
Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

A New Optimized Model to Handle Temporal
Data using Open Source Database

Shailender KUMAR1, Rahul RISHI2
1Department of Computer Science & Engineering, Ambedkar Institute of Advanced Communication

Technologies and Research, Delhi, 110031, India
2Department of Computer Science & Engineering, University Institute of Engineering and Technology,

Maharshi Dayanand University, Rohtak, 124001, India
skumar@aiactr.ac.in

1Abstract—-The majority of the database applications now a

days deal with temporal data. Temporal records are known to
change during the course of time and facilities to manage the
multiple snapshots of these records are generally missing in
conventional databases. Consequently, different temporal data
models have been proposed and implemented as an extension
of the temporal less database systems. In the single relation
model, the present and past instances are stored in a single
relation that makes its handling cumbersome and inefficient.
This paper emphasize upon storing the past instances of the
records in the multiple historical relations. The current
relations will manage the recent snapshot of data. The tuple
time stamping approach is used to timestamp the temporal
records. This paper proposes a temporal model for the
management of time varying data built on the top of
conventional open source database. Indexing is used to enhance
the performance of the model. The proposed model is also
compared with the single relation model.

Index Terms—indexing, object oriented databases, open
source software, query processing, runtime.

I. INTRODUCTION

Time is an important characteristic of the real world.
Extensive efforts have been put by the researchers [1-2] over
the years to develop new techniques to effectively manage
temporal data. Most of the work in this area is focused on
the implementation of the time varying features on the top
of conventional databases. This study is focused on the
implementation of temporal model using open source
database.

Temporal databases support three different time variants
[3] of relations: system versioned, valid time period
relations and bitemporal relations [4]. System versioned
relation uses system time to capture changes made to the
records. Valid time period relation captures the time during
which the record is valid in the real world. The bitemporal
relation [4] uses the union of valid and the system time to
timestamp its records.

The system time is limited to the present and past
instances of the records whereas the valid time includes
future instance as well. There are two different approaches
to append the timestamp in the relation: tuple time stamping
that uses first normal form relations and attribute time
stamping that uses non first normal form relations.

In spite of an extensive growth of the research interest in
the area of temporal databases [5-8], there is no standard

temporal database model till date. As per our knowledge, no
work has been done to propose and implement the tuple
time stamped [9-11] multiple historical relation model using
open source database system. This paper proposes tuple
time stamped multiple historical relation model (TTMHR)
using valid time period as the time dimension to timestamp
the records of the database. The database user is responsible
for inserting the start and end times of the time varying
records. Integrity constraints are imposed on the temporal
data to ensure its accuracy and efficiency. In the proposed
approach, multiple temporal relations are formed for all the
time oriented attributes of the original temporal relation if
their data values are not changing concurrently. Otherwise,
the original temporal relation will remain intact.

The rest of this paper is organized as follows: Section II
briefly highlights the related work on temporal database.
Section III discusses the key issues in relation to the
temporal database modeling. Section IV describes the
proposed conceptual model using tuple time stamping
approach with multiple temporal relations. In this section,
the architecture of the proposed model and various data
manipulation language operations on time varying data are
also discussed. In Section V, the experimental results of the
study are included. Query execution time or runtime is used
to evaluate and compare the performance of the proposed
model with the tuple time stamped single relation model.
Finally in Section VI, we conclude by briefing the
contributions of this paper.

II. RELATED WORK

There are a number of temporal data models that has been
proposed and implemented [10], [12]. Few earlier works
offered the analysis of some modern temporal data models
[1]. The conceptual design of time varying data model
largely focuses on the semantics [13-14], storage, query
processing and implementation.

There are numerous temporal extensions that have been
proposed and implemented by extending the relational data
models [6], [8]. The two different methods to execute these
extensions are tuple time stamping and attribute time
stamping. Majority of the earlier work [2], [6] and [15-17]
in temporal databases employ tuple time stamping approach.
The tuple time stamping approach uses first normal form
relations whereas attribute time stamping uses non first
normal form relations.

Several papers investigated the performance issues of the

 55
1582-7445 © 2017 AECE

Digital Object Identifier 10.4316/AECE.2017.02008

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 12:24:35 (UTC) by 3.235.154.65. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

proposed temporal data models. The work in [1] compared
the performance of the applications developed using in built
logic and the hand coded applications. Atay [4] compared
the attribute and tuple time stamping approaches in
bitemporal data models. The issues related to the
performance of data models using attribute and tuple time
stamping methods are also examined.

Another prominent feature considered in the designing of
time variant databases is time dimension. The three different
alternatives of time used are application or valid time,
system time or transaction time and bitemporal [4].
Application time has been the most commonly used time
dimension in temporal research papers [13]. It includes the
present, past and future instances of records whereas the
transaction time [6] includes only the present and past
instances. Work is also carried out for the application of
temporal logic in the field of artificial intelligence and
robotics [18]. An indexing technique for processing queries
in bitemporal databases is also proposed in Kaufmann et al.
[19]. Data models have also been proposed to address issues
related to indeterminacy [20] in temporal relational
databases.

The tuple time stamped historical relation (TTHR) model
discussed in Halawani et al. [2], [15] uses standard SQL for
implementation of the model. In contrast to this, our work
uses multiple current and history relations for the static and
dynamic attributes. This is done to eradicate the redundancy
caused by the tuple time stamping. Further, indexing on the
non key attributes is applied to improve the query execution
time. Although extensive research work has already been
done in temporal data, the use of open source database in the
implementation is very less [6]. Our research work uses the
most powerful open source database Postgres for the
implementation of the proposed model.

III. PRELIMINARIES

A temporal data model is comprised of the conceptual
tools for describing temporal schema and its integrity
constraints.

A. Temporal Relational Schema

Temporal relation is a collection of time varying and time
invariant attributes. The tuples of the temporal relations are
time stamped with the defined time dimension. Temporal
relational schema is represented mathematically in the
formula (1) given below:

)|,....,,,(321 TAAAAR n
t (1)

Where tR is a temporal relational schema with finite set of

static and dynamic attributes and

denotes the set of valid times. The proper design of the
database Schema is vital in the correct retrieval of data.

1 2 3, , ,...., nA A A A

T

B. Temporal Relational Algebra

 Temporal relational algebraic expression is a
combination of temporal algebraic operators and predicate
symbols that is used in the logical expression to query
temporal database. A temporal relational operator is an
operator that yields temporal relation whenever applied to
the temporal relations. The definitions of temporal relational
operators used in the temporal relational algebra are

different from that of the conventional relational algebra as
they support time element. The temporal algebra is
implemented in such a way that it should not violate any of
the integrity constraints.

C. PostgreSQL

 PostgreSQL is a powerful open source object relational
database management system. The incessant growing
feature list of Postgres includes capabilities like extensive
backend support, high speed performance, security, good
networking support and user friendly interface. It provides a
very active community support, extensive research and
analytics capabilities that make it an obvious choice for the
future research.

Although, major database vendors like Oracle, Teradata
and IBM provide temporal support but Postgres provide rich
temporal data types support as compared to others. It
handles time zones intelligently with a support for ISO 8601
standard. Apart from time zone flexibility, its interval date
and time types like tsrange, tstzrange and daterange has a
capacity of storing an interval of up to 178 million years
with 14 digits precision and measures time at different
precisions. These data types are the best temporal data types
that can be used to store present, past and future instances of
data. It is due to these features of Postgres that it is used as
the tool for the implementation of the proposed model.

IV. PROPOSED MODEL

The proposed temporal model uses tuple time stamping
approach for appending time element to the records. In this
method of time stamping, the tuples of the temporal relation
are time stamped using any of the three variants of the time
dimensions. The different types of time dimension may be
valid time, transaction time or bitemporal. We have used
valid time as the time element in this paper.

A. Architecture of the Model

The architecture of the proposed temporal model is
illustrated in Fig. 1. The model is developed using
postgreSQL database and it is capable of effectively
managing time varying data.

Figure 1. Architecture of the model

The user can interact with the temporal database using
application interface developed using Java NetBeans IDE
version 8.0.2. The application enables the user to perform

 56

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 12:24:35 (UTC) by 3.235.154.65. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

data manipulation operations on both present and historical
data. The database is seen as a collection of current table
and the history table. The current tables store the current
snapshot of data. All the current tables in the database use
tuple time stamping approach [2] to store all those tuples
which are currently valid for the real world. Insertion of new
records is done in current tables only. The history tables
stores the past versions of the data. When the update
operation is applied on the current table, the old values of
the records will be automatically inserted into history table.
All the queries related to the past instances will be satisfied
by the history tables.

Triggers are generally used whenever operations such as
update is being carried out on the present table. In such a
case, the old values of the tuple to be updated moves to the
history table with upper bound of the time_range attribute
set equal to the lower bound of current table updated
time_range. Delete operation is not permitted in temporal
databases.

Tuple time stamping is also applied to the history table. It
uses tsrange data type for the time_range column and upper
bound of this column is equal to the lower bound of the
time_range of the newly updated tuple. The primary key of
the history table is the union of the primary key of the
present table and the time_range attribute of the history
table. B tree indexing is applied on the non key attribute to
minimize the query execution time.

B. Representation of Database

Fig. 2 shows the ER diagram of the proposed database
model. The proposed model distributes the time varying
attributes in multiple relations and the non temporal
attributes are gathered in distinct relation. This is done to
remove the redundancy caused by the tuple time stamping of
the static and dynamic attributes in the original temporal
relation. The user of the database is responsible for inserting
the start and end valid time of the time varying records in
the current table. Integrity constraints are imposed on the
temporal data to ensure its accuracy and efficiency of the
database.

The tables of the current database are named by adding
front as the suffix whereas all the tables of the history
database are named by adding back as the suffix. The
employees and the department tables contain all the
temporal less attributes which do not change over the time.
The primary key of the present tables salaryfront, titlefront,
deptempfront is emp_no whereas the primary key of the
table deptmangfront is dept_no. The primary key of all the
history tables is the combination of the primary key of the
corresponding present table and the time_range attribute of
the history table. The ER diagram also illustrates the
multiplicity of the relationship between the tables.
A trigger functions are used which get activated every time
an update operation is being carried out on the tables of the
current database. This will result into insertion of updated
record in the current table and the movement of earlier
snapshot from the current table to the history table. The start
valid time of the updated tuple in the current table will be
recorded in the history table as the end valid time of the
previous instance.

C. Insert Operation

Insertion operation in temporal database is carried out by
the user entering the new data values for the static and
dynamic attributes. Insertion of new records takes place in
the current relations only. The user will set the valid start
time and valid end time of the time range attribute
time_range.

Figure 2. ER diagram of the Database

Algorithm
INSERT INTO table_name(column1,column2,….,ColumnN,
time_range)
VALUES
(value1,value2,…….valueN,tsrange(date1,date2))
IF (PRIMARY KEY ALREADY EXISTS IN table_name) then
RETURN unique_key_constraint_violation
Go to step 1.
ELSE
RETURN insertion successful
ENDIF

Example:
insert into employees(emp_no, birth_date, first_name, last_
name, gender, hire_date)
values(1,'1994/01/01','axel','blue','M','2014/01/01');
insert into salaryfront(emp_no,salary,time_range)
values (1,10200, TSRANGE ('2014/01/01 00:00:00',
'9999/01/01 23:59:00', '[]'));

D. Update Operation
Update operation in temporal database is different from

the conventional database. Every time the update operation
is carried out on present table, the already defined trigger

 57

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 12:24:35 (UTC) by 3.235.154.65. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

will get activated right before that update. This trigger will
save update values as new and those which are being
updated as old values. The old values of the current table
will be inserted into history table with the upper bound of
the time_range column set equal to the lower bound of the
time_range attribute of the current instance.
Algorithm
UPDATE present_table
SET
column1=value1,column2=value2,….columnN=valueN,tim
e_range=tsrange(date1,date2)
WHERE conditions
INVOKE TRIGGER trigger_name
IF(old.values IS DISTINCT FROM new.values)
BEFORE UPDATE ON present_table
EXECUTE PROCEDURE trigger_function
INSERT INTO
history_table(time_range_column,column2,….
columnN)
VALUES(time_range_type(lower(old.time_range),
lower(new.time_range)),old.column2,….old.columnN)
SET old.values IN present_table TO new.values
RETURN UPDATE SUCCESSFUL
ELSEIF(LOWER(NEW.TIME_RANGE)<LOWER(OLD.TIME_RANGE)
) THEN
RETURN input error
ENDIF
Example :
UPDATE salaryfront
SET salary=10499,time_range=TSRANGE('2019/09/27
00:00:00', '9999/01/01 23:59:00', '[]')
WHERE emp_no=10002ANDupper(time_range) =
'9999/01/01 23:59:00';

E. Retrieval Operation
There are three different categories of data retrieval in the

proposed model. In the first case, the user is interested in the
current snapshot of the data. Therefore, the user can directly
query the current table and get the latest instance of data. In
the second case, time_period defined in the predicate of the
query lies in the time_range of history table. Therefore, such
query will be satisfied by the history table only. In the third
case, the query includes a time period that overlaps the
time_range attribute values of both the current and history
table. Hence, such queries retrieve data from both the tables.
Algorithm
SELECT * FROM
function_name(parameter1,time_period)
IF(time_period &>(SELECT present_table.time_range
from present_table where(condition satisfies
parameter1)))
RETURN TUPLE FROM present_table
ELSEIF (time_period << (SELECT present_ table.
time_ range from present_table where (condition
satisfies parameter1)))
RETURN TUPLE FROM history_table
ELSE
RETURN TUPLE FROM BOTH present_table AND history_
table
WHERE present_table.time_range && time_period AND
history_table.time_range&&time_period
ENDIF

Example :
select get_sal.e_no,get_sal.sal,get_sal.t_range,get_ti.tit from
get_sal(10100,'2016/08/03 00:00:00','9999/01/01 23:59:00')
 INNER JOIN get_ti (10100,'2016/08/03 00:00:00',
'9999/01/01 23:59:00') on (get_sal.t_range) &&
(get_ti.t_range) ORDER BY get_sal.t_range;

V. EXPERIMENTS AND RESULTS

The proposed temporal extension of the Postgres

comprises of two primary components: temporal data type
and the set of operators used in the implementation of
temporal functionality. Postgres in built time range data type
“tsrange” is used for time stamping the records of the
database. It uses a pair of disjoint times such that the tuple is
valid during this period.

A. System Requirements
The experiments are carried out on host system with 8GB

of RAM and Intel(R) Core (TM) i5 3210M CPU@2.5GHz
on Windows operating system. The open source database
PostgreSQL version 9.5 is used to implement the proposed
model. The application is built using Java NetBeans IDE
version 8.0.2.

B. Data Set

Figure 3. Priory processing of the Data Set

In view of evaluating the proposed model, query tests are
performed on the dataset of one lakh employees of a
hypothetical company. The original employee dataset has
been priory processed as depicted in Fig. 1. The time range
data type “tsrange” is used to time stamp the tuples of the
temporal relation. The original temporal relations are
decomposed into sub relations to enable the extermination
of redundancy that has occurred due to presence of static
and dynamic attributes together.

C. Test Results

This sub section presents the comparison of the proposed
model with the single relation model. The single relation
model uses same relation for storing present and past
instances of data. The comparison between the two models
is done on the basis of the query execution time [1], [4]. The
query execution time is the time taken to execute the
optimal query execution plan. A total of nine point or range
queries are used for the purpose of comparison. Each query
is executed ten times and the mean of all these execution
times is considered for comparison. Table I summarizes the
list of sample point and range queries [16] used for testing
the performance of both the models. The query execution
time for the sample queries is collected from the pgAdmin
tool of Postgres. The tool provides the estimated time to
execute the optimal query plan. Therefore, the average of
ten execution times of each sample query is considered for
comparison of the proposed model with the single relation
model.

 58

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 12:24:35 (UTC) by 3.235.154.65. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

TABLE I. LIST OF SAMPLE QUERIES
Query

number
Explanation

Q1 Select column names from salary table where
employee number is 10100 and time period is
('2016/08/03 00:00:00','9999/01/01 23:59:00');

Q2 Select column names from salary table where
employee number is 10100 and time period is
('1990/08/03 00:00:00','2000/01/01 23:59:00');

Q3 Select column names from salary table where
employee number is 10100 and time period is
('1990/08/03 00:00:00','9999/01/01 23:59:00');

Q4 Inner join between salary and title table with employee
number is 10100 and time period is ('2016/08/03
00:00:00','9999/01/01 23:59:00') on salary.time_range
&& title.time_range ;

Q5 Inner join between salary and title table with employee
number is 10100 and time period is ('1990/08/03
00:00:00','2000/01/01 23:59:00')on salary.time_range
&& title.time_range ;

Q6 Select column names from salary table where
employee number is 10100 and date is '2016/08/03
00:00:00'::timestamp;

Q7 Select column names from salary table where
employee number is 10100 and date is '1994/08/03
00:00:00'::timestamp;

Q8 Inner join between salary and title table with employee
number is 10100 and date is '1994/08/03
00:00:00'::timestamp on salary.time_range &&
title.time_range ;

Q9 Select column names from salary where salary<4000
and upper(time_range)='9999/01/01 23:59:00';

Table II shows the mean execution times of both the models
for the queries listed in Table I. For majority of queries the
execution time is better in the proposed tuple time stamped
multiple historical relation model. The speedup is calculated
by taking the ratio of the mean query execution times for the
two models as depicted in formula (2).

PM

SRM
TS

 (2)
Where, ST is the speedup, µSRM is the mean query execution
time of the single relation model and µPM is the mean query
execution time of the proposed model.

TABLE II. MEAN QUERY EXECUTION TIME AND THE SPEEDUP
Query

number
Mean query

execution time in
Single relation

Model

Mean query
execution time in
proposed Model

Speedu
p

Q1 0.347 0.287 1.20

Q2 0.396 0.358 1.10

Q3 0.343 0.417 .822

Q4 0.620 0.504 1.23

Q5 0.645 0.594 1.08

Q6 0.328 0.272 1.20

Q7 0.337 0.303 1.11

Q8 0.585 0.503 1.16

Q9 445.403 0.369 1207.05

The queries Q1, Q4, Q6 gives output from the current
table and queries Q2, Q5, Q7, Q8 gives output from the
history table. On the contrary, Query Q3 returns output
combined from the current and history table. It is evident
from the results that query execution time of the proposed
model is better when output of the query is only from the
current or the history table. Whereas, for the queries that

needs data values from both present and history table, the
single relation model performs better than the proposed
model.

Figure 4. Query execution times of both the models.

B tree index is used on salary attribute of temporal relation
salaryfront. Consequently, the query execution time of query
Q9 for the proposed model is far better than the single
relation model. The graph in Fig. 4 shows the query
execution time taken by both the models for the execution
of first eight sample queries listed in Table I.

Figure 5. Speed Up of the Proposed Model as compared to Single Relation
Model

VI. CONCLUSION

There is an urgent requirement of good temporal data
model and powerful query language for the effective
management of time varying data. In this article, we have
proposed a tuple time stamped multiple historical relation
data model which is capable of managing temporal data in
an efficient way. The implementation of the model is done
using open source database. The PostgreSql version 9.5 in
built time range data type “tsrange” is utilized for time
stamping the records of the database. The static attributes
are grouped in a different relation to avoid redundancy of
data. Separate temporal relation is created for all the
temporal attributes if their valid time varies.

The query execution time is used to compare the
performance of the proposed model with the tuple time
stamped single relation model. The results of the
comparison reveal that in terms of the query execution time,
the proposed model is better than the single relation model
except in the case where the query output is generated
collectively from current and history tables. Indexing is
applied on the frequently accessible non key attributes to
improve the query execution time. As a future scope, this

 59

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 12:24:35 (UTC) by 3.235.154.65. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

 60

work may be extended to consider other improvements apart
from those covered in this article.

REFERENCES
[1] F. Kunzner, D. Petkovic, "A comparison of different forms of

temporal data management," Beyond Databases, Architectures and
Structures. Springer International Publishing, pp 92-106, 2015.
doi:10.1007/978-3-319-18422-7¬_8

[2] S. M. Halawani, N. A. Al-Romema, "Retrieval optimization technique
for tuple timestamp historical relation temporal data model," Journal
of Computer Science 8.2, pp 243-250, 2012. doi:10.1.1.683.7887

[3] R. D. M. Galante, C. S. D. Santos, N. Edelweiss, A. F. Moreira,
"Temporal and versioning model for schema evolution in object-
oriented databases," Data & Knowledge Engineering, pp 99-128,
May, 2005. doi:10.1016/j.datak.2004.07.001

[4] C. Atay, "An attribute or tuple timestamping in bitemporal relational
databases," Turkish Journal of Electrical Engineering & Computer
Science, pp 4305-4321, 2016. doi:10.3906/elk-1403-39

[5] M. Kvet, K. Matiasko, M. Vajsova, "Sensor based transaction
temporal database architecture," in IEEE World Conference on
Factory Communication Systems (WFCS), 2015.
doi:10.1109/WFCS.2015.7160547

[6] J. Mate, J. Safarik, "Transformation of relational databases to
transaction-time temporal databases," 2nd Eastern European Regional
Conference on the Engineering of Computer Based Systems (ECBS-
EERC), 201. doi:10.1109/ECBS-EERC.2011.14

[7] I. A. Goralwalla, M. T. Ozsu, D. Szafron. "A framework for temporal
data models: exploiting object-oriented technology," Proc. of IEEE
TOOLS 23 on Technology of Object-Oriented Languages and
Systems, 1997. doi:10.1109/TOOLS.1997.654697

[8] C. S. Jensen, R. T. Snodgrass, "Temporal data management," IEEE
Transactions on Knowledge and Data Engineering, pp 36-44, 1999.
doi:10.1109/69.755613

[9] N. Edelweiss, P. N. Hubler, M. M. Moro, G. Demartine, "A temporal
database management system implemented on top of a conventional
database," Proc. XX IEEE International Conference of the Chilean
Computer Science Society, 2000. doi:10.1109/SCCC.2000.890392

[10] C. Yang et al., "Standardization on bitemporal information
representation in BCDM," IEEE International Conference on

Information and Automation, 2015, pp. 2052-2057.
doi:10.1109/ICInfA.2015.7279627

[11] A. U. Tansel, "On handling time-varying data in the relational data
model," Information and Software Technology, pp 119-126, 2004.
doi:10.1016/S0950-5849(03)00114-9

[12] V. T. N. Chau, S. Chittayasothorn, "A temporal compatible object
relational database system," in Proc. of IEEE SoutheastCon, 2007.
doi:10.1109/SECON.2007.342862

[13] L. Anselma, P. Terenziani, R. T. Snodgrass, "Valid-time
indeterminacy in temporal relational databases: Semantics and
representations," IEEE Transactions on Knowledge and Data
Engineering, pp. 2880-2894, Dec. 2013. doi:10.1109/TKDE.2012.199

[14] C. S. Jensen, R. T. Snodgrass, "Semantics of time-varying
information," Information Systems, pp 311-352, June, 1996.
doi:10.1016/0306-4379(96)00017-8

[15] S. M. Halawani, N. A. Al-Romema, "Memory storage issues of
temporal database applications on relational database management
systems," Journal of Computer Science, pp 296-304, 2010.
doi:10.1.1.165.759

[16] M. H. Bohlen, R. Busatto, C. S. Jensen. "Point-versus interval-based
temporal data models," in Proc. of 14th IEEE International
Conference on Data Engineering, 1998.
doi:10.1109/ICDE.1998.655777

[17] N. Edelweiss, J. P. M. Oliveira, B. Pernici, "An object-oriented
temporal model," International Conference on Advanced Information
Systems Engineering, Springer Berlin Heidelberg, 1993, pp. 397-415.
doi:10.1007/3-540-56777-1_21

[18] M. Pomarlan, "Visibility-based planners for mobile robots capable to
handle path existence queries in temporal logic," Advances In
Electrical and Computer Engineering, pp 55-64, Feb. 2014.
doi:10.4316/AECE.2014.01009

[19] M. Kaufmann et al., "Bi-temporal Timeline Index: A data structure
for processing queries on bi-temporal data," 31st IEEE International
Conference on Data Engineering, 2015.
doi:10.1109/ICDE.2015.7113307

[20] P. Terenziani, "Irregular indeterminate repeated facts in temporal
relational databases," IEEE Transactions on Knowledge and Data
Engineering, pp 1075-1079, Apr. 2016.
doi:10.1109/TKDE.2015.2509976

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 12:24:35 (UTC) by 3.235.154.65. Redistribution subject to AECE license or copyright.]

