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Abstract—Hyperspectral pixels which have high spectral 

resolution are used to predict decomposition of material types 
on area of obtained image. Due to its multidimensional form, 
hyperspectral image classification is a challenging task. 
Hyperspectral images are also affected by radiometric noise. In 
order to improve the classification accuracy, many researchers 
are focusing on the improvement of filtering, feature extraction 
and classification methods. In the context of hyperspectral 
image classification, spatial information is as important as 
spectral information. In this study, a three-dimensional spatial-
spectral filtering based feature extraction method is presented. 
It consists of three main steps. The first is a pre-processing 
step, which include spatial-spectral information filtering in 
three-dimensional space. The second comprises extract 
functional features of filtered data. The last one is combining 
extracted features by serial feature fusion strategy and using to 
classify hyperspectral image pixels. Experiments were 
conducted on two popular public hyperspectral remote sensing 
image, 1%, 5%, 10% and 15% of samples of each classes used 
as training set, the remaining is used as test set. The proposed 
method compared with well-known methods. Experimental 
results show that the proposed method achieved outstanding 
performance than compared methods in hyperspectral image 
classification task. 

 
Index Terms—adaptive algorithms, feature extraction, 

gaussian noise, hyperspectral imaging, image classification. 

I. INTRODUCTION 

The classification of hyperspectral images is a 
challenging task, since the acquired hyperspectral images, 
which provides huge amount of spectral and spatial 
information, are often affected by radiometric noise such as 
sensor noise, photon (or pulse) noise, calibration error, 
atmospheric scattering and absorption. So, that is not only 
reduce the visual quality of hyperspectral image data, but 
also reduces the sensitivity of image interpretation and 
analysis. Thus, denoising is a very important process in 
hyperspectral image classification. Also, denoising can 
improve spatial classification accuracy when used with 
spatial processing techniques. 

Therefore, denoising in hyperspectral image classification 
has attracted attention of the researchers. For example Wei 
He et al. proposed an iterative regularization framework to 
remove noise from hyperspectral images named as noise 
adjusted iterative low-rank matrix approximation 
(NAILRMA)[1]. Aswathy et al. proposed a low pass sparse 
banded filter matrix for improved sparsity based 
hyperspectral image classification[2]. Cui et al. proposed 

edge-preserving filtering method for classification visible 
and infrared hyperspectral images[3]. Srivatsa et al. applied 
least square denoising method to improve Alternating 
Direction Method of Multipliers based hyperspectral image 
classification[4]. Huang et al. presents a hybrid spatial-
spectral denoising method for infrared hyperspectral image 
classification using 2-dimensional principal component 
analysis[5]. Edge-preserving filtering[6] and bilateral 
filtering[7], were also proposed as denoising methods for 
hyperspectral image classification. Apart from using 
denoising methods directly, feature extraction methods and 
designing effective classifier methods are also proposed as 
an effective way to improve the hyperspectral classification 
accuracy. 

Consequently, many feature extraction methods such as 
manifold learning algorithms are proposed for hyperspectral 
image classification in recent years. Chang et al.[8] 
proposed nearest feature line embedding approach. Huang et 
al.[9] utilized double nearest proportion feature extraction 
method to reduce the dimensionality of hyperspectral 
images. Tu et al.[10] proposed dimensionality reduction 
method based laplacian eigenmaps for SAR image 
classification. Li et al.[11] applied the Local preserving 
projection (LPP) method for hyperspectral image 
classification. Some supervised methods are proposed to 
extract the features by using the label information[12, 13]. 
Wei et al.[14] implements functional principal component 
analysis (FPCA) for extracting features of hyperspectral 
images. According to Wei et al.[14] hyperspectral image 
with narrow bandwidth values is approximated to a 
continuous function. The functional properties of 
hyperspectral images can be explored by this idea. 

Recently, support vector machines (SVM)[15] based 
classification methods are commonly used for hyperspectral 
image classification due to better classification accuracy 
than artificial neural network(ANN)[16]. Therefore, 
researchers are focused on important strategies for designing 
SVM such relevance kernel function selection, kernel 
parameter selection, regularization parameter selection and 
multiclass classification[17]. Demir et al.[18] proposed 
relevance vector machines(RVM) for hyperspectral image 
classification. Classification can be carried out much faster 
by using RVM-based methods. With relatively smaller 
relevance vector, recognition process can be so fast that it 
can be possible to realize real time applications. Huang et 
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al.[19] proposed method that unifies support vector machine 
based methods and other regularization based methods to 
build up a new learning machine named extreme learning 
machine (ELM). Needing fewer optimization constraints, 
easy result implementation, faster learning and high 
generalization performance are some of advantages of ELM 
over SVM[20]. Pal et al.[21] proposed using kernel extreme 
learning machines(KELM) which replaces the hidden layer 
of the ELM with a kernel function for hyperspectral image 
classification.  

In this paper, we proposed spatial-spectral filtering based 
feature extraction method for hyperspectral image 
classification. In the proposed method, we combine the 
advantages of functional data feature extraction method with 
three-dimensional gaussian filter and three-dimensional 
adaptive non-local means filter. Firstly, the hyperspectral 
data cube was filtered by three-dimensional gaussian filter 
and three-dimensional adaptive non-local means filter 
separately and output data of the filters represented as 
functional data. After functional representation, features 
extracted with functional principal component analysis 
(FPCA). Consequently, extracted features are combined by 
serial feature fusion strategy and pixel wise classification 
map which is created with Support Vector Machine (SVM) 
classifier.  

The remainder of this paper is structured as follows. The 
related works are described in Section 2. The proposed 
spatial-spectral hyperspectral image classification method is 
introduced in Section 3. The effectiveness of the proposed 
method is demonstrated by experimental results on several 
popular hyperspectral images in Section 4. Finally, Section 
5 presents the conclusions and future lines of research. 

II. RELATED WORK 

Many image-denoising methods adjust intensity of each 
pixel in image by averaging spatial neighbors’ intensity with 
some ways. Basic and simplified idea is changing pixel 
intensity value with an average of neighbor pixels 
intensities[22]. The biggest advantage of such filters is they 
can be used iteratively until enough amount of smoothing is 
acquired. So, they can be implemented very efficiently. 

Everything is not perfect about that type of data 
independent filters which works by eliminating the different 
neighbor pixels from current pixel. Because they may blur 
edges, small structures and textures, which are important 
interests in the image. Therefore, basic statistical operators 
like median filter can be used for this purpose. 

Sophisticated method like adaptive smoothing [23] which 
aims to enable edge detection after few filter iterations and 
anisotropic diffusion [24] which aims to keep region 
boundaries sharp are also filter samples. [25], [26] and 
variants [27, 28] are neighborhood filters which calculates 
average value of spatially close pixels that have similar 
intensity. 

Michael Elad[29] studied the additive noise removal and 
developed locally adaptive recovery paradigm by bridging 
bilateral filter and adaptive methods. The paradigm 
advocates that new pixel value should only depend on the 
pixels in spatial neighborhood. 

A. Non-Local Means Filter 

According to Buades et al.[30] recently proposed 
algorithms are not applicable enough if image is not suitable 
for algorithms assumptions. In [30] methods reviewed the 
mathematical aspects of comparing image denoising 
algorithms and proposed a new one (non-local means 
(NOLM)). The main idea of NOLM based on any natural 
image has redundancy and that any pixel of the image has 
similar pixels that are not necessarily located in a spatial 
neighborhood. 

NOLM calculates the weight of the pixels based on the 
intensity similarity of their neighborhoods as opposite to 
classical methods, which based on spatial proximity. So, the 
NOLM filter can be described as neighborhood filters with 
infinite spatial kernel. The similarity of the neighborhood 
intensities is substituted to the point-wise similarity of 
intensity value as in commonly used bilateral filtering. All 
the effort in NOLM is about to assure saving edges while 
removing noise. 

B. Adaptive Non-Local Means Filter 

The main drawback of the NOLM, especially for three-
dimensional images, is the computational complexity. Let 
N3 denote the size of three-dimensional image, then the 
complexity of the filter is in the order of 
O((N(2M+1)(2d+1))3). For a hyperspectral image of size 
145 x 145 x 200 with the smallest values for d=1 and M=5, 
the computational time reaches up to 10 hours on 2.4GHZ 
CPU. For this reason, Manjon et al.[31] proposed Adaptive 
Non-Local Means (ANOLM) filter with spatially varying 
noise levels. 

Furthermore, to speed up the filtering process a block 
wise approach which proposed in [32] can be used to 
decrease the computational complexity. NOLM like 
adjustment performed to these blocks and then pixels’ 
values adjusted with blocks they belong to. This is different 
from the pixel wise version where only the central pixel of 
the neighborhood is averaged. 

Avoiding the use of pixels/blocks with small weights 
speeds up the filter and significantly improves the denoising 
results. For the ensuring this Coupe et al. [32] proposed a 
preselection approach based on the local mean and variance 
of three-dimensional volumes. 

According to [31] preselection based on the local mean is 
intensity sensitive: high and low intensity pixels are treated 
differently. In order to minimize such differences, the 
preselection was performed using the original means and the 
inverted means. 

C. Three-Dimensional Gaussian Filter 

Gaussian Filter is a denoising technique which uses the 
Gaussian function called as a normal distribution function in 
statistics, and is also called Gaussian average operator. In 
this filter, neighbor pixels averaged with weighted by 
function value. N-Dimensional Gaussian function can be 
defined as (1). Sigma is the standard deviation of 
distribution and acts as smoothing parameter. Mean of 
distribution is assumed as zero[33]. 
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Gaussian filter can be performed One-dimensional 
version for each dimension in N-Dimensional data. 
Furthermore, Gaussian filter can be performed with different 
sigma values for each dimension. 

Gaussian filter can be performed in the spatial domain 
and frequency domain. In the frequency domain, Fourier 
transform performed on image and filter matrix. After that, 
convolution of image and filter are performed. Finally, 
filtered image can be obtained from the inverse Fourier 
transform. Fig. 1 shows the workflow of filtering in the 
frequency domain. 

 
Figure 1. Workflow of filtering in the frequency domain. 

D. Functional Data Analysis 

Functional data analysis (FDA) is an alternative way to 
handle with huge dimensional data problems. Essentially 
functional data has infinite dimension. This situation 
presents challenges for both the theory and the computation; 
These challenges vary with how functional data is sampled. 
On the other hand, the infinite dimension of the data is a rich 
source of information that offers many opportunities for 
research and data analysis. The FDA has come very popular 
recently[34, 35]. Functional data basically represents 
discrete observation values by a continuous function, which 
can be calculated for any input value. Functional principal 
components analysis (FPCA) is proposed for handling with 
the curse of dimensionality problem in functional data. 
FPCA is an important dimension reduction method for 
functional data. 
1) Functional Data Representations 

Computational complexity is an important measurement 
in computer science. Therefore, analyzed data should be 
expressed in the finite size. Commonly finite basis function 
expansion is used in the functional data analysis. Firstly, 
data is transformed to a continuous function, which can be 
calculated for any input value by using basis function 
expansion. If the data is considered to have no error, 
interpolation method is used for this process. Else if data 
contains some errors due to measurement, smoothing 
method is used for this process [36]. 
2) Functional Principal Components Analysis 

Purpose of functional principal components analysis as 
well as classical principal component analysis is resolving 
the curse of dimensionality problem. Functional Principal 
Components Analysis (FPCA) is a powerful method to 
identify the important parts of difference between curves. 
FPCA is exploring the relationships that were expected to be 
in the system and also not already noticed [36]. 

FPCA is getting a few orthogonal functions describing the 
changes in data efficiently instead orthogonal vectors in 
PCA applied to multivariate data. In this way, effective 
features of functional data may be obtained. 

III. PROPOSED METHOD 

In the context of hyperspectral image classification, 
spatial information is as important as spectral information. 
In order to include spatial information in classification 
process a three-dimensional filtering based feature 
extraction approach is proposed. Three-dimensional filters 
which in pixel wise filtering context, uses information on 
three-dimensional space for filtering selected pixel. In this 
context, we obtain new information which contains 
neighborhood effects.  

The main idea behind the three-dimensional Gaussian 
filter is nearest neighborhoods more effective then farthest 
ones. In the three-dimensional gaussian filter, each pixel 
value updated with neighbor pixel values in three-
dimensional space by using gaussian function.  This 
provides local neighborhood information on classification 
context.  

As we know any natural image has redundancy structures 
and that any pixel of the image has similar pixels that are 
not necessarily located in local neighborhood. In the 
adaptive non-local means filter, each block (set of pixels) 
values updated with intensity based neighbor block values in 
three-dimensional space. The Adaptive Non-Local Means 
filter is used to obtain nonlocal neighborhood information to 
use in classification.  

As we know from our background, functional data 
representation is giving us a rich information source for 
analyzing high dimensional data. To handle with infinite 
dimensionality of functional data, Functional Principal 
Component Analysis is used to obtain orthogonal function 
which describe the changes in data efficiently for extracting 
effective features of functional data. We used FPCA for 
extracting features of data obtained from three-dimensional 
filters.  

The general strategy of serial feature fusion is two feature 
vectors of F1 and F2 are concatenated together[37]. If m and 
n are the weightage parameters of F1 and F2, respectively, 
then according to serial feature fusion strategy the combined 
feature [m x F1; n x F2]. Due to creating final feature vector 
for classifying data we use serial feature fusion strategy. 
Obtained feature vectors describes hyperspectral data as 
well as effective for classification task.  

Fig. 2 shows the workflow of proposed method. 

 
Figure 2. Workflow of proposed methods. 
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According to the above descriptions, our proposed 
method can be summarized in 5 main steps. These steps are 
Filtering, Functional Representation, Feature Extraction, 
Feature Fusion and Classification. In this method, we 
focused on combining the advantages of local neighborhood 
and non-local neighborhood. Pseudocodes of proposed 
method were listed in Table I.  

 

TABLE I. PSEUDOCODES OF PROPOSED METHOD 
Algorithm Three-Dimensional Spatial-Spectral Filtering based 

Feature Extraction 
Inputs HSI: MxNxD sized Hyperspectral Image, 

 : Gaussian filtering parameter, 
W: Window size for gaussian filter, 
v: Radius of search area for ANONLM filter, 
p1: Radius of similarity patch (small) for ANONLM 
filter, 
p2: Radius of similarity patch (big) for ANONLM 
filter, 
Rdim: Size of reduced dimension, 
bType: Basis type for functional representation, 
m,n: Weight parameters for serial feature fusion 

Output Classification Map 

Step 1 Filter input image by three-dimensional Gaussian filter 
and three-dimensional adaptive non-local means filter 
separately. 

Step 2 Apply B-Spline curve smoothing method to both filter 
output data for representing spectral data as functional 
data. 

Step 3 Apply Functional Principal Component Analysis 
method to obtained functional data for extracting 
functional features. 

Step 4 Combine extracted features by serial feature fusion 
strategy for obtaining final feature vectors. 

Step 5 Classify feature vectors by using RBF kernel based 
Support Vector Machine classifier. 

 

In the step 1, input image is filtered by three-dimensional 
Gaussian filter and three-dimensional adaptive non-local 
means filter separately. At the step 2, B-Spline curve 
smoothing method applied to both filter output data for 
representing spectral data as functional data. In the step 3, 
FPCA is applied to obtained functional data for extracting 
functional features. Extracted features combined by serial 
feature fusion strategy at step 4 for obtaining final feature 
vectors. Finally, Feature vectors classified by using RBF 
kernel based Support Vector Machine classifier in step 5. 
The SVM was used due to its capability to deal with high-
dimensional data. Its resilience, because of the kernel 
function, allows alternative strategies for including spatial 
features in the classification process such as feature fusion 
or composite kernels. 

The proposed method combines the advantages of three-
dimensional Gaussian filter and three-dimensional adaptive 
non-local means filter and functional principal components 
analysis method in SVM classifier. 

IV. EXPERIMENTAL RESULTS 

In this section, we provide the results obtained from 
applying the proposed method to two popular hyperspectral 
datasets which are Indian Pines[38] and Salinas Valley[39] 
described. The experiments were carried out on a computer 
with 16GB RAM and 2.40GHz i7-3630QM processor and 
the code was implemented in MATLAB.  During the 
experiments on Indian Pines dataset, 1%, 5%, 10% and 15% 
of the samples of each class were randomly selected to 
create a training set and the remaining samples were taken 
as test samples.  

In our experiments on Salinas dataset with 10% training 
samples is obtained nearly 100% accuracy. Therefore, 15% 
training set is not used in Salinas dataset. In the 
experiments, spectral reflectance values normalized to [0,1] 
and all parameters obtained by 10-fold cross validation. All 
reported classification accuracies are average of 10 
experiments. Furthermore, classification accuracy of 
extracted features from different filters and different 
combinations is reported for showing the advantages of 
feature combination. 

A. Experiments on Indian Pines Image 

Indian Pines hyperspectral image obtained from Indian 
Pines test scene located at North-western Indiana by 
AVIRIS sensor. Image has 145x145 pixel spatial resolution 
and 224 spectral bands in the range of 0.4-2.5µm bandwidth. 
24 spectral band removed for water adsorption and image 
contains 10249 number of samples.  

Experiments on Indian Pines image were compared with 
well-known algorithm such as Shapelet-Based Sparse 
Representation (Shape-DL) [40], Joint Robust Sparse 
Representation based Classification (JRSRC) [41], Kernel 
Collaborative Representation with Tikhonov Regularization 
with Composite Kernel (KCRT-CK) [42] and Superpixel-
based Classification via Multiple Kernels (SC-MK) [43]. 
Ground truth with 16 classes and number of samples in each 
class which used in experiments are described in Table II. 

TABLE II. GROUND TRUTH CLASSES FOR THE INDIAN PINES SCENE AND THEIR RESPECTIVE SAMPLES NUMBER 
%1 %5 %10 %15 Class Class Name Samples 

Training Testing Training Testing Training Testing Training Testing 
1 Alfalfa 46 1 45 3 43 5 41 7 39 
2 Corn-no till 1428 15 1413 72 1356 143 1285 215 1213 
3 Corn-mintill 830 9 821 42 788 83 747 125 705 
4 Corn 237 3 234 12 225 24 213 36 201 
5 Grass-pasture 483 5 478 25 458 49 434 73 410 
6 Grass-trees 730 8 722 37 693 73 657 110 620 
7 Grass-pasture-mowed 28 1 27 2 26 3 25 5 23 
8 Hay-windrowed 478 5 473 24 454 48 430 72 406 
9 Oats 20 1 19 1 19 2 18 3 17 
10 Soybean-notill 972 10 962 49 923 98 874 146 826 
11 Soybean-mintill 2455 25 2430 123 2332 246 2209 369 2086 
12 Soybean-clean 593 6 587 30 563 60 533 89 504 
13 Wheat 205 3 202 11 194 21 184 31 174 
14 Woods 1265 13 1252 64 1201 127 1138 190 1075 
15 Buildings-Grass-Trees-Drives 386 4 382 20 366 39 347 58 328 
16 Stone-Steel-Towers 93 1 92 5 88 10 83 14 79 

 Total 10249 110 10139 520 9729 1031 9218 1543 8706 
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Table III. shows comparison of class based classification 
accuracy on 10 different algorithms which 4 of them were 
presented in literature and remains were produced in this 
study. In Table III. classification accuracy for each class 
represented in rows, applied methods represented in 

columns and Average Accuracy(AA), Overall 
Accuracy(OA) and Kappa value is given below classes. As 
shown in Table III. proposed GAN-SVM method accounts 
improved class based classification accuracy and overall 
classification accuracy.  

 
TABLE III. CLASS BASED CLASSIFICATION ACCURACY COMPARISONS ON INDIAN PINES IMAGE 

Class SVM G-SVM N-SVM AN-SVM GN-SVM 
Shape-DL 

[40] 
JRSRC 

[41] 
KCRT-CK 

[42] 
SC-MK 

[43] 
Proposed 

GAN-SVM 
1 58.97 94.87 56.41 76.92 92.31 94.38 93.23 98.15 100.00 100.00 
2 83.61 97.94 84.02 85.26 98.35 95.84 86.39 98.12 97.11 99.26 
3 70.92 96.60 74.75 83.26 97.87 97.12 92.08 99.76 97.65 98.16 
4 63.18 93.03 57.71 58.21 98.01 97.52 99.52 95.30 97.82 100.00 
5 92.70 99.03 94.89 94.40 98.78 98.21 90.00 96.98 96.38 98.54 
6 96.61 96.45 98.55 99.03 99.68 99.76 99.75 99.46 100.00 99.84 
7 95.65 100.00 82.61 91.30 100.00 96.09 93.85 96.15 100.00 100.00 
8 98.28 99.75 99.51 100.00 100.00 99.80 99.91 100.00 100.00 100.00 
9 100.00 93.33 60.00 66.67 86.67 94.44 80.00 100.00 100.00 100.00 

10 68.64 96.85 77.24 82.69 97.58 97.06 95.78 96.28 93.35 98.91 
11 84.62 99.28 78.68 88.93 98.66 99.18 92.67 98.10 99.02 99.14 
12 83.53 97.62 82.14 85.91 98.21 94.51 87.86 99.02 97.80 98.41 
13 99.43 90.23 98.28 98.85 97.70 99.89 100.00 99.53 99.60 98.85 
14 95.81 98.42 93.86 96.00 99.72 99.88 98.38 99.92 99.98 99.93 
15 64.02 96.95 63.11 79.27 99.39 97.05 86.90 99.47 97.56 99.09 
16 91.14 98.73 86.08 78.48 98.73 93.06 100.00 67.37 97.15 98.73 
AA 84.20 96.82 80.49 85.32 97.60 97.11 93.52 96.47 98.34 99.30 
OA 84.07 97.81 83.46 88.50 98.64 97.99 93.23 98.22 98.06 99.18 

Kappa 0.82 0.97 0.81 0.87 0.98 0.97 0.92 0.98 0.98 0.99 
 

Table IV. shows overall classification accuracy on 6 
different algorithms which were produced in this study with 
4 different ratios of training sample. 

 
TABLE IV. CLASSIFICATION ACCURACY COMPARISONS ON INDIAN PINES 

Percentage 1% 5% 10% 15% 
SVM 64.28 78.60 83.03 84.07 
GAUSS-SVM (G-SVM) 76.02 92.06 96.50 97.81 

NONLM-SVM (N-SVM) 57.79 76.14 82.04 83.46 
ANONLM-SVM (AN-SVM) 66.05 80.81 86.12 88.50 
GAUSS-NONLM-SVM (GN-SVM) 85.04 95.87 97.54 98.64 
GAUSS-ANONLM-SVM (GAN-SVM) 87.38 97.87 99.00 99.18 

Fig. 3 shows classification maps of Indian Pines image. In 
Figure 3. a-g represents SVM, Shape-DL, JRSRC, KCRT-
CK, SC-MK, Proposed and Groundtruth respectively. As 
shown in Table III. and Fig. 3, the classification accuracy of 
Indian Pines data set is improved by the proposed method 
and the resulting classification map is more homogeneous 
and spatially consistent. 
 
 
 

 

 
Figure 3. a)-f) Classification maps and corresponding overall accuracies obtained by SVM (84.07%), Shape-DL (97.99%), JRSRC (93.23%), KCRT-CK 
(98.22%), SC-MK (98.06%), Proposed GAN-SVM (99.18%). g) ground truth of the Indian Pines data. The ratio of training samples used here is 15% per 
class. 
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B. Experiment on Salinas Image 

Salinas hyperspectral image obtained from Salinas Valley 
located at California by AVIRIS sensor.  

Image has 512x217 pixel spatial resolution and 224 
spectral band in the range of 0.4-2.5 µm bandwidth. 20 
spectral bands removed for water adsorption and image 
contains 54129 numbers of samples. 

Experiments on Salinas image were compared with well-
known algorithm such as Superpixel-based Classification 
via Multiple Kernels (SC-MK) [43], Extended Random 
Walker-based Classification (ERW) [44] and Discontinuity 
Preserving Relaxation Scheme (ppMLRpr) [45]. Ground 
truth with 16 classes and number of samples in each class 
described in Table V. 

 
TABLE V. GROUND TRUTH CLASSES FOR THE SALINAS SCENE AND THEIR RESPECTIVE SAMPLES NUMBER 

%1 %5 %10 Class Class Name Samples 
Training Testing Training Testing Training Testing 

1 Brocoli green weeds 1 2009 21 1988 101 1908 201 1808 
2 Brocoli green weeds 2 3726 38 3688 187 3539 373 3353 
3 Fallow 1976 20 1956 99 1877 198 1778 
4 Fallow rough plow 1394 14 1380 70 1324 140 1254 
5 Fallow smooth 2678 27 2651 134 2544 268 2410 
6 Stubble 3959 40 3919 198 3761 396 3563 
7 Celery 3579 36 3543 179 3400 358 3221 
8 Grapes untrained 11271 113 11158 564 10707 1128 10143 
9 Soil vineyard develop 6203 63 6140 311 5892 621 5582 
10 Corn senesced green weeds 3278 33 3245 164 3114 328 2950 
11 Lettuce romaine 4wk 1068 11 1057 54 1014 107 961 
12 Lettuce romaine 5wk 1927 20 1907 97 1830 193 1734 
13 Lettuce romaine 6wk 916 10 906 46 870 92 824 
14 Lettuce romaine 7wk 1070 11 1059 54 1016 107 963 
15 Vinyard untrained 7268 73 7195 364 6904 727 6541 
16 Vinyard vertical trellis 1807 19 1788 91 1716 181 1626 

 Total 54129 549 53580 2713 51416 5418 48711 

 
Table VI. shows comparison of class based classification 

accuracy on 9 different algorithms which 3 of them were 
presented in literature and remains were produced in this 
study. In Table VI. classification accuracy for each class 
represented in rows, applied methods represented in 

columns and Average Accuracy(AA), Overall 
Accuracy(OA) and Kappa value is given below classes. As 
shown in Table VI. proposed GAN-SVM method accounts 
improved class based classification accuracy and overall 
classification accuracy. 

 
TABLE VI. CLASS BASED CLASSIFICATION ACCURACY COMPARISONS ON SALINAS IMAGE 

Class SVM G-SVM N-SVM AN-SVM GN-SVM 
SC-MK 

[43] 
ERW 
[44] 

ppMLRpr 
[45] 

Proposed 
GAN-SVM 

1 99.72 99.78 99.78 99.83 100.00 100.00 88.6 99.90 100.00 
2 99.97 99.97 99.82 99.70 100.00 100.00 100.00 96.67 100.00 
3 99.72 99.83 99.66 99.94 100.00 100.00 99.95 96.08 100.00 
4 99.44 99.68 99.28 99.36 98.80 98.62 97.51 98.90 99.60 
5 99.50 99.75 99.17 99.29 99.67 98.74 88.54 97.42 99.79 
6 99.89 100.00 99.92 99.92 100.00 99.74 100.00 98.49 100.00 
7 99.57 100.00 99.66 99.88 100.00 99.92 99.97 98.25 100.00 
8 89.63 96.41 88.31 88.10 99.42 99.81 99.96 84.68 99.90 
9 99.98 100.00 99.95 99.79 100.00 99.95 100.00 97.46 100.00 

10 96.71 98.78 96.37 97.49 99.97 97.65 99.76 92.17 100.00 
11 98.75 98.44 99.17 97.09 100.00 95.77 100.00 99.58 100.00 
12 99.94 100.00 99.71 99.88 100.00 100.00 100.00 98.94 100.00 
13 98.42 100.00 98.67 99.27 99.27 98.15 94.68 98.73 100.00 
14 95.12 99.27 97.20 98.23 99.58 91.31 72.12 97.13 100.00 
15 74.84 92.74 70.86 77.10 99.16 99.78 100.00 90.55 99.92 
16 99.02 99.69 99.14 99.94 100.00 100.00 100.00 96.93 100.00 
AA 96.89 99.02 96.67 97.18 99.74 98.72 96.32 96.37 99.95 
OA 93.98 98.11 93.17 94.07 99.70 99.38 98.00 93.79 99.95 

Kappa 0.93 0.98 0.92 0.93 1.00 0.99 0.97 0.93 1.0  

 
Table VII. shows overall classification accuracy on 6 

different algorithms which were produced in this study with 
3 different ratios of training sample. 

 
TABLE VII. OVERALL CLASSIFICATION ACCURACY COMPARISONS ON 

SALINAS IMAGE 
Percentage 1% 5% 10% 
SVM 89.50 93.08 93.98 
GAUSS-SVM (G-SVM) 96.11 97.49 98.11 

NONLM-SVM (N-SVM) 89.15 92.07 93.17 
ANONLM-SVM (AN-SVM) 89.89 93.40 94.07 
GAUSS-NONLM-SVM (GN-SVM) 97.45 99.40 99.70 
GAUSS-ANONLM-SVM (GAN-SVM) 98.84 99.84 99.95 

Fig. 4 shows classification maps of Salinas Valley image. 
In Figure 3. a-f represents SVM, SC-MK, ERW, ppMLRpr, 
Proposed and Groundtruth respectively. As shown in Table 
VI. and Fig. 4, the classification accuracy of Salinas Valley 
data set is improved by the proposed method and the 
resulting classification map is more homogeneous and 
spatially consistent. 
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Figure 4. a)-e) Classification maps and corresponding overall accuracies 
obtained by SVM (93.98%), SC-MK (99.38%), ERW (98.00%), ppMLRpr 
(93.79%), Proposed GAN-SVM (99.95%). f) ground truth of the Salinas 
Valley data. The ratio of training samples used here is 10% per class. 

V. CONCLUSIONS AND FUTURE WORKS 

In this paper, we proposed three-dimensional filtering 
based spatial-spectral feature extraction method for 
hyperspectral image classification. Firstly, local and non-
local neighborhood based features extracted by using FPCA. 
After that extracted features are combined for improving 
SVM classification accuracy. As shown in experimental 
results, proposed method presenting superior classification 
performance on two popular public hyperspectral image 
data. Future work is planned to investigate more effective 
ways to finding of non-local neighborhood. 
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