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1Abstract—The study evaluates the influence of natural light 

conditions on the effectiveness of the linear optical gesture 
sensor, working in the presence of ambient light only (passive 
mode). The orientations of the device in reference to the light 
source were modified in order to verify the sensitivity of the 
sensor. A criterion for the differentiation between two states - 
"possible gesture" and "no gesture" - was proposed. 
Additionally, different light conditions and possible features 
were investigated, relevant for the decision of switching 
between the passive and active modes of the device. The 
criterion was evaluated based on the specificity and sensitivity 
analysis of the binary ambient light condition classifier. The 
elaborated classifier predicts ambient light conditions with the 
accuracy of 85.15%. Understanding the light conditions, the 
hand pose can be detected. The achieved accuracy of the hand 
poses classifier trained on the data obtained in the passive 
mode in favorable light conditions was 98.76%. It was also 
shown that the passive operating mode of the linear gesture 
sensor reduces the total energy consumption by 93.34%, 
resulting in 0.132 mA. It was concluded that optical linear 
sensor could be efficiently used in various lighting conditions. 
 

Index Terms—gesture recognition, human computer 
interaction, photodiodes, interactive system, wearable sensors.  

I. INTRODUCTION 

The emergence of wearable smart devices has been 
stimulating research on the human system interaction 
methods across the decades [1–4]. The contactless 
navigation is a feature which especially allows devices to be 
utilized in a wide range of applications (e.g. healthcare, 
industry.) Non-contact interfaces based on video analysis [5] 
are already popular also within mobile devices [6,7]. Even 
though they can handle a variety of gestures, they are 
computationally [6] and energetically expensive [8]. Thus 
what is of interest are sensors relying on a less robust 
computation that could handle a rich set of gestures with  
a high recognition accuracy along with a lower power 
consumption. Many of them are active sensors utilizing the 
excitation of a given type, such as optical [9–18] or radio 
wave sensors [19–21]. Yet passive solutions of gesture 
sensors based on many kinds of transducers have also been 
widely presented. The retransmission of captured WiFi 
signals and the echo signal reflected from a hand were 
utilized for gesture recognition by [22]. Their system 
utilizing the passive radar technology and relying on the 
Doppler effect is reported to detect five dynamic discrete 
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gestures. The system was subsequently expanded to use 
LTE signals [23]. The wearable, glove-based system for 
tracking hand gestures with passive RFID (Radio-frequency 
identification) sensor tags was proposed by [24]. The 
recognition of circular and semicircular gestures in three 
dimensions using the non contact sensor of passive RFID 
tags was investigated by [25]. The power saving sensor, able 
to recognize 8 gestures and utilizing wireless signals (e.g. 
TV, RFID) was presented in [26]. Capacitance changes were 
monitored in a three-electrodes set to track the position of a 
finger in two axes [27] or in ring oscillators for swipes 
detection [28]. 

Other group of gesture sensors are optical sensors. 4x4 
and 2x2 PIR (Passive infrared) sensor arrays were proposed 
for the detection of swipe gestures by [29,30]. The 
observation of ambient light modulations produced by a 
human hand was also utilized in a number of sensors. The 
user computing activity (keystrokes) was monitored with the 
use of ambient light sensors from a smart watch [31]. The 
optical passive sensor comprised of photodiodes arranged in 
a 3x3 array, utilizing only ambient light, was designed in 
[32]. As stated, as many as 10 dynamic discrete gestures 
were detected with a high accuracy. However, the sensor 
worked properly in neither very bright lights nor the dark.  

A sensor operating in the passive mode does not use any 
excitation for measurement purposes (e.g. own light, radio 
waves). Therefore, it can save more power in comparison to 
a situation when additional, active electronic devices are 
used as a source of excitation. The passive mode of  
a gesture sensor operates in the existing environmental 
conditions, which can highly influence the measurement and 
the ability of an accurate recognition of gestures.  

Optical sensors are the ones the performance of which 
may especially depend on ambient light level. Optical 
gesture sensors that can operate in either passive or active 
mode depending on ambient light conditions are not 
common in the literature. Therefore, the design of a sensor 
which could adapt the operating mode to the existing 
environmental conditions and preserve its gesture 
recognition capabilities would be of interest. 

The goal of this research is to measure the behavior of the 
optical linear gesture sensor operating in the passive mode 
in different environmental conditions. Particular objectives 
for the evaluation of the passive operating mode are:  
to investigate the recognition accuracy of static poses;  
to propose the gesture / no gesture decision criterion;  
to evaluate the ambient light brightness range the optical 
linear sensor can reliably work in. The practical motivation 
for this work is the reduction of power consumption by 
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using the passive mode of the sensor as often as possible. 
Additionally, the work also focuses on the investigation of 
the conditions when the gesture sensor could automatically 
choose the most suitable operating mode: passive or active. 

The interest of the properties of the optical linear gesture 
sensor comes from its possible use cases. The examples of 
practical applications of the considered sensor include: 
gesture-based control of devices or software in septic 
environments (e.g. a surgeon previews CT (Computer 
Tomography) images during a surgery), touchless 
interaction between a user and smart glasses, control of 
devices in smart buildings, etc. 

The paper is organized as follows; Section I consists of 
the introduction, state of the art, the motivations and 
objectives of the work. Section II presents the description of 
the experiments and methods utilized to measure the 
properties of the optical sensor operating in the passive 
mode. Section III describes the results obtained from the 
experiments. The discussion of the results is presented in 
Section IV. The paper is concluded in Section V. 

II. MATERIALS AND METHODS 

A. The optical linear gesture sensor 

The research was conducted on the prototype of the linear 
optical gesture sensor based on 8 IR photodiodes (Fig. 1). 
The applied elements (TSL260RD) are distanced from one 
another by 1 cm. The device is also equipped with 4 IR 
LEDs as a source of illumination for the active mode but 
given the scope of this paper, their utilization was not of 
interest. The light collimator part (black part in Fig. 2) of the 
sensor limits the field of view of photodiodes (PDs) and 
LEDs to 60° and 120°, respectively. It increases the spatial 
resolution of individual optoelectronic elements of the 
sensor [33]. The device is managed by the 
PIC24FV16KA302 microprocessor (mounted on the bottom 
side of the PCB) and supplied with a 5 V battery.  

The linear sensor is intended for the detection of hand 
gestures performed nearby the device, typically up to 5 cm 
(or up to 10 cm for wide reflecting objects) from the sensor 
plane [34]. Such a distance reduces potential interferences 
from other nearby objects, for example if the sensor is 
embedded in smart glasses (Fig. 2a) [35]. The sensor can be 
utilized for discrete commands, where the system responds 
after the action (e.g. “next”, “enter”, “back”) or continuous, 
computer mouse like navigation, where the system responds 
while the gesture is performed (Fig. 2b). 
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Figure 1. The linear optical gesture sensor utilized in the study with no 
overlay (light collimator) presented. 
 
 

a) b)
 

Figure 2. a) Person wearing the smart glasses equipped with the optical 
linear gesture sensor and performing the “2 fingers joined” (2FJ) hand pose.  
b) An example of the utilization of the sensor for a video game navigation. 

B. Principle of operation – operating modes 

In the active mode, the LEDs of the sensor pulsate 
synchronously with the frequency of 40Hz [36]. In this 
mode 4 IR LEDs are the source of the light which reflects 
from a hand performing a gesture nearby the sensor. The 
intensity of the reflected light is measured by the aligned 
PDs and sampled by the microprocessor into a data frame 
(DF). The data frame contains 8 values measured by 8 
photodiodes. This light intensity pattern is normalized by 
reducing all values in the DF by the min(DF) factor (Fig. 3a, 
3b). Various finger arrangements (poses) produce reflection 
patterns which can be differentiated using a classifier, e.g. 
artificial neural network (ANN) used in [37]. 

In the passive operating mode solely ambient light is 
used, without any additional source of light (like IR LEDs). 
In this mode the light would be blocked by a hand 
performing a gesture producing a shadow pattern. After the 
inversion of the sampled shadow pattern its shape is similar 
to the light intensity pattern obtained in the active mode 
(Fig. 3c). The shadow patterns are normalized by inversion 
(multiplying by -1) and addition of the min(DF) obtained 
from the DF after the inversion (Fig. 3d). The source of the 
ambient light could be natural (sunlight) or artificial (e.g. 
room lights). In this study we analyze only the natural light. 
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Figure 3. The pattern sampling performed during the cloudy day with two 
fingers joined pose located in front of the sensor. a) The DF sampled in the 
active mode. b) The normalized active mode DF. c) The DF sampled in the 
passive mode. d) The normalized passive mode DF. 
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C. Objectives for experiments 

The ambient sunlight level, its directivity and angle of 
incidence can impact the usability and reliability of the 
passive operating mode of the optical linear gesture sensor. 
Therefore, in this study we observe a few parameters related 
to the gesture detection capabilities of the sensor. 

Not all recorded data frames should be used in further 
processing for the hand pose classification. For example, if 
all 8 values in DF are almost exactly the same, then it is 
highly probable that no gesture is being performed. 
Therefore, preprocessing of the data frames is performed to 
calculate the standard deviation (sd), max, min and their 
difference (diff) for each data fame. For example, in the 
active mode, when the value of the standard deviation of the 
8 values in DF exceeds a given, experimentally established 
threshold value (Tsd), the analyses of the stored pattern are 
triggered. For the active mode, the Tsd value was previously 
established as 0.1 V [36]. However, the relevant threshold 
value for the passive mode may be different.  

Other interesting parameters that should be evaluated 
from the data frames are: the longitudinal component of the 
localization of a hand in relation to the sensor and the code 
of the recognized pose of a hand. The localization of the 
hand can be estimated by calculating the center of gravity 
(COG) of the light pattern represented by the DF values 
[36]. The second parameter, the code representing the hand 
pose, is the output from the selected hand pose classifier. 
The classifier was designed to recognize 3 hand finger 
arrangements differing in the width of the plane produced by 
the fingers. These arrangements are “1 finger separated”, “2 
fingers joined” and “4 fingers joined” and the corresponding 
codes are 1FS, 2FJ and 4FJ, respectively. 

Another important objective for the experiments is to 
investigate the influence of the environmental conditions on 
the output parameters of the gesture sensor working in the 
passive mode. In order to evaluate the acceptable ambient 
light conditions for the utilization of the passive mode of the 
gesture sensor, the following procedure is considered. The 
sensor is to be mounted on the table and rotated so as to 
measure the referential light characteristics (max parameter 
of the DF) of the room. Then, the hand pose mimicking 
obstacle would be hitched in front of the sensor, the rotary 
measurements would be repeated and the results would be 
normalized by the referential waveform. Additionally, any 
ambient light change would be recorded by a separate light 
meter. If the resulting normalized function is correlated with 
the light level from the external light meter, it would mean 
that the max parameter changes with ambient light with no 
regard to the position of the sensor in reference to the sun 
direction. Thus it is a 2FJ pose that is to be selected as the 
one producing a pattern of moderate width (in relation to the 
width of the sensor) to be utilized in the measurements. Its 
shadow would most likely not cover the whole sensor and 
the obtained value of the max parameter would be close to 
the maximum value which would be recorded without the 
presence of an obstacle. In the positions (angles) where the 
classifier recognized the pose properly, ambient light 
conditions (represented by the max parameter) would be 
considered as acceptable. Wrong recognition is to be 
interpreted as unacceptable conditions. 

D. Datasets and ANN classifiers 

At the beginning, experiments with the participation of 
users were performed. Two types of datasets were recorded: 
datasets obtained for the active mode of the sensor and 
datasets for the passive mode of the sensor. 

The active mode dataset consisted of 6600 samples from 
11 volunteers (mean age 31 years; 7 males and 4 females), 
each producing 200 data frames of 3 gestures. The data was 
gathered with no presence of ambient light. 

The passive mode dataset was gathered in four ambient 
light conditions, possibly linearly spaced due to the 
brightness level. The average brightness during the data 
collection sessions was 230, 700, 1460 and 2200 lux. The 
set of 6000 samples was collected by three volunteers (mean 
age 29 years; all subjects were males), each producing 500 
data frames of 3 gestures in one session. The measurements 
were performed with the face of the sensor perpendicular to 
the light source direction (favorable conditions). 

Each dataset was divided into training, validation and 
testing subsets. The Artificial Neural Network (ANN) 
classifiers were trained with the Matlab software (R2014a 
version, patternnet function for feedforward networks) as 
they proved effective in earlier studies [37]. In this approach 
1-layer topologies with up to 30 neurons in the hidden layer 
were considered in the task of hand pose recognition based 
on each type of dataset. Among the 30 networks (for each of 
the task), one with the best score on the validation set was 
selected. The model obtained using the training subset of the 
active mode dataset was labeled as aANN, and for the 
passive mode as pANN. Both models were also compared 
using test subsets of both datasets. 

E. Laboratory setup 

The laboratory setup was built so as to measure the 
performance of the sensor in varied light conditions. The 
rotation of the sensor in relation to the direction of the sun 
changes the sunlight incident angle as well as the 
measurement conditions. Therefore, the measurements were 
performed utilizing the constructed stand with a rotary 
holder. According to the spherical coordinate system, the 
rotations of the sensor in φ and θ angles could be performed 
as illustrated in Fig. 4. 
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Figure 4. The scheme of the relation between the rotation axes and position 
of the linear sensor (elongated rectangle) in φ and θ rotation measurements. 
 

The sensor hitched to the rotary holder in the position 
ready for performing the φ rotation experiments is presented 
in Fig. 5. A cardboard screen of the shape of a human head 
was attached to the back of the sensor. The purpose of this 
application is to replicate the scenario of the sensor built in 
the frame of smart glasses where the head covers the back of 
the sensor. In the experiments, the holder with the sensor 
was mounted on a rotary platform on a table, 1 m above the 
ground. The hemi-sphere probe of the light meter was 
placed on the same table, faced up. The measurements were 
performed for natural day light in different conditions.  
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Figure 5. The description of the laboratory setup. A 2FJ pose mimicking 
obstacle is hitched in front of the sensor. 
 

During the experiments, the holder was placed in the 
center of a room, in its starting position being faced towards 
the only window (southern side) and with the longer side of 
the device parallel to the ground. At each of the following 
positions (angles), the DF was sampled and data were send 
to the PC by the UART (Universal Asynchronous Receiver-
Transmitter) interface of the sensor. The ambient light level 
was monitored utilizing the Lutron LX-105 light meter and 
saved to the PC using the RS232 interface. 

Additionally, the removable hitched obstacle mimicking 
the two fingers joined pose (2FJ) [33] can be attached to the 
rotary holder. It was utilized in order to observe the impact 
of varied ambient light conditions on the parameters of the 
DF of the stable sensor-hand finger unit. The width of 
artificial fingers (32 mm) was taken upon the study 
performed on the group of volunteers [36]. A 2FJ obstacle 
was mounted in front of the center of the sensor, 20 mm 
from the face of the PDs (around the half of the assumed 
operating distance [36]). 

F. Laboratory experiments 

1) Angular characteristics measurements 
In φ angle variation experiments, the rotary holder with 

the sensor was rotated clockwise with the step of 10° 
performing a full circle (36 positions). In θ angle variation 
experiments, the holder was rotated up to the ceiling and 
then down to the back, with the step of 10°, performing a 
half circle (19 positions). Each of the angular experiments 
was performed in 4 scenarios. In the first two ones, the 
sensor was measuring the characteristics of the room – the 
“no obstacle” measurement – for weak (100 – 400 lux) and 
strong (600 – 2000 lux) ambient light conditions. The half of 
the saturation level of the PDs is 1.9V, which was measured 
to be 592 lux for the sunlight, hence the border level 
between the conditions. In the third scenario, ambient light 
was within the weak light range but a 2FJ obstacle was 

hitched in front of the sensor. In the fourth scenario, the 
obstacle was present as well but ambient light was in the 
stronger range. 

 
2) Distal characteristics measurements 

The ratio of components of the directed and scattered 
light can have an impact on the pattern of shadow produced 
by an obstacle, thus influencing the parameters calculated by 
the sensor. The phenomenon can be even more prominent 
given that the distance between an obstacle and the sensor 
changes. Therefore, the measurements with the artificial 2FJ 
obstacle initially located in front of the sensor at the distance 
of 1 cm and shifted up to 10 cm with a step of 1 cm were 
conducted for differentiated ambient light conditions. The 
measurements were performed in three scenarios, all with a 
2FJ obstacle hitched. Apart from the weak and stronger light 
conditions described in the previous paragraph, there was 
also a very dark light scenario (below 100 lux). 

 
3) Power consumption 

In the passive operating mode, the only components of 
the total power consumption of the optical linear gesture 
sensor are the current drawn by 8 photodiodes and the 
current of the microcontroller. In this paper we focus on the 
power requirements of the applied PD chips (the transducer 
part of the sensor). According to the catalogue note of the 
applied PDs, their supply currents may vary. Therefore, the 
current consumption of the optical elements can be 
measured for different levels of ambient light. 

III. RESULTS 

A. Performance of the ANNs 

The ANN for the recognition of hand poses with joined 
fingers using data recorded by the active optical linear 
sensor was first developed and described in [37]. In this 
work the model was trained with the active mode dataset 
using the following settings: the training/validation/testing 
subsets ratio equal to 0.7/0.15/0.15; 1 hidden layer 
considered with up to 30 neurons; top 9 features selected by 
the matrix of correlation coefficients. The selected features 
of the pattern included: full width at 50% of max, full width 
at 85% of max, COG, mean, angle (slope of the pattern), sd, 
kurtosis, number of values in DF smaller than 2·sd and 
number of values in DF greater than the mean. The most 
efficient topology of the network consisted of 22 hidden 
layer neurons. The resulting classification accuracy of the 
aANN was 93.46% in comparison to 90.02% obtained 
earlier in [37]. The aANN was then tested on the passive 
mode dataset, and the resulting accuracy was 75.51%. 

The set of features from the passive mode dataset was 
extended by the parameter rawmax, which describes the 
maximum of the obtained pattern before the normalization. 
Utilizing the same elimination method (matrix of correlation 
coefficients), the top 9 features were selected. The selected 
features were: full width at 15% of max, full width at 85% 
of max, COG, mean, angle (slope of the pattern), skewness, 
kurtosis, number of values in DF smaller than 2·sd and 
rawmax. The other settings were the same as applied in the 
learning of the aANN. The most efficient topology, with 25 
neurons in the hidden layer, has the accuracy of 98.76%. 
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The pANN was also evaluated on the active mode dataset 
resulting in scarcely 52.82% recognition rate. The cross-
checking was performed because the active/passive profiles 
after the normalization were similar, therefore it was 
interesting to perform the cross tests (e.g., aANN with 
passive mode test subset and pANN with active mode test 
subset). The summary of the results is presented in Table I. 

 
TABLE I. THE ACCURACY OF THE CLASSIFIERS TRAINED ON THE ACTIVE AND 

PASSIVE DATA EVALUATED ON SUBSETS OF DIFFERENT ORIGIN 
  Test subset type 

  
 

Passive Active 

pANN Passive 98.76 % 52.82 % 

cl
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aANN 

T
ra

in
 

su
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se
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ty
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Active 75.51 % 93.46 % 

B. No gesture threshold value 

The hardware of the gesture sensor, all of the decisions 
and analysis performed within the implemented logic of its 
operating system can be, in overall, named as the 
architecture of the Gesture Recognition System (GRS) 
controller [38]. In the research on the active operating mode 
of the linear gesture sensor described in [37], a dedicated 
architecture of the GRS was proposed. One of its tasks was 
to decide based on the sd(DF) value whether the data frame 
should be analyzed or "no obstacle" state is to be expected. 
Considering the possible utilization of the passive operating 
mode, the preceding decision can also be introduced to such 
GRS. As long as ambient light conditions are fine for the 
passive mode, the LEDs should be turned off. 

In the previous research, with the active operating mode 
and no ambient light considered, the threshold of sd(DF) 
was set to 0.1 V [36,37]. Nevertheless, this value may be 
inadequate in the presence of ambient light. For the four 
angular measurements with no obstacle in front of the sensor 
(rotations in φ, θ angles in the presence of weak and strong 
light), the values of sd(DF) in 110 (2·36+2·19) positions 
were measured. The ambient light value was in the range 
from 229 to 1108 lux. The obtained span of the sd values 
was from 0.0052 to 0.32 V. For the Tsd threshold of 0.1 V, 
only 82.72% of the data frames were correctly classified as 
"no obstacle" (19 samples were above the limit) despite the 
calibration of the photodiode sensitivity functions. However, 
bringing the Tsd just to 0.13 V increases the classification 
accuracy to 94.54%. This value was applied in the analysis 
in the following experiments in the paper. The more precise 
adjustment of this value can be investigated in the future. 

C. Angular and distal characteristics 

Each type of the measurement (angular or distal, Fig. 7-9) 
with an obstacle was conducted in two types of ambient 
light conditions (weak and strong light) and performed three 
times. Additionally, for the angular measurements there 
were also measured the characteristics with “no obstacle” 
hitched. The results of the exemplary measurements are 
presented in the subsections C and D. The selected 
measurements have the central brightness recorded by the 
light meter among the three measurements performed in a 
given configuration.  

 

1) The rotation in φ angle 
The first part of the experiment was performed during the 

cloudy day, with no obstacle in front of the sensor 
(reference). The average ambient light level during the 
measurement was 282±53 lux. Next, a pose imitating 
obstacle was hitched in front of the sensor and the rotations 
were repeated. The average measured brightness was 
256±21 lux. The measurements with the obstacle were 
performed also at the other day, during sunny conditions. 
The average measured brightness was 1308±144 lux. The 
red zone on the polar plots of standard deviation of the DF 
(Fig. 7a, c, e) represents the angles for which the sd was 
below the threshold, Tsd. The green zone (if present) helps to 
emphasize positions at which the sensor notices an obstacle 
(sd(DF)>Tsd).  
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Figure 7. Results for the φ rotation. Top view, 0° is the window direction. 
The angular characteristics of the sensor during the cloudy day with no 
obstacle (a, b), with a 2FJ obstacle on the cloudy day (c, d), during the 
sunny day with a 2FJ obstacle (e, f). The blue plots at a, c, e denote sd, 
whereas b, d, f stand for amplitude related parameters. 
 

The radius of the green zone is the average value of the 
sd(DF) during the experiment (all positions). The color lines 
on the amplitude related plots (Fig. 7b, d, f) represent the 
max, mean and min value of the DF during the rotations. 
The diff parameter is represented by a colored zone in order 
to emphasize it on the plot. The used PD chips of the sensor 
saturate at the level around 3.8 V, hence the value of the 
max parameter can be limited. 
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2) The rotation in θ angle 
The first part of this experiment was performed during the 

cloudy day, with no obstacle in front of the sensor. The 
average ambient light level during the measurement was 
229±2 lux. Next, a pose imitating obstacle was inserted in 
front of the sensor. The average measured brightness was 
221±16 lux. At the other day, during sunny conditions, a 
pose imitating obstacle was hitched in front of the sensor. 
The average measured brightness was 837±63 lux. The plots 
of standard deviation of the DF are presented on Fig. 8a, c, e 
while the diff parameter for different light conditions is 
presented in Fig. 8b, d, f. 
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Figure 8. Results for the θ rotation. Side view, 0° is the window direction. 
The “no obstacle” angular characteristics of the sensor during the cloudy 
day (a, b), with a 2FJ obstacle (c, d), the sunny day with an obstacle (e, f). 
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Figure 9. The distal measurements for a 2FJ obstacle. The characteristics 
taken during the sunny day with blinds on the window and sensor turned 
back (a, b), turned to the window with blinds (c, d), without blinds (e, f). 
 

3) Distance increase 
In all of the distal characteristics experiments, a 2FJ 

obstacle was hitched in front of the sensor. The first part of 
the experiment was performed during the sunny day, with 
blinds on the window and with the sensor turned back to the 

window. The average ambient light level in the room during 
the measurement was 401±60 lux. The second part of the 
experiment was performed also with the blinds but with the 
sensor faced to the window. The average ambient light level 
during the measurement was 426±35 lux. In the last 
measurement, the blinds were removed with the sensor still 
faced to the sunlight direction. The average measured 
brightness was 1838±34 lux, more than for any rotation 
based experiments. The results are presented in Fig. 9. 
Parameter d is the distance between the obstacle and the 
face of the sensor, which varied in this experiment. 

D. Gesture recognition capabilities 

For the measurements with an obstacle presented in the 
previous section, the results of the further analysis are 
presented. The gesture recognition related parameters were 
calculated for the positions where the sd>Tsd. 

 
1) The rotation in φ angle 

The pANN pose classifier was utilized in order to detect a 
static pose (2FJ) in differentiated ambient light conditions. 
The bold dashed line on the ANN polar plots (Fig. 10a, b) 
represents the expected class among the three ones which 
the classifier was trained on. A 2FJ pose in the weak light 
was recognized in 100% of the positions where the sd(DF) 
was greater than Tsd. In the strong light, the recognition rate 
was 92.67%.  

The bold dashed line on the COG plots indicates the 
expected calculated position of a pose in relation to the 
sensor (Fig. 10c, d). In order to observe absolute calculated 
position errors in both directions, the 0 cm (referring to the 
center of the sensor) is not located in the centre of a plot. 
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Figure 10. Results for the φ rotation. Top view, 0° is the window direction. 
The angular characteristics of the sensor during the cloudy day with an 
obstacle (a, b), and during the sunny day with a 2FJ obstacle (c, d). The 
plots a, c present the class recognition by pANN, where the dashed line is 
the expected result; plots b, d denote the calculated COG, with the dashed 
line being the expected value. 
 
 
 
 

       150 

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:54:55 (UTC) by 3.90.202.157. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 18, Number 1, 2018 

2) The rotation in θ angle 
In the presented exemplary measurements of the θ 

rotation, the pANN classifier recognized a pose at all of the 
positions taken into analysis (Fig. 11a, c). The 
corresponding COG parameter values were calculated in the 
same range (Fig. 11b, d). 
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Figure 11. The θ rotation. Side view, 0° is the window direction. The 
angular characteristics of the sensor during the cloudy day with an obstacle 
(a, b), and during the sunny day with a 2FJ obstacle (c, d). The plots a, c 
denote the class recognition by pANN, whereas the dashed line is the 
expected result; plots b, d present the calculated COG, with the dashed line 
being the expected value. 
 

3) Distance increase 
In the exemplary distal characteristics the pANN classifier 

recognized a pose with 100% accuracy in weak light 
conditions. In very strong light the pose was recognized 
properly only at the closest distance of 1 cm (Fig. 12a, c). 
The corresponding COG parameter values in both cases 
were calculated (Fig. 12b, d). 

2 4 6 8 10
-3.5

-1.75

0

1.75

3.5

d [cm]
2 4 6 8 10

empty

1FS

2FJ

4FJ

d [cm]

2 4 6 8 10
-3.5

-1.75

0

1.75

3.5

d [cm]
2 4 6 8 10

empty

1FS

2FJ

4FJ

d [cm]

2
FJ
 p
o
se
,  
   
   
 2
FJ
 p
o
se
,  
   
 

st
ro
n
g
lig
h
t

w
ea
k
lig
h
t

pANN output COG [cm]a) b)

c)                                                      d)

 
Figure 12. The distal measurements for an obstacle. The characteristics 
taken during the sunny day with blinds on the window and the sensor 
turned to the window (a, c) and without blinds (b, d). 

E. Summary of rotation measurements 

As stated, each of the rotation based measurements was 
performed three times for each type of ambient light 
conditions. Therefore, the sets for analyses (for weak and 
strong light) from the φ angle rotations consisted of 108 
samples. The analysis sets from the θ angle rotations 
consisted of 57 samples. These experiments are more 
meaningful for the purpose of this article than the distal 
characteristics since they include more information on the 
impact of varied light (angle, intensity) on the pose 
classification accuracy. Therefore no summary of the distal 
characteristic is presented. 

 

The results of the brightness measured during the 
experiments, visibility ranges of the sensor, accuracies of 
the pANN classifier at positions where sd(DF)>Tsd as well as 
the values of COG are presented in Table II. 

 
TABLE II. SUMMARY OF THE MEASUREMENTS PERFORMED IN DIFFERENT 

CONFIGURATIONS (LIGHT CONDITIONS AND ROTATION ANGLE) 

Config. 
brightness 

[lux] 
range 

[°] 
pANN acc. 

[%] 
COG 
[cm] 

φ rotation, 
weak light 

278.1±18.2 ±56.7±2.9 100±0.0 0.08±0.56 

θ rotation, 
weak light 

215.3±9.5 ±31.7±5.8 84.2±24.7 0.13±0.21 

φ rotation, 
strong light 

1263±168 ±158.3±25.7 75.8±13 0.02±0.36 

θ rotation, 
strong light 

792.2±59.1 ±63.3±17.6 100±0.0 0.07±0.14 

 

F. Operating mode estimation 

For one of the “no obstacle” characteristics in θ angle, the 
standard deviation of the ambient light measured by the light 
meter was very low (below 2 lux). Therefore, the obtained 
waveform was treated as the characteristic of the room at 
that time and for each of the 19 positions the max parameter 
of data frames was found. The resulting vector was 
normalized and as a result, the reference vector representing 
the given sunlight conditions for the room was obtained. 
The next three repetitions of the θ measurement, conducted 
briefly after the reference, were performed with an obstacle 
hitched into a holder. The max parameters obtained from the 
data frames were divided by the reference vector. The 
obtained values were then plotted against the ambient light 
brightness inside the room during the measurement, which 
was registered by the light meter (Fig. 13). 
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Fig. 13. Max parameter divided by the reference vector plotted against the 
ambient light brightness. 
 

The obtained results suggest that the shadow produced by 
an obstacle does not affect the max vs. ambient brightness 
relationship as long as an obstacle is present in front of the 
sensor. Therefore, the max parameter was taken to represent 
ambient light conditions.  

Each of the angular measurements with an obstacle 
presented in Section IIIC was additionally repeated twice in 
similar ambient light conditions. Therefore, the set of 6 φ 
and 6 θ measurements in total (each consisting of 3 strong 
and 3 weak light conditions) with a 2FJ obstacle hitched was 
taken into analysis on the active/passive mode switching 
criterion. At each position (angle) where the pANN classifier 
responded correctly, the corresponding parameter was 
assigned with the bright label. At the positions where the 
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wrong call was noticed, the assignment with dark label was 
made. The too bright label was assigned to the errors which 
oc

 with 72.8%. The total 
ac

th

the 
ROC curve (Fig. 14a). The adjustment step was 0.01 V.  

curred at the saturation level of the PDs (around 3.8 V). 
The C4.5 decision tree classifier standard available in the 

Weka software as J48 classifier (without error pruning) was 
applied in order to evaluate the conditions at which the 
sensor is the most likely to operate in the passive mode 
(bright), active mode (dark) and whenever the brightness is 
too high (too bright). In order to keep the switching 
condition simple (fast computation), single parameter 
criteria were considered. The max(DF) parameter was the 
one, which was automatically selected with the threshold 
value, Tmax=0.387 V, and which divided the input dataset 
into bright and dark classes. No rule was produced for the 
class too bright as in the training set there were more 
correctly classified data frames with the max parameter in 
the saturation region than assigned representations of the 
class too bright overall. The obtained classifier recognizes 
the bright class samples with the accuracy of 100% while 
the dark class samples are recognized

curacy of the classifier is 86.36%. 
However, there is an asymmetry in the consequences of 

the detection accuracies of the classes dark (active mode 
recommended) and bright (passive mode recommended). 
The dark class error has to be minimized because the wrong 
decision of not turning on the illumination system (i.e., 
LEDs of the device) in dark light conditions can result in not 
detecting a gesture at all (the obtained pattern would be too 
flat, e.g. Fig. 9a, b). On the other hand, the samples of the 
bright class incorrectly classified as dark would lead to 
turning on the illumination system too early. At the cost of 
decreasing the utilization range of the passive operating 
mode, the poses can be still detected in the active mode in 
certain situations, though. However, the value of the 
baseline caused by the ambient light would have to be lower 

an the intensity of the LEDs light reflected from the hand. 
By skipping the too bright class, the problem was 

redesigned as a binary classification problem. The true dark 
class samples classified as dark represent the True Positive 
samples in the binary classifier while the true bright class 
samples classified as bright are the True Negative samples. 
Therefore, we can observe the impact of adjusting the Tmax 
threshold ranging from 0 to 3.8 V on the sensitivity and 
specificity of the binary classifier. It is presented on 
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TABLE III. T ONS AFTER 

 T N

samples Classified as dark Classified as bright 
 

F ure 14. a) The ROC curve. b) The optimal ROC curve point plot. 

The distance between each point of the ROC curve and 
the perfect binary classifier (0,1) was calculated (Fig. 14b). 
The closest point which indicates the optimum was achieved 
for the Tmax=0.6 V. This value corresponds to 142.7 lux 

measured by the light meter probe directed to the light 
source at the same angle as the photodiodes. The value was 
calculated from the linear function obtained from the linear 
regression an

ht meter. 
After the application of the new, tuned threshold, the 

matrix of confusion can be obtained (Table III). Therefore, 
the sensitivity of the classifier is 84.11% while the 
specificity is 88%. Before the adjustment these values were 
equal to 69.54% and 100%, respectively. The overal

 
HE CONFUSION MATRIX FOR OPERATING CONDITI

THE CLASSIFICATION HRESHOLD ADJUSTME T 

True 
dark  

(TP) 127 (FN) 24 
Sensitivity = 
127/151 = 

84.11% 

True 
bright  

(FP) 21 (TN) 154 
S

15 = 
88% 

pecificity = 
4/175 

G.

rent light 
co

stem of the 
sensor. The results are presented in Table IV. 

TABLE F THE 

SENSOR FOR DIFFER T LI TION

conditions 
Brightness 

[lux] (D ) (D ) (D ) 

 Power consumption 

The optical system component of the current consumption 
was measured in four situations: for no light, for two cases 
of bright dispersed light and with direct sunlight incident on 
the PDs. The current drawn from 8 PDs was averaged and 
the single photodiode current consumption for diffe

nditions is given in the column 3 of Table IV. 
Based on the previous research, the microcontroller 

samples the analogue signals from the PDs at the rate of 
40Hz [36]. The fill factor, D, indicates for how long during 
the sampling cycle (25ms) the optical elements (photodiodes 
or LEDs for the active mode) are supplied. Taking into 
account the measured settling time of the elements (375μs), 
the resulting D is equal to 1.5%. It allows estimating the 
total current and power drawn by the optical sy

 
IV. THE CURRENT UTILIZATION OF THE PHOTODIODES O

ENT AMBIEN

Av. single 
PD current 

GHT CONDI

Total (8) 
PD current 

=1.5%

S 

Total (8) 
Light 

=100%
[mA] [μA] 

PD power 
=1.5%
[μW] 

dark 0 0.959 115.05 575.25 

strong 872 1.125 135.00 675.00 

stronger 2000 1.235 148.20 741.00 

dir. sun. 33500 1.041 124.95 624.75 

average - 1.090±0.12 130.80±14 654.00±71 

IV. DISCUSSION 

The evaluation of the aANN classifier using a testing 
subset from the passive dataset gave a low classification 
accuracy. Therefore a dedicated pANN classifier was trained 
and the resulting classification accuracy of the testing subset 
of the passive dataset has increased from 75.51% to 
98.76%. Therefore, depending on ambient light conditions, 
not only the operating mode of the sensor should be chosen, 
but also the associated classification model (ANN classifier) 
has to be utilized to maximize the performance. 
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The analysis on a possible threshold value to differentiate 
between the gesture / no gesture states perceived by the 
optical sensor was performed. It was based on the four 
angular measurements in φ angle performed for different 
ambient light conditions and without any obstacle in front of 
the sensor face. Generally, in the darkness or very low 
lights, the sd(DF) value is low as almost no light reaches the 
sensor. In the passive mode, the impact of ambient light and 
non equal sensitivity of PDs may lead to larger and varied 
values of sd, even for the measurements not interrupted by 
the obstacle. A threshold Tsd equal to 0.13 V was 
experimentally chosen as almost 95% of the data frames 
from the four angular measurements (each representing the 
“no gesture” class) had a smaller value of the standard 
deviation. It means that in some rare circumstances the 
sensor may start to analyze and classify “empty” data frames 
(i.e., when no obstacles were present in front of the sensor 
face). Further research is required to improve the rejection 
ra

e to the passive 
m

avorable conditions (sunlight 
pe

pose of a hand in 
su

some 
se

 linear sensor is not 

te of “empty” data frames. 
The sensitivity of the sensor in different light conditions 

was measured by introducing a controlled change of the 
orientation of the sensor in reference to the light source. The 
measured light patterns for each orientation, after the 
application of the threshold value, Tsd, were marked as 
obtained in appropriate or inappropriate light conditions for 
the sensor. The light conditions were acclaimed as 
appropriate if the sensor operating in the passive mode had 
classified the obtained pattern caused by the hitched 
obstacle as a 2FJ pose. During the experiments, the sensor 
was centrally placed 2.6 m from a 3.1 m wide window, 
hence direct outside light was expected within the range of 
approximately ±30°. The results of the experiments show 
the average range at which (based on three measurements) 
the value of sd(DF) was greater than Tsd. For weak ambient 
light, the sensor recognized (but not necessarily correctly 
classified) any pose in the range of φ angles around ±57° 
(278±18 lux) and for the range of θ angles around ±32° 
(215±10 lux). For stronger light, these values rose to ±158° 
(1263±168 lux) and ±63° (792±59 lux), respectively. The 
degrees are given in reference to the light source (sun) 
direction. If the sensor were used within smart glasses, then 
the rotations in φ angle would be more natural and more 
frequent than in θ angle. In a simplified estimation, for a 
user who moves his/her head uniformly towards different 
directions in relation to the sun throughout the day, the 
obtained φ range can be averaged to ±107.5°. In reference to 
a full circle, it can give a rough estimation of saving the 
power (switching the sensor from the activ

ode) 60% of the time during a day. 
In the estimation of a pose recognition accuracy, only 

outputs of the pANN at selected positions were taken to the 
statistics. The positions were selected whenever the 
threshold Tsd was exceeded. The measurement for the given 
angle and kind of ambient light (dark / bright) was repeated 
three times and the results were averaged. For weak light 
conditions the accuracy was 84.2% for the θ rotations and 
100% for the φ rotations. In the stronger light, the accuracies 
were at the level of 100% and 75.8% for the rotations in θ 
and φ angles. On average, these values differ from the very 
high recognition accuracy achieved on the testing subset 
from the passive dataset. The reason why it happens so may 

be that they were gathered for the differentiated orientations 
of the sensor and light source direction, while the testing 
subset was obtained in the f

rpendicular to the sensor).  
There are many works which describe the technology that 

can be utilized for passive gesture sensing but do not yet 
include research on the gesture detection accuracy 
[24,25,27]. Some pieces of research present varied gesture 
detection rate. The 2x2 PIR sensor recognizes 4 motion 
trajectories with the accuracy of 77% [30]. The AllSee 
sensor has the accuracy of 97% for the set of 8 gestures 
when utilizing the RFID signals [26]. The optical 3x3 
gesture sensor described in [32] is reported to recognize 10 
gestures with the accuracy of 98%. The classifier of this 
sensor was trained and evaluated for differentiated ambient 
light conditions, which were divided into two general 
categories, namely light and dark. However, the impact of 
incident ambient light angle changes on the gesture 
recognition accuracy was not investigated in detail in this 
paper. It is important to emphasize that the numbers 
presented for the linear optical sensor regard the detection of 
hand poses. The sensor still needs a higher level classifier 
which would allow to build a set of gestures based on the 
estimated hand localization and 

bsequent sampling cycles [37].  
An accurate detection of the position of hand fingers in 

reference to the sensor face for different lighting conditions 
could be very important for dynamic gesture recognition. 
Two parameters were investigated: longitudinal position of a 
hand determined by COG and distance from the sensor face. 
The x position was calculated for an obstacle, whereas the 
expected value was 0 cm (a pose above the center of the 
sensor). The average value of the COG parameter for the φ 
rotations in weak and strong lights were 0.08±0.56 cm and 
0.02±0.36 cm, respectively. The average values of the 
calculated position of an obstacle in θ angle in weak and 
strong ambient light conditions were 0.13±0.21 cm and 
0.07±0.14 cm, respectively. The significantly lower standard 
deviation of the position in the θ rotations can be attributed 
to the fact that the angle between the elongated part of the 
obstacle and the light source direction did not change in this 
experiment. The observable shifts to positive and negative 
values of the COG in the φ rotations are caused by the shift 
of the shadow of an obstacle. It demonstrates that the 
calculated position of fingers in the passive mode strongly 
depends on the mutual location of the sensor and the light 
source. However, the feature of continuous hand pose 
localization in relation to the sensor, as in [27], makes the 
linear gesture sensor an attractive solution among other 
basic sensors. It is a considerable advantage over 

nsors that support only discrete gestures [11,29,32]. 
The pose recognition accuracy in the distal characteristics 

performed in weak light and in favorable conditions (sensor 
perpendicular to light source direction) showed that a pose 
can be recognized even from the distance of 10 cm. On the 
other hand, very strong light (above 1800 lux) causes that at 
the distance of 4 cm the shadow pattern becomes very weak 
and all of the PDs saturate (diff parameter goes to 0 V). The 
recognition of the pose in such strong light occurred to be 
possible only at the distance of 1 cm. Therefore, the 
elaborated passive mode classifier for the
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igation of this problem is an implication for 
fut

3.78 mA in the 
pa

ge

erates with the 40Hz 
fre

ould operate basing on the 
proposed GRS scheme (Fig. 15). 

reliable solution for very strong lights. 
Initially, in order to find the optimal condition for 

switching between the passive and active operating modes 
of the sensor, the J48 classifier from the Weka software was 
applied. The ambient light conditions were represented by 
the max(DF) parameter and were classified as one of the 
three classes: dark, bright and too bright. The optimal 
threshold Tmax was equal to 0.387 V and divided the light 
conditions with the accuracy of 86.36%. However, due to 
the asymmetry in the consequences of wrong classification 
of classes dark and bright, the sensitivity and specificity 
analysis was utilized. Additionally, the too bright class was 
rejected from the investigation as there were more correctly 
classified samples with the max parameter in the saturation 
region than the overall number of assigned samples of the 
class too bright. Therefore, the problem was solved for the 
binary classifier. The new threshold value of Tmax was 
automatically found as 0.6 V and the sensitivity and 
specificity of the new classifier were 84.11% and 88%, 
respectively. In situations where the max(DF) parameter 
reaches the saturation region, the sensor can raise an alarm

 indicate that pose recognition results may be inaccurate. 
The new threshold value ensures the optimal balance 

between the minimization of the number of poses presented 
in true dark conditions classified as bright (False Negative) 
and true bright conditions classified as dark (False Positive). 
Poses presented in the conditions from the FN category are 
the most likely to be missed as the light pattern obtained by 
the PDs would be very flat (low ambient light level and 
weak shadow). Poses presented in the conditions from the 
FP category could be detected if the value of the baseline 
caused by the ambient light was lower than the intensity of 
the LEDs light reflected from a hand. Therefore, the 
utilization range of the active mode can depend on ambient 
light conditions and distance of a hand to the sensor. A more 
detailed invest

ure works. 
The typical power utilization of the basic active gesture 

sensors is well under 1 W like in the Okuli device, which 
can be reduced to circa 100 mW [9] or 

rtially open cavity package sensor [11].  
Most of the basic passive sensors often require a few 

orders of magnitude less current to operate. The 2x2 PIR 
sensor requires less than 50 μW for the operation [30]. The 
power consumption of the wireless signals utilizing AllSee 
sensor was measured for two types of prototypes. The ADC-
based prototype uses 28.91 μW and analog-based one needs 
only 5.85 μW for the detection of 15 gestures per minute 
[26]. The average current consumption of a single PD of the 
considered optical linear gesture sensor is at the level of 1.1 
mA. Taking into account that D=1.5%, the total current 
consumption of the PDs of the sensor is 132 μA (660 μW). 
In the active operating mode of the linear sensor, the total 
current was estimated at the level of 2.02 mA (10.1 mW), 
but the PD consumption was considered as the least 
favorable (1.7 mA) due to the catalogue note [36]. Having 
stated that the single PD current consumption is 1.1 mA, the 
active operating mode could utilize on average 1.98 mA 
(9.91 mW). Therefore, switching from the active to the 
passive operating mode leads to the reduction of the power 
utilized by the optoelectronic elements of the linear sensor 

by 93.34%. The power utilization of the whole sensor can be 
reduced by application of different types of photodiodes as 
well as by designing the sensor for lower operating voltages. 
The measured current utilization of the applied 
microprocessor during the experiments was 5.17 mA (25.85 
mW) during the data processing. In future studies, after the 
introduction of algorithms for the recognition of dynamic 

stures, more power-effective processor will be considered. 
Since switching between the active and the passive 

operating modes of the sensor relies only on the value of 
max(DF), the decision regarding the utilization of the LEDs 
does not require much computation. For the hardware 
utilized in the linear gesture sensor, the time required for the 
decision (switching condition) and additional sampling was 
measured. The time between the completions of the passive 
and active operating mode samplings (separated by the 
computation of the switching condition) was approximately 
500μs. Therefore, the choice of the optimal operating mode 
while the gesture is performed should not affect the 
performance of the sensor as it op

quency (25ms time interval) [36]. 
Considering just one sampling per period (in the active or 

passive mode) the linear sensor c

sd(DF)>Tsd

Start

Features 
extraction

YES (bright)

DF sampling 
(using  current 

mode)

max(DF)>Tmax

Pose analysis

Sequence 
analysis

YES

NO (dark)

NO

Set current 
mode to PM

Set current 
mode to AM

Pose
classification

Gesture
analysis

Gesture
capture

Gesture
recognition

(outputs the label
of recognized gesture)

always

 
Figure 15. Simple scheme of the controller of the GRS for the linear sensor. 
AM is the active mode, PM is the passive operating mode of the sensor. 
max(DF)>T is the criterion for evaluating ambient light conditionsmax  (dark 

 bright). sd(DF)>Tor sd is the criterion if to analyze given data frame. 
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automatic detection of different static and dynamic gestures. 

UIST), 2008, Monterey, pp. 
201-204. doi:10.1145/1449715.1449746 

According to the presented scheme of a GRS, note that 
the current operating mode of the linear gesture sensor needs 
a default setting to perform an initial sampling after the 
sensor is turned on. Later, the evaluated ambient light 
conditions (dark / bright), determine the sampling mode at 
the next sampling cycle, the level of a Tsd threshold (it is 
different for each mode) and the utilization of the proper 
pose classifier in the Pose analysis  

REF

assification stage (pANN or aANN). 
Considering the importance of contactless gesture sensors 

for wearable mobile devices industrial activities have to be 
taken into account. In this field workers (like mechanic, 
serviceman) often have their hands dirty and can find 
themselves in a need of getting insight to some data or 
getting consultation whereas not being able to manipulate 
delicate electronic device. Touchless interactions can be 
considered also in healthcare applications. In this field a 
physician (or other worker) using a wearable device should 
avoid any unnecessary contact in order to maintain his hands 
sterile and septic safe [39], e.g. during a surgery. Other 
touchless methods, for more public interaction (unlike the 
optical linear sensor utilized in this work) should be 
considered to substitute e.g. touch screens in crowded places ania, 22-24 

June 2017, pp. 643-646. doi:10.1109/EHB.2017.7995506 
[6] T. Kopinski, U. Handmann, "Touchless Interaction for Future Mobile 

Applications," in Int. Conf. Comput. Netw. Commun. (ICNC), Work. 
Comput. Netw. Commun. V. CONCLUSION 

The accuracy of the hand pose recognition by the pANN 
classifier in favorable conditions was evaluated to be very 
high. Yet other orientations of the linear optical sensor were 
investigated as well. In the passive operating mode the 
sensor proved unable to operate properly not only in dark 
conditions (which is obvious), but also in strong light 
conditions (strong shadows, saturation of PDs). In this 
study, the maximum value of the DF was considered a good 
measure to decide when to switch between the passive and 
the active operating modes. Switching can be automatically 
performed whenever certain (learned) threshold value (Tmax) 
is reached. It was also showed that to increase the accuracy 
of the pose detection, such threshold value could be shifted 
to delegate some uncertain lighting conditions to the active 
mode. This could slightly increase the p ption 

 Intell. 
Syst. 15, 2015, pp. 186-191. doi:10.5391/IJFIS.2015.15.3.186 

[13] A. Withana, R. Peiris, N. Samarasekara, S. Nanayakkara, "zSense : 
Enabling Shallow Depth Gesture Recognition for Greater Input 
Expressivity on Smart Wearables," in CHI ’15 Proc. 33rd Annu. 
ACM Conf. Hum. Factors Co

t the accuracy could be also higher. 
The accurate recognition of a hand pose and the capability 

of localizing it in relation to the sensor can be used to define 
several dynamic gestures like: a finger moving from left to 
right; two fingers shaking in front of the sensor an  many E Int. Conf. on, Las Vegas, 

2014. doi:10.1109/ICCE.2014.6775911 
[15] J. Kim, J. He, K. Lyons, T. Starner, "The Gesture Watch: A wireless 

contact-free Gesture based wrist interface", in Proc. of the  Int. Symp. 
on Wearable Computers, ISW

hers. This will be the subject of a further research. 
This work gives evidence that the passive operating mode 

of optical gesture sensors can be considered in a certain 
range of ambient light conditions instead of the more power 
hungry active operating mode. The very significant current 
demand reduction of the sensor in the passive mode can help 
mobile devices utilizing the gesture sensor, e.g. smart 
glasses, live for a longer time, withou nt 

2

duction of the performance of the sensor.  
In the future works, instead of the ensemble of classifiers, 

also one universal classifier could be trained for the data of 
both of the operating modes and compared with the 
remaining two, already trained. Yet another implication for 
further research would be to consider the high performance 
mode of the sensor relying on the sampling of both active 

and passive mode DF in one sampling cycle. Understanding 
the changing light conditions and possible accuracies of 
estimation of parameters such as longitudinal position, 
distance, pose category, etc., could be crucial for the 
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