Proc. IEEE INFOCOM, San Francisco, 2016, pp. 1–9.
doi: 10.1109/INFOCOM.2016.7524599

[15] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, J.-Y. Le Boudec,
“MPTCP is not pareto-optimal: perform

ution,” Proc. 8th Int. Conf. on Emerging Netw. Experiments and
Technologies, Nice, 2012, pp. 1–12. doi: 10.1145/2413176.2413178

[16] Q. Peng, A. Walid, J. Hwang, S. Low, “Multipath TCP: analysis,
design, and implementation,” IEEE/ACM Trans. Netw., vol. 24, no. 1
pp. 596–609, Feb. 2015. doi:10.1145/2413176.2413178

[17] Y. Cao, M. Xu, X. Fu, “Delay-based congestion control for Multipath
TCP,” Proc. 20th IEEE Int. Conf. on Network Protocols,
2012, pp. 1–10.

[18] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating System Review, vol. 42, no.
5, pp. 64–74, Jul. 2008. doi:10.1145/1400097.1400105

[19] V. Konda and J. Kaur, “RAPID: shrinking the congestion control
timescale,” Proc. IEEE INFOCOM, Rio de Janeiro, 2009, pp. 1-9.

1, pp. 57–65, Jan. 2012.

ection and avoidance,” Proc. ACM

delay product networks,” Proc. IEEE

l,” AT&T Center for Internet

g-distance networks,” Proc. IEEE INFOCOM, vol.

idance in computer networks,”Comput.

doi:10.1109/INFCOM.2009.5061900
[20] J. Gettys and K. Nichols, “Bufferbloat: dark buffers in the Internet,”

Commun. ACM, vol. 55, no.
doi:10.1145/2063176.2063196

[21] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: new
techniques for congestion det
SIGCOMM Symposium, vol. 24, no. 4, pp. 24–35, Oct. 1994.
doi:10.1145/190314.190317

[22] H. Jung, S. Kim, and S. Kang, “Adaptive delay-based congestion
control for high bandwidth-
INFOCOM, Shanghai, 2011, pp. 2885–2893.
doi:10.1109/INFCOM.2011.5935127

[23] S. Floyd, M. Handley, and J. Padhye, “A comparison of equalion-
based and AIMD congestion contro
Research, 2000.

[24] L. Xu, K. Harfoush and I. Rhee, “Binary increase congestion control
(BIC) for fast lon
4, pp.2514–2524, Mar. 2004.

[25] D. Chiu and R. Jain, “Analysis of the increase and decrease
algorithms for congestion avo
Netw., ISDN Syst., vol. 17, no. 1, pp. 1–14, Jun. 1989.
doi:10.1016/0169-7552(89)90019-6

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:29:43 (UTC) by 3.239.83.89. Redistribution subject to AECE license or copyright.]

