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1Abstract—Resonant controllers are used in power converter 

voltage and current control due to their simplicity and 
accuracy. However, digital implementation of resonant 
controllers introduces problems related to zero and pole 
mapping from the continuous to the discrete time domain. 
Namely, some discretization methods introduce significant 
errors in the digital controller resonant frequency, resulting in 
the loss of the asymptotic AC reference tracking, especially at 
high resonant frequencies. The delay compensation typical for 
resonant controllers can also be compromised. Based on the 
existing analysis, it can be concluded that the Tustin 
discretization with frequency prewarping represents a 
preferable choice from the point of view of the resonant 
frequency accuracy. However, this discretization method has a 
shortcoming in applications that require real-time frequency 
adaptation, since complex trigonometric evaluation is required 
for each frequency change. In order to overcome this problem, 
in this paper the modified Tustin discretization method is 
proposed based on the Taylor series approximation of the 
frequency prewarping function. By comparing the novel 
discretization method with commonly used two-integrator-
based proportional-resonant (PR) digital controllers, it is 
shown that the resulting digital controller resonant frequency 
and time delay compensation errors are significantly reduced 
for the novel controller. 
 

Index Terms—current control, DC‐AC power converters, 
digital filters, motor drives, three‐phase electric power. 

I. INTRODUCTION 

Resonant AC current and voltage controllers are widely 
used in power converter applications, since they enable 
asymptotic reference tracking. Also, resonant controllers 
enable effective compensation of the delay introduced by 
the digital controller sampling and calculation, which 
significantly improves the control system stability and 
dynamic performance. Resonant controllers are used in 
stationary frame based AC control applications, which 
include: (i) AC motor current controllers [1], (ii) active 
power filters [2], [3], (iii) active rectifiers [4], (iv) 
distributed power generation [5], (v) dynamic voltage 
restorers [6], (vi) fuel cells [7], [8], (vii) photovoltaics [5], 
and (viii) wind turbines [5]. Resonant controllers are also 
used in synchronous frame based applications for AC 
converters with unbalanced loads [9] and unbalanced supply 
conditions [10]. 

However, since resonant controllers are in most cases 
realized in the digital form, the problems of accurate 
discretization need to be solved in order to preserve the 
advantageous controller features, namely asymptotic 

reference tracking and compensation of the time delay. 
Thus, in order to obtain the discrete equivalent of the 
continuous-time resonant controller, the following 
discretization techniques can be applied: (i) backward and 
forward Euler [11], [12], (ii) Tustin [11], [12], (iii) Tustin 
with frequency prewarping [13], [14], (iv) zero-order hold 
[11], [12], and (v) zero-pole mapping [11], [12]. 
Furthermore, the continuous-time resonator in a double-
integrator [15] or any other form can be discretized by 
means of the delta operator [16]–[18]. Also, special care 
must be taken if the digital resonant controller is realized by 
means of fixed-point arithmetic, due to the typical resonant 
frequency and delay compensation errors caused by the 
effects of rounding [14], [18]. 

 
1The work presented in this paper is supported by Ministry of 

Technology, Education and Science of Republic of Serbia, within the grant 
TR1652025. 

Since the continuous-time resonant controllers are in 
many cases realized in the double-integrator form [15] (in 
order to simplify the frequency adaptation and delay 
compensation), the related discrete resonant controller is 
obtained by discretizing the two integrators separately [11], 
[12], [15].  

The resonant continuous-time controller can also be 
represented in the form of the second-order transfer 
function, which can be discretized by any of the available 
techniques and can also include the corresponding delay 
compensation. Consequently, in [19], a comprehensive 
analysis of the resonant frequency and delay compensation 
errors introduced by various discretization techniques is 
presented, resulting in the following conclusions: (i) the 
zero-order hold, zero-pole mapping, and Tustin with 
frequency prewarping techniques are superior to backward 
and forward Euler, Tustin, and delta operator based 
discretizations; (ii) however, the former set of techniques 
suffers from the fact that they require complex calculations 
(trigonometric, exponential, etc.) when frequency adaptation 
is required, which is a common requirement in many power 
converter applications (for example, in AC motor drives). 

In order to overcome this problem, a novel resonant 
controller discretization technique is proposed in this paper, 
based on the Tustin method with the Taylor series 
approximation of the frequency prewarping function. It is 
shown by analytical, simulation, and experimental means 
that, when compared with other digital resonant controllers 
that also enable simplified frequency adaptation, the 
proposed controller operates with minimized resonant 
frequency and delay compensation errors, especially at high 
resonant frequencies. The proposed discretization technique 
is experimentally examined by means of an induction motor 
(IM) stator current proportional-resonant [20] (PR) digital 
controller. 

This paper consists of four sections. In Section II, the 
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basic principle of the novel type of resonant controller is 
outlined, together with the existing types of digital resonant 
controllers. In Section III, the discretization resonant 
frequency and time delay compensation errors are 
examined. In Section IV, experimental tests are presented, 
based on the IM AC current control implemented by means 
of the novel type of resonant controller 

II. NOVEL RESONANT CONTROLLER 

A. Different types of resonant controllers in the 
continuous-time domain 

The resonant term is commonly used in conjunction with 
the proportional term, and together they form the PR 
controller. However, the PR controller can be implemented 
with various types of resonant terms [19]: (i) with the cosine 
Laplace transform based R1(s) in (1), (ii) with the sine 
Laplace transform based R2(s) in (2), and (iii) as the vector 
proportional-integral (VPI) form of PR controller, consisting 
of two resonant terms, R1(s) and R3(s) in (3). The PR with 
the cosine resonant term (1) is preferred to PR with the sine 
term (2), since the zeros introduced in (1) enable more stable 
controller operation. 
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Also, the VPI form (3) of PR controller is preferred in 
three-phase applications when the plant is in the form 1/(sLe 

+ Re), since (3) successfully cancels coupling effects 
between reference frame axes [19]. 

However, the PR controller can also be successfully used 
to compensate the delay introduced in the control loop by 
various effects, for example, by the signal sampling and 
calculation. Namely, in order to implement the 
compensation of the time delay Td = NTs (where Ts 
represents the sampling period), the modified type (4) of 
cosine PR controller (1) can be used. 

Furthermore, the VPI type of PR controller (3) can also 
include the delay compensation by correspondingly 
modifying each of the resonant terms R1(s) and R3(s) to 
obtain the PR controller (5). 

In the following subsection the most commonly used type 
of PR controller is presented based on two-integrator form.
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B. Implementation of PR controller based on the two-
integrator form 

The two-integrator form represents a structure commonly 
used to implement resonant controllers. Namely, it enables 
simple resonant frequency adaptation, which is crucial in 
variable-frequency PR applications (for example, AC motor 
drives). In Fig. 1, two-integrator based forms of GC

PR(s) (1) 
and GVPI

PR(s) (3) are presented. 

 
(a) 

 
(b) 

 
Figure 1. Two-integrator form of (a) GC

PR(s) (1) and (b) GVPI
PR(s) (3) 

 

Based on Fig. 1, it can be concluded that resonant 

frequency n adaptation can easily be realized by 
correspondingly modifying the term 2

n.  
In the remainder of the paper, the cosine types of PR 

controllers (1) and (4) are considered for application. 

C. Discrete equivalents of continuous-time domain based 
resonant controllers 

The two-integrator based type of PR controller in Fig. 1 is 
commonly used because it offers (i) easy resonant frequency 
adaptation and (ii) simple controller discretization. Namely, 
many authors [19] have proposed the discrete-time PR 
controller equivalent obtained by individually discretizing 
each of the integrators I1 and I2 in Fig. 1, with the forward 
and backward Euler [15], [19] discretization methods. 
However, if forward Euler discretization is used for both 
integrators I1 and I2, an algebraic loop is obtained [11], [12], 
which is commonly resolved by discretizing the integrator I1 
by means of forward Euler and the integrator I2 by means of 
backward Euler, as presented in Fig. 2(a). In Fig. 2(b), the 
corresponding discrete resonant controller, including 
compensation of time delay Td = NTs, is provided.  

Nevertheless, in [15] and [19] it is shown that two-
integrator based discretization methods introduce significant 
error in resonant frequency and time delay compensation. 
Consequently, in [15] the modified two-integrator based 
discrete PR controller in Fig. 3. is proposed, based on the 
Taylor series approximation of the term CR = cos(nTs) = 
2

n – (4
n T2

s)/12 + (6
n T4

s)/360 – ... . In this way, the 
resonant controller accuracy is improved, while the simple 
resonant frequency adaptation is preserved. 

In the following subsection, a novel type of digital 
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resonant controller based on the modified Tustin 
discretization method is proposed. 

 
(a) 

     
(b) 

Figure 2. Discrete two-integrator implementations of GC
PR(s) (1): (a) 

without time delay compensation, and (b) with time delay compensation Td 
= NTs 

 
(a) 

 
(b) 

Figure 3. Improved discrete two-integrator implementations of GC
PR(s) 

based on [15]: (a) without time delay compensation, and (b) with time delay 
compensation 

D. New type of digital resonant controller 

The goal of this paper is to propose a new type of digital 
resonant controller based on the modified Tustin 
discretization technique with frequency prewarping, which 
also enables simple resonant frequency adaptation. This is 

achieved by introducing the Tustin discretization based on 
the Taylor series approximation of the frequency prewarping 
function. 

Namely, the Tustin discretization with frequency 
prewarping (6) provides a digital resonant controller that 
operates with no errors in the resulting resonant frequency 
value n and delay compensation [19]. This is performed by 
substituting the Laplace variable s in the continuous-time 
PR controller transfer function with the term (6). 
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where Ts represents the sampling period. 
By observing (6), it can be concluded that complex 

trigonometric calculations are required for the real-time 
adaptation of the resonant frequency value n. 
Consequently, in order to simplify the frequency adaptation, 
the novel resonant filter discretization technique is proposed 
based on the Taylor series approximation (7) of the 
frequency prewarping function (6): 
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Consequently, in order to obtain the discrete-time 
equivalent, the s variable in the continuous-time PR 
controller transfer function needs to be substituted by (8). 
However, for systems with smaller sampling frequencies or 
increased n values, higher elements of the Taylor series (7) 
should also be included in (8). 
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The new discrete equivalent of (1) based on (8) is 
presented in (9). Also, the novel discrete resonant controller 
with time delay compensation (4) is presented in (10). 

By analyzing (9) and (10), it can be concluded that n 
resonant frequency adaptation can be performed in a 
simplified manner, especially when compared to the 
discrete-time equivalent based on the Tustin discretization 
with frequency prewarping (6). However, when compared to 
(6), function (8) introduces errors in the resulting PR 
controller resonant frequency value and in the time delay 
compensation. Consequently, in the following section, these 
errors are compared with those introduced by other types of 
digital PR controllers that also enable simplified frequency 
adaptation. In this way, it is shown that the proposed 
discretization technique enables improved and more 
accurate PR controller operation. 

III. DISCRETIZATION ERRORS 

The main goal of the following analysis is to compare 
three resonant controller discretization methods that are all 
based on the simplified resonant frequency adaptation. The 
analysis is performed for two-integrator based PR 
controllers R1a(z) and Rd

1a(z) in Fig. 2, two-integrator based 
R1b(z) and Rd

1b(z) in Fig. 3, and new Rn(z) and Rd
n(z) in (9) 

and (10) for variable resonant frequency values and variable 
sampling periods. It is shown that novel discretization 
introduces  significant improvements. 
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A. Resonant frequency discretization errors 

For each of the discrete resonator transfer functions R1a(z) 
in Fig. 2(a), R1b(z) in Fig. 3(a), and Rn(z) in (9), the resulting 
denominator polynomial has the form  Di(z) = z2 – 
2zcos(rTs) + 1, meaning that the digital resonators operate 
with the resonant frequency r. However, in all three cases 
the resulting digital resonator resonant frequency r, due to 
the discretization error, differs from the corresponding 
continuous time domain PR controller resonant frequency 
n. Consequently, the goal of the analysis in this subsection 
is to compare resonant frequency errors introduced by the 
aforementioned three different types of digital controllers. 

In Fig. 4, the resonant frequency discretization error 
absolute values are presented for the continuous-time PR 
controller with resonant frequency fn varying in the range of 
0 to 500 Hz, and for the sampling frequency fs varying in the 

range of 0 Hz to 0.25fnmax (fnmax = 500 Hz). The discretization 
resonant frequency error eR1a in Fig. 4(a) corresponds to the 
discrete resonator R1a(z), the error eR1b in Fig. 4(b) 
corresponds to R1b(z), and the error eRn in Fig. 4(c) 
corresponds to Rn(z). By analyzing the results in Fig. 4, it 
can be concluded that for wide variations of the resonant 
and sampling frequencies the novel resonator Rn(z) 
introduces the smallest error (up to two times smaller when 
compared to R1b(z) and up to 25 times smaller when 
compared to R1a(z)). It should be noted that in all cases the 
discretization error increases by increasing the resonant 
frequency fn and by decreasing the sampling frequency fs.  

B. Time delay compensation errors 

The discrete resonators Rd
1a(z) in Fig. 2(b), Rd

1b(z) in Fig. 
3(b), and Rd

n(z) in (10) are used to compensate the time

 
   (a)    (b)     (c) 
Figure 4. Resonant frequency discretization error absolute values for (a) R1a(z), (b) R1b(z), and (c) Rn(z) 

 

 
 (a)    (b)    (c) 

Figure 5. Delay angle compensation error absolute values for (a) Rd
1a(z), (b) Rd

1b(z), and (c) Rd
n(z) 

  

delay. In this subsection, in order to simplify the error 
analysis, the compensation of a constant angle value   = 
/4 rad is performed (i.e., in Rd

1a(z), Rd
1b(z), and Rd

n(z), the 
term NnTs is substituted with ). 

By analyzing the delay angle  compensation errors in 
Fig. 5, a similar conclusion to that in [19] can be drawn: that 
the resonant controller discretization based on the modified 
Tustin with frequency prewarping Rd

n(z) (10) enables 
superior delay angle compensation when compared to 
Rd

1a(z) and Rd
1b(z). Namely, the delay angle compensation is 

up to 80 times smaller for Rd
n(z) than for  Rd

1a(z) and Rd
1b(z). 

Consequently, based on the error analysis given in 
Section III, it can be concluded that the novel discrete 
resonant terms (9) and (10) enable improved operation due 
to the reduced resonant frequency and delay angle 
compensation errors. 

In the following section, the performance of novel digital 
resonant action is examined by means of experimental tests. 

IV. EXPERIMENTAL TESTS 

In Section IV, the dynamic performance of the new 
digital PR controller (10) is examined by means of the IM 

 86 

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 14:30:59 (UTC) by 44.210.107.64. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 16, Number 4, 2016 

stationary frame stator current control. Namely, based on the 
analysis in Section III, the novel digital resonant controller 
(10) operates with a reduced resonant frequency 
discretization error, which is verified by examining the 
stator current response harmonic contents. Also, the novel 
controller (10) enables accurate time delay compensation, 
which is verified by examining the IM stator current 
responses. Compensation of the time delay equal to Td = 2Ts 
is employed, which is typical for the current sampling and 
pulse-width modulation (PWM) updating techniques used in 
this paper. 

The experimental setup, presented in Fig. 6, consists of 
the PWM controlled three-phase voltage-source inverter 
operating with a switching and sampling frequency of 5 
kHz, a 1 kW induction motor, and a floating point digital 
signal processor based control card. 

A. Verification of the accuracy of the resonant frequency  

The accuracy of the resonant frequency is examined by 
means of the fast Fourier transform (FFT) analysis of the 
stator current error signal for the PR controller (10). 
Namely, if in the error signal no trace of the fundamental 
frequency component is found, it would suggest that the 
digital PR controller operates with an accurate discrete 

resonant frequency, resulting in asymptotic reference 
tracking. The experiments are performed for two resonant 
frequencies: n = 300 r/sec and n = 1000 r/sec. 

  
Figure 6. Proportional-resonant stationary frame based induction motor 
stator current controller 
  

By analyzing the stator current responses in Fig. 7, it can 
be concluded that no dominant component is found at 
frequencies equal to n = 300 r/sec in Fig. 7(b) and n = 
1000 r/sec in Fig. 7(d), meaning that the PR controller 
employed operates with zero steady-state error  and  that  the  

 
Figure 7. Stator current responses (a) Ir and I*

r for n = 300 r/sec, (b) FFT of the error signal er = I*
r – Ir for n = 300 r/sec, (c) Ir and I*

r for n = 1000 r/sec, 
(d) FFT of the error signal er = I*

r – Ir for n = 1000 r/sec 
 

proposed resonant controller discretization technique results 
in an accurate resonant frequency value. 

B. Delay compensation 

In this subsection, the PR controller delay compensation 
is investigated for the time delay Td = 2Ts = 2 / fs, where the 
sampling frequency is equal to fs = 5 kHz. In Fig. 8, the 
stator current step responses are presented. By analyzing the 
stator current Id component responses for n = 300 r/sec 
without the delay compensation in Fig. 8(a) and with the 
delay compensation in Fig. 8(b), it can be concluded that the 
introduction of the delay compensation reduces the stator 
current overshoot from 50 to 25%. By analyzing the step 
responses for n = 1000 r/sec without the delay 

compensation in Fig. 8(c) and with the delay compensation 
in Fig. 8(d), a similar conclusion can be drawn: that the 
inclusion of delay compensation improves the stator current 
response and reduces its overshoot from 40 to 10%. 

V. CONCLUSION 

In this paper, a novel resonant controller discretization 
technique based on modified Tustin discretization with a 
frequency prewarping function is proposed. The main goal 
of the paper is to propose the resonant controller 
discretization that operates with minimal resonant frequency 
and delay compensation errors and that also enables simple 
frequency adaptation, which is crucial in various power 
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Figure 8. Stator current step responses for: (a) n = 300 r/sec without the delay compensation, (b) n = 300 r/sec with the delay compensation, (c) n = 1000 
r/sec without the delay compensation, and (d) n = 1000 r/sec with the delay compensation 
 

converter applications. Consequently, the discretization is 
proposed based on the Tustin method with Taylor series 
approximation of the prewarping function. Experimental 
tests show that the proposed PR controller operates with 
accurate resonant frequency values and delay compensation, 
which improves the overall dynamic performance of the IM 
stator current controller.  
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