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1Abstract—With the widespread distribution of devices with 

multiple network interfaces, interest in multi-path transmission 
techniques has increased. The Internet Engineering Task Force 
(IETF) published Multi-path TCP (MPTCP) as a standard for 
multi-path transmission techniques and many researchers have 
studied multipath means of transmitting data efficiently, with 
each path having different characteristics. However, today’s 
networks have been shown to exhibit high bandwidth-delay 
product (HBDP) characteristics but MPTCP does not match 
the requirements of HBDP networks. Many researchers have 
proposed solutions to overcome this problem, but the solutions 
have had the drawbacks of ineffective load balancing 
mechanisms and a trade-off problem between improving 
throughput and preventing loss events. In this paper, we 
propose an efficient MPTCP-based congestion control scheme 
in HBDP networks. Our scheme consists of two main 
mechanisms. One is to mitigate trade-off problems observed in 
previous works and the other is to enhance traffic migration 
according to the conditions of each path. Simulation results 
have shown that our scheme achieves those goals and enhance 
performance in HBDP networks. 
 

Index Terms—data transfer, packet loss, quality of service, 
TCPIP, transport protocols. 

I. INTRODUCTION 

Along with the increased interest in the multi-path 
transmission techniques due to the widespread distribution 
of devices with multiple network interfaces, path diversity 
has increased because Internet environments have become 
more complex. So, researches have studied multipath 
transmission techniques in order to transmit data efficiently 
in each path having different characteristics [1-3]. 

The Internet Engineering Task Force (IETF) published 
Multi-path TCP (MPTCP) as a standard for multi-path 
transmission techniques. MPTCP can increase the 
throughput by transmitting data simultaneously through 
different paths, with multiple TCP subflows [4]. However, 
MPTCP is not friendly with single-path TCP or have 
mechanisms for load balancing. 

To solve such problems and to take full advantage of 
multipath transmission techniques, many kinds of 
congestion control mechanisms have been studied. The 
previous schemes can be categorized as being either 
MPTCP improvement schemes or MPTCP variant schemes. 
MPTCP improvement schemes have been studied to 
guarantee the friendliness with single-path TCP and provide 
loading balancing by controlling increment of congestion 
windows [5-10]. In these regards those schemes have been 
shown to improve performance compared to that of bare 

MPTCP. However, they work based on the AIMD 
mechanism of legacy TCP. Therefore they spend too much 
time occupying available bandwidth in high bandwidth-
delay product (HBDP) networks. With MPTCP variant 
schemes, designs for high-speed TCP were extended to the 
multi-path environment, to improve bandwidth utilization in 
HBDP networks [11-13]. They can guarantee not only load 
balancing but also friendliness with single-path TCP. 
However, they work based on high-speed TCP mechanisms 
that increase congestion window size aggressively, which 
results in frequent congestion in HBDP networks. 

 
 

These new congestion control schemes show improved 
performance with regard to friendliness with single-path 
TCP and load balancing. However the trade-off problem 
between improving throughput and preventing loss events 
remained unsolved. Also, it is difficult to provide efficient 
load balancing in accordance with path characteristics 
because of the dependence on particular parameters. 

In this paper, we propose an efficient MPTCP-based 
congestion control scheme for HBDP networks. Our scheme 
consists of congestion control and load balancing 
mechanisms which are respectively based on router buffer 
states and expected throughput. The purpose of the former 
mechanism is to adapt the congestion window by mitigating 
the trade-off problem of previous works and the purpose of 
the latter mechanism is effective traffic migration through 
consideration of the characteristics of each path. 

The rest of this paper is structured as follows. Section 2 is 
a brief discussion of some related works and summarizes the 
problems and requirements of HBDP networks. Then, we 
describe details of our scheme in Section 3. In Section 4, we 
quantify how well our scheme satisfies RTT fairness by 
using a mathematical model. Section 5 presents the results 
of a performance evaluation. Finally, Section 6 gives some 
conclusions from our current work. 

II. RELATED WORK 

In this section, we introduce MPTCP and two 
representative implementations of it, and point out the 
problems that are encountered in HBDP networks. 

A. Multi-path TCP (MPTCP) 

MPTCP is a modified version of TCP that allows the 
concurrent use of multiple available paths for data 
transmission, in a manner that is transparent to the 
application. Multi-path transport has been shown to be 
beneficial for bandwidth aggregation and to increase end-
host robustness by creating subflows across the potentially 
disjoint paths. However, there is no congestion control 
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mechanism in the MPTCP level and all subflows perform 
the congestion control mechanism independently; there are 
no considerations about load balancing and friendliness with 
single-path flows. Therefore it is hard to effectively utilize 
the innate benefits of multi-path flows. 

To utilize benefits of MPTCP, the IETF defined the 
following three requirements to capture the desirable 
properties of a multi-path congestion control mechanism [6], 
[14]: first, improving throughput; a multi-path TCP user 
should perform at least as well as a TCP user that uses the 
best available path. Second, friendliness with single-path 
flow; a multi-path TCP user should never take up more 
capacity from any of its paths than a regular TCP user. 
Third, load balancing; a multi-path TCP algorithm should 
transfer traffic away from congested paths to less congested 
ones whenever possible. To satisfy the three requirements, 
many congestion control mechanisms have been proposed. 
These schemes can be categorized as being either MPTCP 
improvement schemes or MPTCP variant schemes. 

B. Linked Increase Algorithm (LIA) 

Several congestion control algorithms have been 
proposed for MPTP. Four of them are included in the Linux 
kernel implementation: LIA [7], OLIA [15], BALIA [16] 
and wVegas [17]. LIA is the default congestion control 
scheme. LIA is one of the major MPTCP improvement 
schemes that originated from TCP Reno’s additive 
increase/multiplicative decrease (AIMD) mechanism. The 
goal of LIA is to satisfy the three MPTCP requirements. 
LIA regulates traffic by adjusting the sending winof each 
subflow. Assume that a connection consists of set of 
subflows R where each subflow may take a different route 
through the Internet. Each subflow rR maintains its own 
congestion window wr and ŵr represents the value at 
equilibrium. During congestion avoidance MPTCP will: 

Upon reception of each ACK on subflow r, increase the 
window on that subflow by min(α/wtotal, 1), where wtotal 

denotes the total congestion window across all subflows.  
Upon each loss on subflow r, reduce the window on that 

subflow by 1/wr. 
Here 
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The parameter α controls the aggressiveness for satisfying 
the three MPTCP requirements. We describe how to satisfy 
these requirements by using α. To meet the two 
requirements, throughput and friendliness with single-path 
flow, the LIA incorporates the following relationship: 
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TCP denotes congestion window size of regular TCP at 

equilibrium. To get the parameter α which satisfies Eq. 2, 
the LIA uses balance equations. At equilibrium, the balance 
is expressed by: 
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pr denotes a probability of a dropped packet. Making the 
approximation that 1- pr ≈1, and writing ŵr

TCP equal to 
square root of 2/pr,  

TCP
r

rtotal w=
ww

ˆ
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By substituting Eq. 4 in Eq. 2, LIA derives parameter α as 
shown in Eq. 1. Hence, LIA can guarantee the throughput 
and single-path friendliness requirements. 

Regarding the last of the requirements, load balancing, 
LIA assumes that a congested path may suffer from packet 
loss events more frequently than an uncongested path. Also, 
RTT is one of the components determining increments of 
the congestion window for each path. Therefore, the LIA 
can transfer traffic by taking RTT and loss events into 
account. 

C. Multi-path Cubic (MPCUBIC) 

MPCUBIC is one of the major MPTCP variant schemes 
which extended HBDP TCP for application to multiple 
paths, to improve bandwidth utilization in HBDP networks 
[12]. To improve throughput, MPCUBIC adapted the 
regular Cubic TCP mechanism [18] which uses concave-
convex growth functions. During congestion avoidance, 
MPCUBIC regulates traffic by adjusting the sending 
window of each subflow. MPTCP will:  

Upon reception of each ACK on subflow r, increase the 
window on that subflow by min(δC(tr-Kr)

3+ Wr
max, C(tr-

Kr)
3+ Wr

max), where C denotes a constant in regular Cubic, 
δ is a linking parameter between paths, tr denotes the time 
elapsed from the last packet loss event on path r, and Kr 
denotes the period of time between two consecutive packet 
loss events.   

Upon each loss on subflow r, reduce the window on that 
subflow by the factor β as used in regular Cubic. 

To ensure friendliness with regular Cubic, MPCUBIC’s 
window increment per path does not exceed that of regular 
Cubic by using the right argument in min(.). If MPCUBIC’s 
window increment does not exceed that of regular Cubic, 
subflows of MPCUBIC perform the congestion control 
mechanism of Cubic. On the other hand, MPCUBIC has to 
set δ to use min(.).  

Like the LIA, MPCUBIC also incorporates conditions for 
satisfying the requirements of throughput and single-path 
friendliness. In this case, MPCUBIC matches its friendliness 
to that of regular Cubic TCP:  

∑ |
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To derive a δ which can satisfy Eq. 5, we summarize the 
relationship between ŵr and ŵr

Cubic in [12]: 
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By substituting ŵr
Cubic in Eq. 5, MPCUBIC derives the 

parameter δ:  
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To meet the third IETF requirement, for load balancing, 
MPCUBIC assumes that not only the congested path suffers 
from packet loss events more frequently but also that 
uncongested paths have larger window sizes. Therefore, δ 
must be based on both the congestion window size and 
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throughput (i.e. ŵr/RTTr). Therefore MPCUBIC modifies 
Eq. 7 to Eq. 8, and then r places δ wit  δe h r. 
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MPCUBIC considers congestion window size and 
throughput for transferring traffic with consideration of the 
congestion levels of paths. Therefore, MPCUBIC can 
enhance bandwidth utilization and satisfy the three MPTCP 
requirements.  

D. Problems of previous works and requirements for 
HBDP networks 

 Adaptiveness 
LIA and almost all MPTCP improvement schemes have 

inherited the properties of TCP Reno. They show low packet 
loss rates compared to HBDP TCP schemes because of the 
AIMD mechanism of TCP Reno. However, they spend too 
much time occupying the available bandwidth [19]. On the 
other hands, MPCUBIC and most MPTCP variant schemes 
have inherited the properties of high-speed TCPs. They do 
not spend much time occupying the available bandwidth. 
However, they cause lots of packets to be dropped because 
of the aggressiveness of high-speed TCP. MPTCP 
improvement schemes and MPTCP variant schemes have 
the trade-off problem between improving throughput and 
preventing loss events. 

HBDP networks have the properties of high bandwidth 
and large buffer sizes [20]. A proper algorithm should 
guarantee aggressive increase of the congestion window to 
quickly occupy available bandwidth. Plus, the buffer 
overflow should be prevented especially in HBDP networks 
because these networks produce many dropped packets due 
to large buffer size when the overflow occurs. To guarantee 
both properties, a congestion control scheme should 
intelligently adapt the congestion level to mitigate the trade-
off problem that was encountered in previous works. 

 Load balancing 
For effective load balancing, the congestion condition of 

each path has to be estimated accurately and the traffic 
should be transferred to uncongested paths as soon as 
possible. For determining the congestion condition, the LIA 
uses RTT only whereas MPCUBIC uses RTT and the 
congestion window of the subflow. These parameters can 
lead to wrong decisions because their use does not apply 
path conditions accurately. To prevent wrong decisions for 
dealing with congestion conditions, the sender has to 
consider the property of the path only, and exclude 
consideration of the properties of the subflow. 

    For transferring traffic, RTT fairness is important, to 
transfer traffic quickly from one path to the other path. 
Window-based congestion control schemes update their 
window size after receiving an acknowledgement packet. 
This update period depends on the RTT of the path. RTT 
unfairness may cause poor traffic transfer. For example, 
there are two paths A and B. Path A has a large RTT and is 
an uncongested path whereas path B has a short RTT but is 
a congested path. Sender wants to transfer traffic from path 
B to path A. But sender has an RTT unfairness and update 

period of path A is too long compared to that of path B. The 
difference of the congestion window size between both 
paths increases slowly and the speed of traffic transfer is 
also slow. Therefore, to transfer traffic quickly after making 
a decision, sender has to guarantee RTT fairness. 

III. EFFICIENT MPTCP-BASED CONGESTION CONTROL 

SCHEME 

After analyzing the problems of the schemes of the 
previous works, we studied the design of an efficient 
MPTCP-based congestion control scheme that fulfills the 
three IETF requirements for MPTCP that are listed in 
Section 2. We propose two key ideas. First, the sending rate 
should be increased adaptively according to the congestion 
level of each path to prevent packet loss and enhance 
throughput. For example, if the link is uncongested, 
increasing the sending rate should be aggressive to obtain 
available bandwidth quickly. However, once the link is fully 
utilized, the sending rate should be increased conservatively 
to prevent overshooting. To control aggressiveness 
according to the congestion level, we apply a congestion 
control mechanism based on the router buffer states. This 
mechanism can adjust its aggressiveness based on the 
capacity of the bottleneck buffer and the existence of cross 
traffic by observing packet delay. Second, load balancing 
should be performed quickly and accurately among paths 
that can be used by applying path conditions, not subflow 
conditions. To perform load balancing quickly and 
accurately, we apply an expected throughput based load 
balancing mechanism. This mechanism can transfer traffic 
based on relationships among paths. Eq. 9 shows our 
proposed subflow congestion window growth function on 
paths. 
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Δwr denotes the variation of congestion window size on 
path r, ρr is a load balancing parameter on path r with 
respect to the others, αr is an increment of the congestion 
window size on path r and δr(n) is a friendliness parameter 
on path r with single-path Cubic TCP on path r. ρr is 
calculated from the expected throughput based load 
balancing mechanism and δr is calculated from friendliness 
using the Cubic TCP mechanism. Both ρr and δr can be 
derived in the MPTCP level. αr is calculated from a router 
buffer-based congestion control mechanism and can be 
derived in the subflow level. After deriving the three 
parameters, Δwr can be selected by using min(.). It allows 
an upper threshold to keep friendliness with single-path 
Cubic TCP and performs in congested states as a decision of 
MPTCP. 

A. Router buffer based congestion control mechanism 

As explained earlier, a congestion control mechanism 
based on router buffer states has to derive a proper value of 
αr to control aggressiveness according to the congestion 
level. To derive αr, the proposed scheme firstly checks 
router buffer occupancy. By analyzing router buffer 
occupancy and its variance, we predict the congestion level 
and existence of cross traffic. 
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 Measuring router buffer occupancy 
For checking congestion level of each path, we use diff 

which denotes the number of packets backlogged in the 
bottleneck queue and diffmax which denotes the bottleneck 
queue size. diff is defined in TCP Vegas [21]. Fig. 1 shows 
how to estimate diff and diffmax. 

 

On each ACK: 

Expected=win/baseRTT 

Actual=win/RTT 

diff=(Expected-Actual)baseRTT  

If packet loss then 

diff
max

=diff 

Go to fast recovery phase 

Else 

Go to congestion avoidance phase  
Figure 1.  Pseudo-code for calculating diffmax 

 
In Fig. 1, a state variable, called baseRTT, is maintained 

as an estimation of the transmission delay of a packet over 
the network path. Expected gives the estimation of the 
throughput that we get if we do not overrun the network 
path. Actual stands for the throughput that we really get. 
Then, (Expected-Actual) is the difference between the 
expected throughput and the actual throughput. When 
multiplied by baseRTT, the product stands for the amount of 
data backlogged in the bottleneck queue, diff. We assume 
that all packet loss events occur because of overflow in the 
bottleneck queue. Therefore diffmax sets the value of diff 
calculated at the time that the packet loss event occurs. 

 Control of the increment of congestion window size as 
network load 

Previous congestion control mechanisms of the subflow 
cannot guarantee high bandwidth utilization and prevent 
overflow simultaneously because of the trade-off 
relationship between both. To overcome this trade-off, our 
scheme controls the increment of congestion window size 
by considering relationship between diff and diffmax. Fig. 2 
illustrates the two-phase growth function of a subflow in our 
scheme to guarantee high bandwidth utilization and prevent 
overflow. 

 
Figure 2.  Growth function of the congestion window size 

 

We denote Wm as the window size just before the last 
window reduction which occurred due to overshooting. 
After losing packets, window size decreases from Wm to W-
m(1-β). β is a constant multiplication decrease factor applied 

for window reduction at the time of the loss event. At that 
time, there are no backlogged packets in the bottleneck 
queue. Therefore, the window size increases multiplicatively 
until it reaches W0, to occupy bandwidth quickly (i.e. diff > 
diffmin), where W0 denotes the window size which equals the 
capacity of the bottleneck queue. After reaching W0, the 
window size slows down its growth logarithmically as it 
gets closer to Wm (i.e. diff diffmax), to prevent buffer 
overflow and keep bandwidth utilization. For example, 
when a delay-based scheme competes with a loss-based 
scheme, their bandwidth utilization falls down as the 
window size is reduced because of their early congestion 
detection policy. If queueing delay increases, the increment 
of window size is set to zero or becomes negative. But, our 
growth function keeps increasing the window size by 
considering the bottleneck queue limit. We designed the 
algorithm as an increment function, f(diff) as in Eq. 10: 
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wr is the current window size, αmax and αmin are 
thresholds of f(diff). If diff ≤ diffmin, the multiplicative 
increase phase will be performed. In order to occupy 
available bandwidth quickly after reducing window size, 
f(diff) is set to the square root of wr. In the second condition, 
the logarithmic increase phase will be performed. In order to 
prevent overshoot and increase bandwidth utilization, f(diff) 
is decreased as diff gets closer to diffmax, as shown in Fig. 3 
which shows the relationship between the congestion level 
and the increment of window size. 

 
Figure 3.  Graph for relationship between diff and α 

 
 Setting the threshold of f(diff)  

In real networks, both injecting and ejecting cross traffic 
are general cases. The congestion level of a path varies with 
the variation in the cross traffic. Therefore, an adaptive 
scheme which can control the increment of congestion 
window according to the variation in cross traffic is needed. 
Previous schemes controlled the congestion window by 
applying a fixed increment rate or range. With such schemes 
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it is difficult to perform adaptive congestion control with the 
variation in the competing flows. 

To solve this problem, our scheme proposes a mechanism 
to set the threshold of f(diff) based on the expected fairness 
index, Ḟ [22]: 

i

i
i Δw

Δdiff
=F                          (11) 

Consider a single link bottleneck traversed by n flows 
with the same RTT when the total throughput of competing 

flows  is equal to bottleneck link capacity C where 
i denotes the flow number. If any flow increases its 
congestion window, the excess packets will be stacked in 
the bottleneck queue. Suppose that all flows increase the 
congestion window by the same Δw simultaneously. At the 
end of one RTT, the bottleneck queue will have n·Δw 
packets queued up. However, the actual number of 
backlogged packets belonging to each flow will not be the 
same unless all flows have the same congestion window size 
and congestion control policy. Specifically, the number of 
new packets of each flow contributed to the queue is 

. This observation can be used to estimate the 
fairness ratio. If a flow i increases the congestion window 
when the link is fully utilized, it expects to see an increase in 
the queuing delay. If the link is shared perfectly fairly, this 
increase should be the same as if the flow had been alone in 
a bottleneck link of capacity equal to w

∑ 1n
0=i i (t)w

∑ 1n
0=i i (t)wi(t)/w

i(t). Therefore, by 
comparing the actual delay increase with the expected one, 
the flow can deduce the status of the link. If the observed 
delay increase is greater than expected, the flow is currently 
using more than its fair share. And conversely, a smaller 
than expected delay increase indicates a throughput below 
the fair share of the flow. 

Fig. 4 shows the pseudo-code to set the threshold of f(diff) 
for fairness. We assume that the current bottleneck link is 
busy and that there are backlogged packets in the bottleneck 
queue. Therefore the pseudo-code of Fig. 4 only performs in 
the logarithmic increase phase, during which the value of 
diff is positive. If the value of Ḟ i is bigger than Ḟmax or 
smaller than Ḟmin, f(diff) of flow i decreases or increases its 
threshold values αmax and αmin by multiplying them by Ḟ i; 
otherwise, flow i maintains its increment threshold of f(diff) 
because flow i works fairly with the others. This operation 
works continuously. So, all flows competing for the same 
bottleneck link can be converged to a fair share range. Our 
scheme can ensure fairness with competing flows and 
efficiency for bandwidth occupancy by monitoring the 
effects of its aggressiveness. 

 

If ≤minF̂ F̂ ≤  then maxF̂

 αmax=αmax 
   αmin=αmin 
Else  

   αmax=αmax· F̂  

 αmin=αmin· F̂  
Figure 4. Pseudo-code to set the threshold of f(diff) for fairness 

B. Expected throughput-based load balancing mechanism 

As explained earlier in Section 2, the load balancing 
mechanism has to consider the properties of paths only and 

not those of the subflows. With previous approaches, the 
load balancing mechanism is included in the mechanism for 
friendliness with single-path TCP as an additional function. 
Therefore, its load balancing mechanism performance is 
limited by its use of subflow parameters such as w and RTT. 
So, both mechanisms have to be separated to properly 
achieve their purposes. To check the properties of paths 
only, we derive an expected throughput which is based on 
the AIMD throughput in equilibrium states. It is a function 
of the decrease/increase parameters α and β, RTT, and the 
packet drop rate p. AIMD throughput in equilibrium states is 
expressed as follows [23]: 

pRTT2β

α-2
=Th


                               (12) 

Parameter α and β are properties of the subflow. So, we 
initialize α to 1, β to 2/5, for removing the effects of 
subflow. The equation can then be rewritten as the 
following: 

RTT
=Th

p
2

                                  (13) 

After checking the expected throughput of each path by 
using Eq. 13, our proposed mechanism sets the load 
balancing factor ρ to transfer traffic efficiently. Fig. 5 shows 
relationship between Th and ρ.  

 

 
Figure 5.  Graph for relationship between Th and ρ 

 
After calculating the Th of each path, we can derive the 

average expected throughput Thavg. Also, Thmax and Thmin 
are the maximum and minimum expected throughputs. The 
values of ρr, ρmax and ρmin can be expressed as follows: 

 

avg

minavg
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maxavg
max

minminr
minmax

minmax
r

Th

ThTh
1=ρ

Th

ThTh
1=ρ

ρ+ThTh
Th-Th

ρ-ρ
=ρ

-
-

-
-

-

          (14) 

C. Fairness with regular Cubic TCP 

Previous schemes suggest a mechanism that makes the 
total congestion window across all subflows equal to a 
targeted single-path flow to guarantee friendliness with 
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single-path flow. Their total window size cannot exceed the 
single-path flow’s own. With such a mechanism MPTCP 
cannot increase its window size even though the occupancy 
of the bandwidth is low or the available bandwidth is not 
fully utilized. Then, it degrades the utilization of bandwidth. 
To overcome this limitation, we propose a mechanism for 
partial friendliness with single-path flows. It limits the 
increment of MPTCP’s window size to single-path flow by 
using a threshold parameter δ in Eq. 9, only when the 
network is fully utilized. Our target is to match regular 
Cubic TCP which is commonly used on the web. We can 
derive δ as follows: 

To achieve our goal, δ has to satisfy the IEFT’s MPTCP 
requirements for throughput and single-path friendliness in 
Eq. 5. So, we express our scheme’s throughput in 
equilibrium states using Eq. 9:  

 
β

w
p=

w

αρδ
p-1 r

r
r

rrr
r

ˆ

ˆ
                              (15) 

If we assume that 1-pr ≈ 1, we can write ŵr and pr, 
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The average throughput of regular Cubic TCP is as 
follows [11]: 
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By simultaneously substituting the expression for pr in 
Eq. 16 into Eq. 17, we can express the average throughput 
of Cubic TCP: 
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Finally we substitute Eq.18 into Eq. 5 and derive δr which 
satisfies friendliness with single-path Cubic TCP, 
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            (19) 

δr is a parameter to make the total window size across all 
subflows equal to that of single-path Cubic TCP. It is only 
applied in the logarithmic increase phase. When the network 
is underutilized, our scheme increases the sending rate 
quickly. After entering the logarithmic increase phase, δr 
performs as a threshold value to help occupy the bandwidth 
of single-path flow. Before entering the logarithmic increase 
phase, our scheme does not harm single-path flow because 
of our congestion control mechanism. 

IV. ANALYSIS FOR RTT FAIRNESS 

In this section, we want to quantify how well the 
proposed scheme satisfies RTT fairness over multiple 
subflows with different RTTs. In the following analysis, we 
use a synchronized loss model. There is much evidence 

showing that synchronized loss is common in high-speed 
networks [23]. We verify our scheme based on a simple 
network topology as shown in Fig. 6. Our scheme has two 
window growth shapes, multiplicative increase and 
logarithmic increase. We prove RTT fairness of our scheme 
separately. 
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1

 
Figure 6.  Network topology for analysis 

A. Assumption 

Before proving the RTT fairness, we demonstrate several 
assumptions and equations needed for verification as below. 

 
 Network topology 

In Fig. 6, each MPTCP sender has two subflows and a 
bottleneck link that is occupied by a subflow from different 
sender. With this topology, the RTT of a subflow consist of 
a propagation delay pd and queueing delay qd. If the total 
throughput of subflows that occupy a bottleneck link do not 
reach link capacity, qd =0, then qd will be increased when 
their total throughput exceeds link capacity. There are two 
flows: flow1 is a flow which has short RTT, RTT1, and flow2 
is a flow which has large RTT, RTT2. We can summarize 
the RTTs of these flows: 



 

 1>εq+pε=RTT

q+p=RTT

dd2

dd1


                             (20) 

 
 Parameter tuning 

For simplification of this proof, we do not use parameters, 
ρ and δ in this section. We do not consider the case of 
competing with single-path flow and transferring traffic for 
load balancing. We are only interested in fair sharing 
between flows with different RTTs. By excluding 
unnecessary parameters, we can derive a suitable congestion 
window growth function. Its increase factor α will be 
determined by f(diff): 

     
 nw

nα
+nw=1+nw

r

r
rr

                           (21) 

 Verification 
We prove the RTT fairness over multiple subflows with 

different RTTs in the multiplicative increase phase and 
logarithmic increase phase separately. In this verification, 
we use Jain’s fairness index [25], which is defined as:  

   
 


2
i

2

i

xn

x
=xF                                     (22) 

Theorem 1: Two flows converge to their fair share under 
the network model of Fig. 6 with different RTTs in the 
multiplicative increase phase. 

Proof. Let’s consider two flows, whose sending rates are 
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x1 and x2. We assume that x1 > x2. In Eq. 22, we see ΔF ≥ 0, 
if and only if Δx1/x1 ≤ Δx2/x2. Additionally we can express 
xi=wi/RTTi and Δxi= xi(n+1) - xi(n) = (wi+Δwi)/(RTTi+η) - 
wi/RTTi; η denotes the increment of queueing delay after 
updating the window size. So we summarize Δxi/xi as 
below:  

 

i

i

RTTix

The multiplicative increase phase works only when the 
networ  state is not busy, diff ≤ 0. We know that RTT  η 

, and also q

ii

iii

w

ηRTTRTT
ηwRTTΔw

i =
Δx -

-

                                (23) 

k
 and η  0 d  0. In this phase, Δxi = f(diff) =

2/iw using Eq. 10 fore, we rewrite Eq. 23: Δx /x. There 1 1 

= 11 ww 2/  and Δx2/x2 = 22 ww 2/ . The relationship 

betwee Δxn 1/x1 and Δx2/x2 can be shown by using a graph 

f(t) = t /2t. If ti < ti+n, the value of f(ti) is greater than 
f(ti+n). That means that Δx1/x1 ≤ Δx2/x2 because x1 is bigger 
than x2; flow1 has a short RTT and a larger w than flow2. 
Th

 6 with different RTTs in the 
lo

. Note

ay components. We 
summarize this relationship as below: 

erefore, ΔF ≥ 0 in the multiplicative increase phase.  
Theorem 2: Two flows converge to their fair share under 

the network model of Fig.
garithmic increase phase. 
Proof. Like Theorem 1, we prove that when x1 > x2, the 

logarithmic increase phase can satisfy ΔF ≥ 0 or not  

that qd >0 and η ≥ 0; the value of η depends on ∑
0=i iw  

in a shared bottleneck. Fig. 1 shows that Δw

-1n 

i is determined 
by f(diff), and also f(diff) is determined in inverse proportion 
to diff in Fig. 3. Fig. 3 shows how to determine diff and 
confirms the relationship between f(diff) and parameters 
such as the window size and del

di pεdiff
In Fig. 1, Actual can be written as w

iw
diff  and  

1
f(diff) ∝∝               (24) 

 level is lower than that of flow1. Therefore ΔF ≥ 
0 

ows 
which occurred owing to RTT will decrease with time. 

 the 
co gestion level and friendliness with single-path flow. 

 

i/(ε i·pd+qd+η) and 
Expected can be written as wi/εipd because ε1 = 1 and ε2  > 
1. Then, diff = wi(qd+η)/(ε i·pd+qd+η). At this point, note 
that all subflows which occupy the same bottleneck link 
have the same qd and η. Both parameters depend on the 
number of backlogged packets in the queue. So, we ignore 
effects of both to show RTT fairness easily. In our 
assumption, RTT1 < RTT2, and w1 > w2. Therefore, flow1 
encounters a congestion level higher than flow2. That means 
that Δw2 is higher than Δw1. This situation may continue 
until flow1 and flow2 have similar conditions. That means 
that Δx1/x1 ≤ Δx2/x2 because flow2 estimates that its 
congestion

in the logarithmic phase increase. 
By showing Theorem 1 and 2 and proving its RTT 

fairness, we confirm that the difference between fl

V. EXPERIMENTS 

To evaluate the performance of the proposed scheme in 
comparison with LIA and MPCUBIC, we use NS2 for the 
performance evaluation. The simulation topologies are 
shown in Fig. 7. Our simulations are divided into three parts 

which include load balancing, adaptiveness according to
n
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nu ber of CBR flows vary as shown in Table I. 
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 Adaptiveness 

In order to know how the proposed scheme adapts as the 
congestion level varies, we consider the topology in 
Fig. 7(a). We set ε1 = 20 and ε2 = 10. Fig. 8 shows the 
congestion window fluctuation of congestion control 
schemes when competing with cross traffic. In this scenario, 
we use constant bit-rate (CBR) flow as cross 

m
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Figure 8.  Congestion window with cross traffic 

  
Fig. 8 shows that all schemes enter the congestion 

avoidance phase at 1 second after overshoot in the slow start 
phase. As we said in Section 2, the LIA spends a lot of time 
occupying capacity because of the AIMD property and it 
cannot control the increment rate based on network 
conditions whereas MPCUBIC does not spend much time 
occupying bandwidth available after packet loss events, but 
it overshoots which causes lots of packet drops because it is 
too aggressive. Even its congestion window size resets to 1 

       47
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because of retransmission time-out (RTO) at 11 seconds. 
We confirm that both schemes show trade-off problems 
between preventing packet loss and throughput. With the 
proposed scheme, it performs based on bottleneck capacity 
and controls the increment rate according to the congestion 
level. When the network is congested, it increases the 
congestion window conservatively; with lower congestion 
levels, the congestion window is increased aggressively. 
Therefore, we know that it can reduce packet loss events and 
occupy available bandwidth rapidly by considering network 

B.

e 
tw

5 pkt/s. Ideally traffic should transfer from path1 to 
pa

path with a short RTT to another path with 
a long RTT.  

 

conditions. 

 Load balancing 

In order to evaluate the load balancing property of the 
proposed scheme based on path properties and network 
conditions, we consider the topology of Fig. 7(b). We us

o scenarios to evaluate the efficiency of load balancing. 
The first scenario is to evaluate the ability to determine 

path properties. We set ε1 = 10, ε2 = 40, ε3 = 1, p1 = 0.001 
and p2 = 0.003 where pi denotes the random loss rate of path 
i. It is not related to congestion loss. According to the 
parameters of each path, we know that the expected 
throughputs for path1 and path2 are respectively 223 pkt/s 
and 107

th2.  
Fig. 9 shows the congestion window fluctuations of 

congestion control schemes in an environment over multiple 
paths with different properties. MPCUBIC transfers its 
traffic from path2 to path1 gradually because it determines 
the path condition according to each path’s congestion 
window size: path1 which has a low random loss rate 
seldom experiences loss events and the congestion window 
size of path1 increases continuously. Our sche-me transfers 
traffic from path1 to path2 even though path2 experiences 
random loss because it determines the path condition 
according to expected throughput and allocates traffic per 
path. Plus, the proposed scheme reduces packet loss events 
better than MPCUBIC because of its control of the 
increment of congestion level. The LIA seems to work 
properly like ours. But it uses a fixed increment and suffers 
from RTT unfairness. This means that the update period of 
window size depends on the RTT. Therefore, it is difficult to 
transfer from one 
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 scheme 
can achieve higher total throughput than the others. 

TABLE II. COMPARISON ULTIPLE PATHS WITH 

ERENT PRO
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Figure 9. Congestion window of the MPTCP scheme over multiple path

 
Table II shows the average throughput of each scheme 

over multiple paths with different properties. Table II shows 
that even though MPCUBIC transfers its traffic to path1, the 
throughput of path1 is too low and does not take the 
advantage of multi-path transmission. The proposed

 
OF THROUGHPUT OVER M
DIFF PERTIES 

 Protocol 
Path    

LIA MPCUBIC 
Proposed 
scheme 

path1 2.28 Mb/s 12.39 Mb/s 2.64 Mb/s 

path2 89.56 Mb/s 151.22 Mb/s 187.92 Mb/s 
Total 91.85 Mb/s 163.61 Mb/s 190.57 Mb/s 

 
The second scenario evaluates the ability to transfer 

traffic quickly. We set ε1 = 20, ε2 = 10; both paths have the 
same properties. To check how well the MPTCP schemes 
transfer traffic from congested paths to uncongested when 
the congestion level of each path is changed continuously, 
we control the congestion level of the path by inserting cross 
traffic into path1 as shown in Table III. Ideally, if we insert 
cross traffic into path1, traffic transfers to path2. After 
finishing the insertion of cross traffic to path1, the same 
mount of traffic is inserted into each path gradually.  

TABLE III. THE F CROSS C FL COR O TIME 

0  10  3  

a
 

NUMBER O TRAFFI OWS AC DING T

Time (s) -10 -30 0-45

Number of flows 0 2 0 
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Figure 10.  Congestion window of MPTCP schemes versus the congestion 
level of the path: (a) LIA (b) MPCUBIC (c) Proposed scheme 

 
Fig. 10 shows the congestion window fluctuation of 

congestion control schemes versus the congestion level of 
the path. In Fig. 10, with the LIA, after 10 seconds it 
transfers traffic from path1 to path2. But, after finishing 
inserting cross traffic, the increase rate of path2 is higher 
than that of path1 even though the congestion level of path2 
is higher than that of path1. After 30 seconds, both paths 
have same condition and much traffic is inserted to path2. 
So, we confirm that the LIA could not transfer traffic 
adaptively as the congestion level varies. MPCUBIC shows 
a dramatic shape on the graph. When cross traffic is inserted 
to path1 suddenly, RTO occurs and the window size of that 
path is initialized to 1. MPCUBIC determined the network’s 
condition by using the current window size. Therefore, 
MPCUBIC cannot use path1 until 30 seconds have passed. 
With the proposed scheme, a lot of traffic is transferred from 
path1 to path2 in 20 seconds. After 30 seconds, traffic 
transfers from path2 to path1 and after 43 seconds, both 
paths have the same traffic and work fairly. 

C. Friendliness with single-path flow 

In this section, we investigate proposed scheme’s 
friendliness with regular Cubic TCP at a common 
bottleneck. Two subflows share the bottleneck with a 
regular Cubic TCP flow at a link as shown in Fig. 2(a). We 
set ε1=20 and ε1=10. Fig. 11 shows that the proposed 

scheme can share the bottleneck with regular Cubic TCP at 
the bottleneck. The proposed scheme captures bandwidth 
quickly until 15 seconds. But, when regular Cubic TCP 
increases its congestion window size greedily to capture 
more bandwidth, the proposed scheme increases its 
congestion window size conservatively to guarantee 
bandwidth occupancy of regular Cubic TCP. So, regular 
Cubic TCP does not suffer from congestion loss events due 
to competing flows. After 20 seconds, the proposed scheme 
keeps its congestion window size below that of regular 
Cubic TCP.   
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Figure 11. Comparison of congestion window between proposed scheme 
and single-path Cubic TCP 

VI. CONCLUSION 

We have proposed an efficient MPTCP-based congestion 
control scheme in HBDP networks. The goal of the 
proposed scheme is to ensure that the three IEFT 
requirements for MPTCP are met, while especially 
overcoming the trade-off problems that were encountered in 
previous works and enhancing the efficiency of load 
balancing. Our proposed scheme can be divided into two 
main mechanisms, the router buffer based congestion 
control mechanism and the expected throughput based load 
balancing mechanism. The former mechanism checks 
congestion levels and its variation accurately by monitoring 
router buffer states. After that it determines an increment of 
the congestion window so as to occupy bandwidth without 
wasting available bandwidth, by using a graph for the 
relationship between the congestion level and the increment 
of the congestion window. The latter mechanism estimates 
the properties of each path and transfers traffic from one 
path to the other properly by calculating the expected 
throughput in each path. Simulations show that the proposed 
scheme performs well in comparison with those of previous 
works and achieves the above mentioned goals. 
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