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1Abstract—The potential for the usage of energy exponents 

in motion detection from video sequences is explored. The 
wavelet domain was chosen for the research due to the 
optimality of Hilbert’s space for energy calculations and 
Parseval’s equation for energy equivalence between domains. 
Five algorithms were considered: wavelet energy motion 
detection algorithm based on wavelet pairs and buffer, listed in 
the references, and four which are the contributions of this 
paper: modification by the application of different wavelet 
pairs, a modified algorithm without buffer, a modified 
algorithm without buffer and pairs, newly developed 
algorithms for energy exponents with and without buffer, but 
with wavelet pairs. The considered algorithms are background 
subtraction algorithms modified not to use pixels values, but 
rather energy/energy exponent backgrounds and the current 
situation models. These models are described by wavelet 
descriptors, the introduction of which is the contribution of this 
paper. They are compared by standard statistical criteria and 
execution time. The results suggest that an increase in the 
energy exponent decreases precision, recall and F-measure. 
However, the percentage of correct classifications remains 
almost constant. Higher exponentials reduce noise, but are 
more susceptible to shadows, the waving tree effect and similar 
abnormalities. Algorithms without buffers are less robust to 
illumination changes. 
 

Index Terms—discrete wavelet transform, image motion 
analysis, morphological operations, motion detection, wavelet 
coefficients. 

I. INTRODUCTION 

Energy methods are widely used in signal and image 
processing (i.e. [1 - 6]). The most popular fields of research 
are image processing and analysis. Research has shown that 
the application of energy methods and algorithms in these 
fields provides simple and efficient algorithms yielding 
satisfactory results. For example, energy can be used to fuse 
images [1, 7], detect motion [2], or in biometrics for security 
purposes [8]. Energy-based measurement of visual quality is 
presented in [3]. Improvement of edge preservation based on 
wavelet Ginzburg-Landau energy is covered in [9]. 
Reference [8] uses wavelet energy for palmprint 
identification. Wavelet energy is used in fields unrelated to 
image processing, such as in analysis of stock data [10], 
power quality signal classification [11], biomedical signals 
such as snore classification [12] or epilepsy seizure 
detection [13]. Gait energy is used for human identification 
in [4]. Wavelet energy is used in damage detection and a 
system identification approach is presented in [5]. Vibration 
signal analysis could also be performed by energy methods 

[6]. Wavelet packets are used to increase the reliability of 
analysis. 

 
 

Although a number of papers dealt with the issue of 
motion detection in video sequences, the powers 
(exponents) of energy [14 - 18] were not used in any of 
them. Therefore, this research is original in the sense that 
the usage of energy exponentials has never been reported 
before. Our intention is to find out why, by using statistical 
measures to compare the performance of various energy 
powers. Since there are no publicly available wavelet 
motion detection algorithms for energy exponents, we 
developed and used them to draw conclusions.  

The paper is organized as follows. The second section 
gives the mathematical background. The working hypothesis 
is set. The third section describes the algorithms used and 
their modification for purposes of this paper. Differences are 
explained. The fourth section presents the results. Based on 
these results, propositions are developed. Finally, 
conclusions and discussion are given. 

II. MATHEMATICAL BACKGROUND 

An Lp space may be defined as a space of functions for 
which the pth power of the absolute value is Lebesgue 
integral. The p-norm in discrete case can be expressed as (1) 
[19]: 
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or in the continuous domain as (2): 
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Higher exponents can be expected to produce an effect 
like an H norm in systems analysis. This norm extracts the 
peak of i.e. error signal or transfer function response. It can 
be defined as (3): 
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where supremum can be replaced with maximum in 
engineering practice. In essence, the supremum should be 
used, because the maximum could yield an incorrect result, 
since it provides a solution even when f  . Hardy space 
(H) has a symbol  due to the fact that maximum amplitude, 
depending on frequency, can be written as in (4) [10 - 21]: 
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The minimization of the H norm minimizes errors of the 
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frequency component with maximum amplitude. Other 
components are annulated in power operation. 

Why is the calculation of the supremum relevant for 
motion detection? Because we could hope to maximize a 
parameter (or minimize an error in i.e. the motion mask), 
such as precision or percentage of correct classifications or 
similar. So, why not use it? This will be illustrated on the 
example of energy differencing in the wavelet domain in the 
Results section.  

The nature of Hilbert space makes it convenient for 
energy methods. For example, wavelet coefficients should 
only be squared to obtain an energy measure. In case of 
motion detection, energy differencing (between current and 
referent energy representation) is actually least-squares (LS) 
method, which is optimal in Hilbert space [22]. Fourier 
transform (FT) is known to be optimal for LS [22]. The 
wavelet transform (WT) can be interpreted through FT and 
the same result can be achieved. 

Wavelet transform is convenient for energy calculations 
in image space due to Parseval’s relation. This relation can 
be transformed to DWT (Discrete WT) and expressed with 
(5) as in [23]: 
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where: N denotes the sampling frequency, f(t) the 
analysed signal, a approximation coefficients, and d detailed 
coefficients. Equation (6) expresses the energy contained in 
approximation coefficients, while energy contained in the 
detailed coefficients is expressed by equation (7).  

Research in [24] proved that the classical Haar bases are 
optimal with respect to the ∞-norm of the reconstruction 
error. The above considerations lead to the conclusion that 
the H norm could produce better results. This is formulated 
as Hypothesis. 

Hypothesis 1. Motion detection, as the difference between 
the reference and current frame or model, generates an error 
signal. If the error signal is strong, there is a high probability 
of an object in motion. Weak error signal is indicative of 
high likelihood of noise. Hence, the H norm is expected to 
suppress the noise signal and make the motion signal more 
segmented and contrasted to the rest of the image/model 
difference. If this signal is binarized, the result is (8): 
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This hypothesis will be tested in the Results section by 
increasing the energy powers to establish trends. 

III. MOTION DETECTION ENERGY ALGORITHMS AND 

MODIFICATIONS FOR HIGHER POWERS  

In order to detect motion in video sequences, a modified 
background subtraction method was used. All proposed 

algorithms are background subtraction algorithms. The 
modification is that, in contrast to the classic background 
method, no pixel values were used, but energy or energy 
exponent values of the wavelet approximation coefficients 
that could be linked with the corresponding pixels. 

Video sequences are in RGB (red-green-blue) colour 
space, which is the space of further work without 
transformation of other colour spaces. Hence, all further 
formulas are applied to all 3 colour components separately, 
with the exception of the identification of the maximum, 
which is the same for all 3 colour-components. All matrixes 
are thus actually realized in 3D in the Matlab environment. 
The modified algorithm has similarities with [25], but there 
are some simplifications in the sense of less morphology and 
thresholds, there are no wavelet pairs, but only one wavelet, 
and there are no energy buffers. Furthermore, it is compared 
with the same algorithm as in [25], and with the modified 
[25] in order to use powers of energy and compare the 
results. 

Algorithms considered are (in summary):  
- Algorithm 1: the wavelet energy motion algorithm 

from [25], and modification with inclusion of lazy-
haar, db2-db8 combinations instead of only db2-db7 
(wavelet designations are taken from Matlab), 

- Algorithm 2: a new algorithm which does not include 
wavelet pairs, but single wavelet, does not have 
energy buffer, but does use energy and mean square 
error (MSE) method for motion detection, 

- Algorithm 3: a modified algorithm 1, which includes 
pairs, but does not include an energy buffer, 

- Algorithm 4: a new algorithm, which includes 
wavelet pairs, does not include an energy buffer, and 
incorporates energy exponents. Motion detection is 
executed by the modification of the MSE to 
exponents’ differences, and 

- Algorithm 5: a new algorithm, which includes 
wavelet pairs, energy exponent buffer, and energy 
exponent differences for motion detection. 

Test algorithms have common basics and differences, and 
can be described as follows: 

Step 1: Initialization and background energy calculation 
are included in all five algorithms.  

Background energy is calculated as the average energy of 
the first 20 frames in a video sequence (the algorithm from 
[25] can use any number). The energy of a frame is obtained 
by a two-dimensional lifting wavelet transform (2D-LWT) 
and the square of the wavelet approximation coefficients. 
Finally, the obtained energy is normalized. This process is 
performed at the second level of wavelet decomposition. 
The procedure at the second level of decomposition can be 
expressed with several equations. The first is (9):  

  (9) 
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where ap_coef is the sum of approximation coefficient 
matrixes with the quarter of the size of the original frame, 
and api the matrix of the approximation coefficients of the i-
th frame in the training sequence. The expression length 
(bg_ref) denotes the length of the training sequence, which 
can vary depending of the availability of the non-dynamic 
part of the sequence, and time available for training. The 

 62 

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:13:07 (UTC) by 44.200.179.138. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 17, Number 2, 2017 

background energy model is defined by (10): 

 
)_(

_ 2

refbglength

coefap
Ebg   (10) 

where Ebg is the matrix of background energy at spatial 
positions with the quarter of the resolution of the original 
frame. This matrix is normalized by the maximum matrix 
member (11): 
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The procedure from (9) to (11) is used in algorithm 2, 
developed specifically for this paper. Other algorithms use 
ap_coef1 and ap_coef2 for 2 wavelets in a pair. Total 
ap_coef^2 (from (10)) is the sum of energies of wavelets 1 
and 2.  

The result of (11) is called the wavelet energy descriptor 
of the background (WEDB). This descriptor could be used 
in other algorithms. 

Step 2: The calculation of the energy of the current frame 
is used in algorithms 2, 3, and 4. Algorithm 1 uses the 
current energy buffer, which is the average energy of L 
frames, including the current frame and L – 1 previous 
frames. This means that instead of ap_coef_current in (12), 
it uses average energy. Algorithm 5 uses a current energy 
exponent buffer, which is the average energy exponent of L 
frames, including the current frame and L – 1 previous 
frames instead of ap_coef_current in (12). 

The calculation is performed by equation (12), and the 
obtained result further normalized by (13):  

  (12)  2__ currentcoefapEcurrent  
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Thresholding of Ecurrent_norm with minimaxi threshold 
selection scaled with 1/4. The minimaxi selection uses a 
fixed threshold chosen to yield minimaxi performance for 
mean square error against an ideal performance. The 
minimaxi estimator realizes the mean square error (MSE) 
obtained for the worst function in a given set. By this 
criterion, T1 is obtained. This threshold is scaled to obtain 
the final threshold (14): 
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and current normalized energy is expressed with (15): 
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The thresholding operation is performed in Matlab using 
the soft method. The energy descriptor of the current scene 
situation is expressed by (15) and is called a wavelet current 
energy descriptor (WCED). 

Step 3: Motion detection by energy difference is 
performed in algorithms 2 and 3. Algorithm 1 uses the 
difference of current buffer energy and background energy 
to obtain Ediffer in (16). Algorithms 4 and 5 use the 
difference of energy exponents to obtain Ediffer in (16). 
Furthermore, algorithm 5 makes use of the current buffer of 
energy exponents. 

Energy differencing can be expressed with (16): 

 normbgnormcurrentdiffer EEE __   (16) 

This step differs from [25], because there is no energy 
buffer. The energy buffer contains the average energy of 
several consecutive frames and has the function of the 
current frame in equivalent step as (16). Buffer has an 
advantage in illumination variation suppression, but detects 
motion with a small time delay. The length of the buffer is 
denoted with L in the Results section. L = 0 means that there 
is no buffer. On the other hand, if i.e. L = 3, it means that the 
current and the two preceding frames are used to calculate 
buffer energy. 

The result of (16) is thresholded similar to Ecurrent_norm. 
The procedure results in the obtainment of optimal 
minimaxi threshold T2. In order to investigate the effect of 
this threshold on the final results, the threshold is scaled by 
different numbers: 
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where thr varies from 1 to 8 with 0.05 step. In the Results 
section, the best results are obtained by different thr, which 
is discussed further. The thresholding yields (18): 
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where Ediffer represents motion (sometimes referred to as 
motion energy). 

Step 4: Binarization of the energy difference (equivalent 
of motion mask) is performed in algorithms 1, 2 and 3. 
Algorithms 4 and 5 use the binarization of the energy 
exponent difference. 

Binarization is expressed by (19): 
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where Ediffer_mask represents the motion mask (equivalent, 
not in the classic sense).  

Note that in (10) the actual nature of the noise is 
unknown, because we are in the process of obtaining the 
reference background energy model. Furthermore, averaging 
is also a method of noise-removal. On the contrary, 
denoising is used in (15), because there is only one current 
frame.  

Step 5: Morphological filtering is performed by all 
considered algorithms.  

Morphological filtering is performed with the following 
expression (20): 

 
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where Ediffer_mask represents a binarized motion mask 
matrix (Ediffer), and MO represents the morphological 
opening kernel. The same procedure is performed for all 
three colour channels. MO operation is used to suppress any 
artefact pixels caused by noise in a binarized motion mask 
matrix. 

Step 6: The motion mask is transformed to original size 
by dyadic upsampling and morphological dilatation. These 
operations are repeated twice to obtain the original size. The 
dyadic upsampling is performed by a mixed procedure, in 
which both rows and columns are upsampled. This step is 
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performed by all the considered algorithms instead of classic 
inverse LWT. 

 
(a) 

 
(b) 
Figure 1. General workflow of the developed algorithm for energy 
exponents: (a) Algorithm 4, (b) Algorithm 5 
 

Step 7: Statistics are calculated for all thresholds and put 
into vectors, facilitating access to the result for a specific 
threshold. The statistics parameters are obtained by 
comparison with the ground truth results available in the 
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public dataset (IEEE Workshop on Change Detection – 
dataset for 2012 Conference, available at: http://wordpress-
jodoin.dmi.usherb.ca/dataset2012/). This step is performed 
in all considered algorithms. 

The general workflow of Algorithm 4 is presented in Fig. 
1(a), and Algorithm 5 in Fig.1(b). 

Algorithm variations are performed in step 1, equation 
(10), and step 2, equation (12), where square is replaced 
with other exponents (from 3 to 12), or generally, the 
procedure performed can be described with (21) and (22): 
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where n =2, 3, ... 
The expression (21) is called wavelet energy exponent 

background descriptor (WEEBD). The expression (22) is 
called wavelet current energy exponent descriptor 
(WCEED). 

An energy buffer can be used in the general scheme of 
our algorithm. It is easily programmable with small 
differences. Differences between the algorithm with and 
without accumulator are:  

- In step 3, instead of  (16), we have: 

 normbgraccumulatodiffer EEE _  (23) 

- Buffer should be initiated before step 2. 
- New step 2 is similar to original step 2, with the 

difference that current energy is added to the 
accumulator, after which new average accumulator 
value is obtained, which is used instead of the current 
energy for differencing in foreground segmentation 
step 3. 

IV. RESULTS 

All experiments were performed on a Dell notebook with 
Intel® Core™ i5-4200U CPU @1.6 GHz 2.3 GHz, RAM 4 
GB, 64 bit Windows 7 Professional.  

Considering the sheer number of wavelet families, it 
should be noted that, due to results in [24], the Haar wavelet 
was used for the preliminary experiments. Wavelet choices 
are expanded later in the research process to include db2-
db8 (combination of execution speed and edge detection 
with more vanishing moments), and haar-lazy (for execution 
speed) pairs.  

For comparison purposes, algorithm from Section 3 and 
the corresponding modified algorithms are compared with 
statistical measures [14], [25 - 26] expressed with equations 
(24 - 28): 
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where PCC is the percentage of correct classifications, TP 
true positives, TN true negatives, FP false positives, FN 
false negatives. 

The large quantity of data obtained in the research 
prevents us from presenting them all. Therefore Tables III to 
VI show only top 10 results.  

Results of the preliminary research with the developed 
algorithm 2 are shown in Tables I and II.  

Results in Table III are obtained by algorithms 1, 3, 4, 
and 5.  

Results in Table IV are obtained by algorithms 1, 4, and 
5. Results in Table V are obtained by algorithms 1 and 5. 
Results in Table VI are obtained by algorithms 1 and 5. 

Table I presents experimental results for the dataset 
(IEEE Workshop on Change Detection – dataset for 2012 
Conference, available at: http://wordpress-
jodoin.dmi.usherb.ca/dataset2012/), sequence “Park”. 
Wavelet energy (square of wavelet coefficients) is denoted 
with E in the table. 

PCC can be seen to remain almost constant, no matter 
what energy powers are used. This can be a bit confusing. If 
only PCC is observed, one could arrive at the wrong 
conclusion – that nothing is happening. However, other 
statistical measures (precision, recall and F-measure) can be 
seen to deteriorate for higher powers. This can only be 
explained if TP decreases (which is directly proportionate to 
precision, recall and F), while TN increases. 

Based on observations from Table I, we arrive at 
conclusions summarised as Proposition 1 and 2. 

Proposition 1. When using energy powers, PCC remains 
constant. 

Proposition 2. The use of energy powers causes an 
increase in TN and a decrease in TP. 

Remark 1. Proposition 2 is math, because precision, recall 
and F proportionally depend on TP. PCC depends on TP + 
TN, which is constant. If TP is smaller, and the sum is the 
same, TN must increase. 

Observation 1. Maximum precision, recall, and F-measure 
decrease with the increase of power. 

The question is why does TP decrease with the increase 
of powers. It might be due to the increase of the effective 
threshold or increase of noise. Should we adapt the 
threshold to increase TP? Or, is this irrelevant, since the 
threshold corresponds to the value of the differencing matrix 
members? 

To further investigate relationships between energy 
powers, we used the absolute difference of the wavelet 
coefficients, which can be expressed as E  (equation (4) is 
changed so that power is p = 1 instead of 2). Although the 
result for maximum PCC is improved by mere 0.03%, it is 
an improvement nevertheless. Precision is 8.97% higher 
than when wavelet energy is used. The recall is improved by 
7.86%. A great surprise is the improvement of the F-
measure by 41.72%. Execution speed is increased by 3.55% 
to 24.85 FPS (frames per second). It seems that absolute 
difference yields better results than energy differencing or 
any other power. 
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TABLE I. RESULTS OF THE EXPERIMENT: RELATIVE CHANGE IN 

STATISTICAL MEASURES (HAAR WAVELET, REFERENT ENERGY IS 100%, 
“TRAFFIC” SEQUENCE; MAXIMUM VALUE, ALGORITHM 2) 

 PCC Precision Recall F FPS 
E 100 100 100 100 100 

3E  99.9795 75.8791 50.1282 51.5679 95.4699 

E2 99.0712 62.1838 19.1321 35.8885 95.2491 
5E  99.9795 45.2807 7.6956 21.4286 92.5967 

E3 99.9795 41.8569 3.8478 12.5436 95.2016 
7E  99.9795 40.6231 2.3087 9.2334 97.0526 

E4 99.9795 27.7298 1.5605 7.4042 95.0066 
9E  99.9795 23.5040 0.9833 5.3136 96.5913 

E5 99.9795 21.8384 0.7482 4.8780 97.4497 
E6 99.9795 19.7100 0.4061 3.0488 97.9177 

 

Maximum PCC is obtained for various thresholds, as seen 
in Table II. A further inconvenience is that the maximums of 
various statistical measures are not obtained for the same 
thresholds. This means that a common criterion for 
maximum performance cannot be established, but only an 
average threshold. 

 
TABLE II. THRESHOLDS FOR MAXIMUM STATISTICAL PARAMETERS 

(“TRAFFIC” SEQUENCE, HAAR WAVELET; FOR THE CORRESPONDING 

MAXIMUM VALUE, ALGORITHM 2) 
 PCC Precision Recall F FPS 

E 3 3 8 3.7 1.2 
3E  1.75 2.85 8 8 8 

E2 2.2 3.05 8 8 5 
5E  2.55 3.45 8 8 3.1 

E3 3.05 3.1 7.7 - 8 7.7 3.05 
7E  3 3.65 8 8 6.35 

E4 3.05 - 3.2 3.8–3.9 7.8 – 8 7.65 3.25 
9E  3.45 - 3.5 4.4 8 7.95 1.3 

E5 3.95 4.35 7.9 – 8 7.75 6.45 
E6 3.95 - 4.5 5.45–5.85 7.25 – 8 7.25–7.3 6.3 

 

An increase in energy power means wider range 
thresholds and worse statistical criteria. For E6, all statistical 
parameters have the range of thresholds. Ranges have 
intersection for F and recall. Other measures do not have 
intersections in threshold ranges. 

After these preliminary experiments, additional 
experiments were performed using two wavelet pairs instead 
of one and buffer variations, and an experiment in which no 
buffer was used.  Finally, an additional sequence is used 
(sequence “PeopleInShade”, IEEE Workshop on Change 
Detection – dataset for 2014 Conference, available at: 
http://wordpress-jodoin.dmi.usherb.ca/dataset2014/). 

Results for sequence “PeopleInShade” are shown in 
Tables from III to VI. There represents results obtained by 
modifications in the algorithm from [25].  

 
TABLE III. TOP 10 PARAMETER COMBINATIONS WITH REGARD TO FPS FOR 

SEQUENCE “PEOPLEINSHADE” (ALL TOP-TEN ARE IN HAAR-LAZY 

COMBINATION OF WAVELETS; MAXIMUM VALUE, ALGORITHMS 1, 3, 4, 5) 

L Energy PCC Precision Recall F FPS 
Rank 
FPS 

4 E 0.9236 0.336 0.5771 0.1428 45.40 1 
3 E 0.9236 0.342 0.5753 0.1424 43.839 2 
6 E 0.9236 0.3402 0.5799 0.1433 42.35 3 
5 E 0.9234 0.3328 0.5786 0.143 42.24 4 
0 E 0.9262 0.6181 0.5762 0.1672 38.803 5 
0 5E  0.9221 0.3333 0.0958 0.044 37.96 6 

3 E4 0.9196 0.1864 0.0399 0.0269 37.88 7 
3 E3 0.9199 0.2161 0.0585 0.0335 37.82 8 
0 7E  0.9215 0.2895 0.0477 0.0347 37.78 9 

0 E2 0.9226 0.4053 0.1585 0.0614 37.77 10 

TABLE IV. TOP 10 COMBINATIONS OF PARAMETERS WITH REGARD TO PCC 

FOR SEQUENCE “PEOPLEINSHADE” (ALGORITHMS 1, 3, 4, 5) 

L Wavelets Energy PCC 
Rank 
PCC 

0 haar-lazy E 0.9262 1 
3 haar-lazy E 0.9236 2 
4 haar-lazy E 0.9236 2 
6 haar-lazy E 0.9236 2 
4 haar-lazy 3E  0.9235 5 

5 db2-db8 E 0.9235 5 
5 haar-lazy E 0.9234 7 
0 haar-lazy E2 0.9226 8 
0 haar-lazy 3E  0.9224 9 

3 haar-lazy 3E  0.9224 9 

 

It can be seen that the most efficient is the original 
algorithm form [25], and modifications are at 6th place in 
Table III, 5th place in Table IV, 7th place in Table V, 1st 
place in Table VI. 

 
TABLE V. TOP 10 COMBINATIONS OF PARAMETERS WITH REGARD TO 

RECALL AND F-MEASURE FOR SEQUENCE “PEOPLEINSHADE” 

(ALGORITHMS 1 AND 5) 

L Energy Wavelets Recall F 
Rank 
recall 

Rank 
F 

6 E haar-lazy 0.5799 0.1433 1 2 
5 E haar-lazy 0.5786 0.143 2 3 
4 E haar-lazy 0.5771 0.1428 3 4 
0 E haar-lazy 0.5762 0.1672 4 1 
3 E haar-lazy 0.5753 0.1424 5 5 
5 E db2-db8 0.5365 0.1375 6 6 
4 3E  haar-lazy 0.3133 0.104 7 7 

3 3E  haar-lazy 0.308 0.1012 8 8 

6 3E  haar-lazy 0.3073 0.1011 9 9 

5 3E  haar-lazy 0.3071 0.101 10 10 

 

Best speed is obtained with L = 4 in haar-lazy pair and 
with energy without powers (square of coefficients), namely 
45.4 fps in setup configuration in Matlab.  

A higher F-measure is obtained without buffer, also in the 
haar-lazy, and with energy without powers, namely 0.6181.  

The highest recall is obtained by L = 6, haar-lazy, energy 
without powers, namely 0.5799.  

The highest precision is obtained with the db2-db8 
combination, L = 5, and E4.5, which is 0.914. The runner-up 
is haar-lazy without buffer, which is 0.6181, and energy 
without powers.  

PCC is the best with the same parameters, namely 0.9262. 
 

TABLE VI. TOP 10 PARAMETER COMBINATIONS WITH REGARD TO 

PRECISION FOR SEQUENCE “PEOPLEINSHADE” (ALGORITHMS 1 AND 5) 

L Energy  Wavelets Precision 
Rank 

precision 
5 9E  db2-db8 0.914 1 

0 E haar-lazy 0.6181 2 
4 3E  haar-lazy 0.4336 3 

0 E2 haar-lazy 0.4053 4 
3 E haar-lazy 0.342 5 
6 E haar-lazy 0.3402 6 
4 E haar-lazy 0.336 7 
0 5E  haar-lazy 0.3333 8 

5 E haar-lazy 0.3328 9 
5 E db2-db8 0.3308 10 

 

Fig. 2 shows the comparison of various energy powers 
through the motion mask for the same threshold and frame 
1120. It is only a random example of algorithm operation. 

As seen in Fig. 2, shadows and wave-tree effect are 
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supressed with the increase in powers, as is foreground 
detection. Therefore, an increase in power is in itself useless 
for precise motion detection, but can be used in combination 
to reduce a part of the negative phenomena occurring in 
outdoor traffic video surveillance. This is merely an 
observation, not mathematical proof, and must be taken with 
reservations. Further evaluation in this area could be 
performed in new researches. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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(g) 
Figure 2. Comparison of various powers for “Traffic” sequence: (a) the 
original frame; (b) energy power = 1 (normal energy); (c) power = 3/2; (d) 
power = 2; (e) power = 3; (f) energy power = 6; (g) ground truth 
 

Three frames and the ground truth for two frames with 
motion are shown in Fig. 3 to illustrate the complexity of 
sequence “PeopleInShade”. It is given in order to access the 
histogram, contrast, etc. Objects in motions are people. The 
scene is problematic owing to the number of shadows 
appearing and disappearing during the sequence. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
Figure 3. “People in Shade” sequence: (a) the first frame; (b) frame 333; (c) 
ground truth for the frame 333; (d) frame 1110; (e) ground truth for the 
frame 1110 (video sequence is publicly available at: http://wordpress-
jodoin.dmi.usherb.ca/dataset2012/) 

 
Table VII shows examples of the execution times for two 

wavelets through all powers examined. It is measured with 
Matlab tic-toc function. Considering Windows time 
measurement problems, these results can obviously be 
considered merely framework information, rather than exact 
measurements. However, algorithms researched can be 
concluded to be capable of use in real-time. 

 
TABLE VII. REAL FPS PERFORMANCE (TIME IS RECIPROCAL FROM FPS) 

FOR THE SEQUENCE “PEOPLE IN SHADE” 
Power FPS for Haar FPS for db2 

E 46.0410 40.6795 
3E  38.5919 37.6956 

E2 41.7577 37.6187 
5E  42.0883 37.6564 

E3 46.7987 37.5902 
7E  46.8941 37.6094 

E4 46.7534 38.3838 
9E  46.8692 38.0920 

E5 46.9659 37.7700 
E6 46.6568 37.9582 

 

Finally, we will shortly discuss the dependence of motion 
detection accuracy on illumination variations. This is a 
serious issue addressed by many authors [16, 27-30]. Fig. 4 
shows the results of experimental measurement of 
illumination variations. The experiment was performed 
under indirect sunlight on a sunny day. The scene is static 
without motions. Hence, the average pixel value should be 
constant. However, the results show variations in the 
illumination of the natural light source. 
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Figure 4. Experimental measurement of illumination variations 
 

Such changes in illumination could intuitively be 
expected to affect frame differencing and background 
subtraction algorithms. Namely, a change in pixel value 
between frames is different from zero. In case of slight 
illumination changes, the changes in pixel value might not 
exceed the motion detection threshold.  

An illustration of the effect of illumination variations on 
the motion mask is shown in Fig. 5. The video sequence is a 
recorded operation of an online algorithm without wavelet 
use, for illustration purposes only. Fig. 5.d shows the entire 
frame as motion, which is not the correct result. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
Figure 5. Illustration of the influence of illumination variations on motion 
segmentation: (a) frame 125 of the experimental video sequence, (b) frame 
129, (c) motion mask for frame 125, (d) motion mask for frame 129 

V. CONCLUSION 

We investigated a novel approach to motion detection 
based on energy exponentials. Based on presented research, 
energy exponentials can be concluded not to produce better 
results than pure energy algorithms. However, the 
development of complex robust methods in which the 
exponential part is used to reduce a part of unwanted effects 
and energy algorithm to detect total motion, which should 
be reduced by the energy exponentials’ part, has potential. 
Higher exponentials reduce noise, but are more sensitive to 
shadows, the waving tree effect and other similar 
abnormalities, which are unexpected and should be 
researched in more detail, together with the possible 
application of the energy exponent algorithms. The results 
reveal which statistical measures yield better and which give 
worse results. The results suggest that an algorithm without 
buffer is less robust to illumination changes (supported by 
[25]). Another contribution of this research is the 
development of WEEBD (21), and WCEED (22). 

A detailed analysis of results leads us to conclude that 
different statistical measures do not have the same threshold 
for the best results. This makes further optimization process 
an interesting and demanding challenge for further research. 
Finally, another set of measures could possibly lead us to 
different conclusions. 
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