
Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

A PEG Construction of LDPC Codes Based on
the Betweenness Centrality Metric

Insah BHURTAH-SEEWOOSUNGKUR1, Pierre Clarel CATHERINE2, Krishnaraj Madhavjee Sunjiv
SOYJAUDAH3

1Electrical and Electronic Engineering Department, University of Mauritius, Réduit, Mauritius
2Industrial Systems Engineering, School of Innovative Technologies and Engineering, University of

Technology, Mauritius
 3Tertiary Education Commission, Réduit, Mauritius

i.bhurtah@ieee.org, c.catherine@ieee.org, ssoyjaudah@uom.ac.mu

1Abstract—Progressive Edge Growth (PEG) constructions

are usually based on optimizing the distance metric by using
various methods. In this work however, the distance metric is
replaced by a different one, namely the betweenness centrality
metric, which was shown to enhance routing performance in
wireless mesh networks. A new type of PEG construction for
Low-Density Parity-Check (LDPC) codes is introduced based
on the betweenness centrality metric borrowed from social
networks terminology given that the bipartite graph describing
the LDPC is analogous to a network of nodes. The algorithm is
very efficient in filling edges on the bipartite graph by adding
its connections in an edge-by-edge manner. The smallest graph
size the new code could construct surpasses those obtained
from a modified PEG algorithm - the RandPEG algorithm. To
the best of the authors' knowledge, this paper produces the
best regular LDPC column-weight two graphs. In addition, the
technique proves to be competitive in terms of error-correcting
performance. When compared to MacKay, PEG and other
recent modified-PEG codes, the algorithm gives better
performance over high SNR due to its particular edge and local
graph properties.

Index Terms—AWGN channels, block codes, channel
coding, error correction codes, parity check codes.

I. INTRODUCTION

LDPC codes are among the most powerful error-
correcting codes for wireless communication of high-speed
data. Their concept was developed by Robert G. Gallager in
1960 [1]. However, they were forgotten as technology was
not mature enough for their efficient implementation. In
1999, David MacKay rediscovered the codes and found that
they enabled data transmission rate close to the Shannon's
theoretical limit [2].

LDPC codes are usually identified by a parity-check
matrix H containing mostly ‘0’s and very few ‘1’s. Such a
matrix can efficiently be represented by a bipartite graph
which consists of bit and check nodes corresponding to
columns and rows in H. Decoding is achieved using the
belief propagation algorithm also known as the message
passing algorithm or the sum-product algorithm (SPA) that
passes messages along the edges of the bipartite graph. The
performance of the SPA is determined by particular edge
connections and local topologies of the graph [3-5]. Short
cycles should be avoided since the “bad” nodes of the
bipartite graph will convey the wrong information to other

nodes to which they are connected. These receiving nodes
will increase their false confidence, and they will in turn
provide other nodes with wrong messages eventually
building up to decoding failure. As such, it is fundamental to
avoid small cycles. The girth of a code refers to the length of
the smallest cycle in its corresponding bipartite graph and it
is important to maximize the girth of the particular H matrix
size with objective of obtaining better performance such as
in [6-7].

1This work was financially supported by the Tertiary Education

Commission (TEC) of Mauritius.

The construction of bipartite graphs with good girth
properties is crucial for good performance. In [2], the H
matrix is created through random constructions. Another
class is based on algebraic constructions [8-10] where
LDPC codes can be commonly encoded in linear time with
linear complexity on account of special structural property.
In [11], the proposed algorithm based on graph theory,
prevents the formation of a cycle by detecting the matrix
related to the subgraph created from the original bipartite
graph. Among these algorithms is the PEG algorithm [12]
which constructs the H matrix through an edge by edge
progression by optimizing the local girth after each edge
addition for any particular code dimension and node degree
distribution. The PEG algorithm demonstrates improved
decoding performance through iterative decoding.

In [13], a modification of the PEG algorithm called the
RandPEG is proposed. The technique improves the girth g
achieved by the PEG algorithm, and when the girth cannot
be increased, the RandPEG reduces the number of cycles of
length g. The authors in [14] put forward a technique to
construct the H matrix based on Quasi Cyclic (QC) method
for the PEG algorithm with maximized girth property. Other
works in [15-17] were also based on the PEG algorithm for
QC codes. In [18], the PEG algorithm was extended to
optimize high code rate of LDPC codes at the expense of a
relatively high decoding error floor. Though the
performance is decreased in the AWGN channel at low
SNR, the authors assert that the high rate codes reduce
transmission cost. The technique in [19] utilized a density
metric instead of the conventional distance metric for the
selection of nodes resulting in the creation of high rate
codes. The concept of decoder optimization for the selection
of check nodes in PEG-based construction techniques is
presented in [20] with improved performance without extra
cost in computational complexity. In [21], an algorithm was
provided to the original PEG one to avoid the creation of
dominant elementary trapping sets during edge selection in

 85
1582-7445 © 2016 AECE

Digital Object Identifier 10.4316/AECE.2016.02012

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:43:31 (UTC) by 3.80.155.163. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

the attempt of lowering the error floor performance. A more
recent work in [22] attempts to reduce the complexity of the
PEG algorithm by decreasing the time for expanding the
subgraph by not searching the bit nodes hence generating
the same H matrix as in PEG.

In this work, we introduce a new type of PEG
construction for LDPC codes based on the Betweenness
Centrality (BC) metric borrowed from social networks
terminology. The idea is inspired from [23] where the BC
metric was used to enhance the routing performance in
wireless mesh networks. A considerable gain in
performance was achieved when the degree metric was
based on the betweenness metric [23] (see (1)).

,

,
,

()
, ,j k

B i
j k j k

g i
C i

g

 j i k (1)

where CB,i, the betweenness centrality of node i is defined
as the percentage of shortest paths across all possible pairs
of nodes that pass through node i. Let gj,k be the number of
shortest paths in from node j to node k and gj,k(i) be the
number of shortest paths from node j to node k that contain
node i.

Given that the bipartite graph describing the LDPC is
analogous to a network of nodes, a modified version of the
PEG method was adapted based on the use of the BC metric.
Results obtained demonstrate the efficacy of the method
such that for a given target girth g, the algorithm aims in
constructing graphs with the minimal size so that a graph of
girth g exists, and most graphs built surpassed those
obtained by the standard PEG algorithm [12] or the
RandPEG algorithm [13]. The graphs obtained can in turn
be used to design ultra sparse non-binary (NB) LDPC codes
giving good performance at small to moderate codeword
lengths and high Galois field orders [13].

The paper is organised as follows: In section II, a
description of the method is provided. Section III presents
the results and discussion and we conclude with section IV.

II. MAXIMIZING THE RATE OF A GIVEN CODE

An (n,k) LDPC code is a linear block code mapping a
source sequence s of k bits into a codeword c of n bits
through c = GTs. GT is the generator transpose associated to
H in such a way that HGT = 0.

In a bipartite graph, the notation Nd(p) refers to the set of
nodes having a depth or a path of length d from a particular
node p where p can be a bit node ci, 0 ≤ i ≤ n-1 or a check
node fs, 0 ≤ s ≤ k-1. In Fig.1, N1(c0) = {f3, f6, f9}, N1(f4) = {c5,
c7, c11}, N2(f7) = {f4, f9} and N3(c0) = {f3, f6, f7}.

Figure 1. Subgraph of a (20,10) regular LDPC code. Note: Not all edges
are shown in the bipartite graph

A bipartite graph needs to be built with m check nodes, λ
edges per bit node with the desired girth. To start with, a
null bipartite graph is created with m check nodes. For each
bit node ci, λ = 2 edges are added so that the overlap of two
columns of the parity-check matrix H is ≤ 1 [2]. The overlap
between two columns refers to the number of positions
where they both have a non-zero entry. For instance, an
overlap of 2 in H reflects a cycle of length 4 which should
be avoided. Algorithm 1 in Fig. 2 describes the technique
employed by the new algorithm. Algorithm 1 builds a graph
with column-weight two only and λ = 2.

For girth g,

1

1
1

: , 0,
g

d
j j i

d
V f f U N c j m

, 1

 (2)

 1
2 arg min , 0, , 1

j

j
f

V N f j m (3)

 3 2arg min ,
j

B j j
f

V C f f V (4)

 ,B j k l
k l

C f g f

 j (5)

where gk,l (fj) = 1 if fj lies on the shortest path between fk
and fl and gk,l (fj) = 0 otherwise.

Figure 2. Algorithm 1 Adding edges to bit node ci

A. Steps 1 to 4 in Algorithm 1

The process of adding the first edge to a bit node ci
consists of successive screening operations. For a certain
girth g, at each step, check nodes contributing to a cycle of g
- 2 are eliminated and at the end, the edge is chosen
randomly in a set containing the check nodes having the
minimum BC metric.

V1 from (2) is a set that discards check nodes that would
have caused a cycle of length g - 2. For constructing an H
matrix of girth g = 6 for example, check nodes contributing
to a cycle of length 4 should be avoided. In the same way,
those leading to a cycle of length 4 and 6 should be

 86

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:43:31 (UTC) by 3.80.155.163. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

excluded for g = 8. The set V2 from (3) takes the elements of
V1 and returns the nodes having the least check node degree
dc. This step ensures the resulting graph is regular, with the
sa

e is
shown in Fig. 3 after the first edge has been added to c6.

me numbers connections for each check node.
The set V3 from (4) then retrieves the check nodes having

the least BC metric from V2
 using (5). To illustrate how the

set V3 calculates the least BC metric of the nodes, a (16,8)
LDPC code is taken as example. The subgraph of the cod

 Figure 3. Subgraph of a (16,8) regular LDPC code after addition of the first

ge in c

 matrix generated by the previous λj-1 addition

B.

ded, is considered.
In this case, the SP matrix M (c , λ) =

ed 6

The procedure of adding edges to c6 and c7 will be
described in subsections B and C respectively. Before that,
the k+1 by k+1 Shortest Path (SP) matrix MSP(ci, λj) is
introduced where ci and λj represent the ith bit node to which
the jth edge has already been added. The SP matrix is
derived from Step 5 in Algorithm 1 from Fig. 2 and from
Algorithm 2 from Fig. 4 which will be explained in
subsection D. This matrix is crucial in finding the shortest
path which exists between any two check nodes fj. In this
work, if the distance of the shortest path between fj is greater
or equal to 4, the list of check nodes that lie on the shortest
path between fj is found. For instance, a path of length 4 or
6 between two check nodes fj will have only one or two
check nodes lying between them respectively. As the
shortest path matrix is a k+1 by k+1 matrix, only the upper
triangular part of the matrix is considered as the lower part
is exactly the same. To connect an edge λj to a certain bit
node ci, the SP
is regarded.

 Addition of the second edge λ2 to c6

For the addition of the second edge λ2 to c6, the SP matrix
when the first edge λ1 has already been ad

SP 6 1

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

1 1 1 2 6 1 4 1

1 1 4 1 1 2 1 2

1 4 1 1 1 6 1 2

2 1 1 1 4 1 2 1

6 1 1 4 1 1 2 1

1 2 6 1 1 1 1 4

4 1 1 2 2 1 1 1

7 1 2 2 1 1 4 1 1

f f f f f f f f

f

f

f

f

f

f

f

f
Matrix MSP(c6, λ1) demonstrates the shortest path that

exists between any two check nodes fj when the first edge λ1
has already been added to c6. For instance, there exists a

path of length 4 between check nodes f0 and f6. As such,
there is only one check node which lies between f0 and f6
contributing to that distance (note that the connected bit
nodes on the path are not considered). To find out that check
node requires searching for a check node which lies at a path
of length 2 from both f0 and f6. In the example mentione

d,
this particular check node is found to be f (see Fig. 3). 3

Figure 4. Algorithm 2 Updating subgraphs of c and f

algorithm (represented by the highlighted cells in
Fi

pplied
to

r ensures that the generated

i s

We next demonstrate how the BC metric is updated. The
latter is best represented as a cube of size k by k by k. Each
layer of the cube represents a check node’s participation in
the shortest paths between all shortest paths across the
bipartite graph. All values of the cube are initialised to 0.
Concerning the example of node f3 which lies on the shortest
path between f0 and f6, we next consider an expanded and
partially filled BC matrix of Fig. 5. Since f3 is the relevant
node, the layer m = 3 is considered. The value of the cells
lying at the intersection of check node f0 (represented by row
0) and check node f6 (represented by column 6), and at the
intersection of check node f6 (represented by row 6) and
check node f0 (represented by column 0) are incremented by
1 in the

g. 5).
In the SP matrix MSP(c6, λ1), a path of length 6 exists

between check nodes f0 and f4. The two check nodes lying at
a distance of length 4 from both f0 and f4 are f3 and f6. In Fig.
5 for layers m = 3 and m = 6, the cells values which lie at the
intersection of check node f0 and check node f4, and at the
intersection of check node f4 and check node f0 are
incremented by 1 in the algorithm (represented by the
highlighted cells in Fig. 5). The same mechanism is a

 all paths greater or equal to 4 in matrix MSP(c6, λ1).
For each layer m in the BC matrix, the number of ones

represented by the highlighted cells is counted and since the
cell values appear twice, the calculated number is divided by
two to obtain the BC metric. Fig.5 represents only part of all
the updates of the matrix. The full one is shown in Table I
where the check node degree dc (calculated from Fig.3) and
the BC metric for each check node fj after λ1 has been added
to c6 are represented. For the next edge selection therefore,
the check node degree, dc is first taken into consideration
and then the BC metric is used to discriminate between the
remaining check nodes (this orde

 87

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:43:31 (UTC) by 3.80.155.163. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

co

r the
selection of the second node λ to be connected to c .

de is a perfectly regular one).
From Table I, the check nodes having the least dc are f0, f2

and f4 and are therefore the potential candidates fo
2 6

Figure 5. Partially filled BC matrix for addition of second edge λ2 in c6 for

EACH

EC N OF

Chec ode Check no e, dc BC tric

(16,8) regular LDPC code

 CHECK NODE DEGREE d AND BC METRIC FOTABLE I.
CH

c

K NODE AFTER ADDITIO
R

λ1 TO c6
k n de degre me
f0 1 6
f1 2 2
f2 1 6
f3 2 2
f4 1 6
f5 2 6
f6 2 2
f7 2 2

The check node with the least BC metric is then
considered. As the BC metric of check nodes f0, f2 and f4 is
6, a random selection is performed and f0 is chosen as λ2 to
c6 as shown in Fig. 6.

Figure 6. Subgraph of a (16,8) regular LDPC code after addition of the

C.

s already been added to c6, is
considered. M (c , λ) =

second edge λ2 in c6

 Addition of the first edge λ1 to c7

For the addition of the first edge λ1 to c7, the SP matrix
MSP(c6, λ2) when λ2 ha

SP 6 2

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

1 4 8 2 6 2 4 6

4 1 4 6 1 2 8 2

8 4 1 1 1 6 1 2

2 6 1 1 4 4 2 8

6 1 1 4 1 8 2 1

2 2 6 4 8 1 6 4

4 8 1 2 2 6 1 1

7 6 2 2 8 1 4 1 1

f f f f f f f f

f

f

f

f

f

f

f

f

It can be seen from matrix MSP(c6, λ2) that there exists a
path of length 8 between check nodes f0 and f2. From Fig. 6,
the check nodes lying between check nodes f0 and f2 are f1, f5
and f7. In the expanded and partially filled BC matrix (at
first initialised to 0) in Fig. 7, in the layers m = 1, 5 and 7,
the cells values which lie at the intersection of check nodes
f0 and f2 (represented by row 0 and column 2, respectively),
and at the intersection of f2 and f0 (represented by row 2 and
column 0, respectively), are incremented by 1 in the
algorithm (represented by the highlighted cells in Fig. 7).
The same mechanism is applied to

 all path length greater or
eq

heck
 λ1 to c7 at random.

D.

edge ci - fs is connected by two subgraphs. As such, all bit

ual to 4 in matrix MSP(c6, λ2).
For each layer m in the BC matrix, the number of ones

represented by the highlighted cells is counted and since the
cell values appear twice, the calculated number is divided by
two to obtain the BC metric. As Fig. 7 represents only part
of all the updates of the matrix, the full one is found in
Table II for each check node fj after λ2 has been added to c6.
As the check node degree dc is first considered, the check
nodes having the least dc are f2 and f4. To discriminate
between check nodes f2 and f4, the one with the least BC is
selected for edge addition. As, the BC metric of both c
nodes is 12, the edge f4 is chosen as

 Step 5 in Algorithm 1

In step 5 of Algorithm 1 in Fig. 2, the connectivity of all
nodes up to g - 1 for ci and fs is updated. The newly formed

 88

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:43:31 (UTC) by 3.80.155.163. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

Figure 7. Partially filled BC matrix for addition of the first edge λ1 in c7 for
(16,8) regular LDPC code

TABLE II. CHECK NODE DEGREE dc AND BC METRIC FOR EACH

CHECK NODE AFTER ADDITION OF λ2 TO c6
Check node Check node degree, dc BC Metric

f0 2 18
f1 2 14
f2 1 12
f3 2 14
f4 1 12
f5 2 18
f6 2 12
f7 2 12

and check nodes that form part of the subgraph at a depth

of g - 1 need to be notified of ci - fs.
When an edge is added between a certain bit and check

node in the bipartite graph, the respective subgraph of either
node contains many other subgraphs which hold potential
connections for the formation of cycles. Fig. 8 shows the
subgraphs of the newly formed edge ci - fs.

Connections of ci and fs with other bit and check nodes in
the bipartite graph can be seen in Fig. 8. Algorithm 2 [19] in
Fig. 4 provides the update of all nodes up to g - 1 for ci and
fs as in step 5 in Algorithm 1 in Fig. 2.

Figure 8. Subgraphs of ci and fs

E. Step 6 in Algorithm 1

In step 6 of Algorithm 1 in Fig. 2, the BC metric of all
nodes in the bipartite graph is updated so that the node with
the least BC metric can be chosen during the subsequent
edge connection process. In our algorithm, when the BC
metric is optimized, all nodes are equally connected in the
graph allowing for a better transfer of decoding metrics via
the edge connection.

F. Step 7 in Algorithm 1

It may occur that the algorithm adds only one edge for
some bit nodes as a result of its sub-optimality. If λ = 2, for
some bit nodes, the algorithm adds only one edge. However,
for the next bit node ci+1, the algorithm has the capability of
adding the set of λ = 2 edges.
As the BC is based on the number of shortest paths that pass
through a certain node, one which has a high BC metric is
likely to be such a node that connects two subgraphs in the
bipartite graph. Nodes having a high BC metric have a high
probability of being cut-points due to the fact that they lie on
a high number of shortest paths among other nodes in the
bipartite graph. They are related to the degree of
compactness and connectedness, and their removal entails a
partition of disconnected group of nodes (subgraphs) in the
graph. The reason for selecting an edge in V3 from (4)
having the least BC metric in step 4 in Algorithm 1 in Fig. 2,
is to encourage edge selection associated with disconnected
group of nodes.

 89

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:43:31 (UTC) by 3.80.155.163. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

Step 7 of Algorithm 1 in Fig. 2 deals with the elimination
of bit nodes having less than λ edges as only bit nodes with
λ edges need to be kept. A bipartite graph is obtained with m
check nodes, n bit nodes and exactly λ edges per bit node.

III. APPLICATION AND PERFORMANCE EVALUATION

A. Design of ultra-sparse graphs

Tables III, IV and V show the smallest graph size, that is
the codeword length that the LDPC code with the BC metric
could construct for regular (2, dc) graphs of girth g = 6 to 10,
g = 12 to 16 and g = 18 to 22 respectively where dc is the
check node degree. It is noted that the column weight is 2
although the technique could be applied to any graph
connectivity. When the value of the graph size achieves the
lower bound, this is indicated by a star (*) super-script.
Alternatively, the lower bound value is super-scripted with
parenthesis. Our results were compared with those obtained
with RandPEG [13] and standard PEG [12] which are
indicated on the first square brackets and second square
brackets respectively in Tables III, IV and V. For instance,
considering the cell dc = 5 and g = 10 in Table III, [110]
represents the graph the standard PEG algorithm could
construct, [90] represents the graph built by the RandPEG
and 85 denotes the best regular (2, dc) graph of girth g
achieved so far by the LDPC code based on the BC metric.
In the same cell, the superscripted value (65) represents the
value of the theoretical lower bound.

TABLE III. THE SMALLEST GRAPH SIZE OBTAINED FOR CHECK

NODE DEGREE dc AND GIRTH g = 6 TO g = 10
dc g = 6 g = 8 g = 10
3 6* [6] [6] 9* [9] [9] 15* [15] [18]
4 10* [10] [10] 16* [16] [20] 38(34)[38][42]
5 15* [15] [15] 25* [25] [35] 85(65)[90][110]
6 21* [21] [21] 36* [36] [48] 177(111)[189][225]
7 28* [28] [28] 49* [49] [70] 308(175)[385][441]
8 36* [36] [36] 64* [64] [116] 496(260)[728][812]
9 45* [45] [45] 81* [81] [162]

10 55* [55] [55] 100* [100] [230]
... ...* ...*
50 1275* [1275] [1275] 2500*

TABLE IV. THE SMALLEST GRAPH SIZE OBTAINED FOR CHECK

NODE DEGREE dc AND GIRTH g = 12 TO g = 16
dc g = 12 g = 14 g = 16
3 21*[21][27] 36* [36] [36] 45* [45] [72]
4 52* [52] [104] 200[260][292]

TABLE V. THE SMALLEST GRAPH SIZE OBTAINED FOR CHECK

NODE DEGREE dc AND GIRTH g = 18 TO g = 22
dc g = 18 g = 20 g = 22
3 96(69)[114][150] 156(93)[201][285] 351(141)[447][558]

The RandPEG algorithm is built from a randomization

approach in which the objective function was used to
discriminate among other edge connections. Results
obtained by the RandPEG are found in [13].

For all values of dc up to 50, the algorithm constructs
graphs for g = 6 and 8 as shown in Table III. For g = 10, 14,
18, 20 and 22 the algorithm could construct smaller graphs
than those obtained by the standard PEG algorithm [12] or
the RandPEG algorithm [13]. These results are highlighted
in bold in Tables III, IV and V. For large graphs with
increasing girth and dc, the present algorithm outperforms
consistently better. To the best of the authors' knowledge,

the graphs achieved by our algorithm are the best (2, dc)
graphs of girth g.

For all graph sizes our algorithm could construct, the
matrices were constructed three times and an average
number of trials was calculated. Fig. 9 shows the average
number of trials against dc for g = 6, 8, 10, 12 and 14. It can
be observed that the average number of trials increases with
dc.

Figure 9. Graph of average number of trials against dc for the LDPC code
with the BC metric

Fig. 10 illustrates the average number of trials against

column size for further graph sizes the LDPC code with the
BC metric has been able to construct with girth 10, 14, 18,
20 and 22 against that of the RandPEG algorithm. It can be
deduced that as the graph size decreases, it becomes more
and more challenging for the matrices with a specific girth
to be constructed, thus requiring an increase in the number
of trials for successful matrix construction.

Figure 10. Graph of average number of trials against column size for girth
g = 10, 14, 18, 20 and 22

B. Application to non-binary LDPC codes and design of
protographs

The graphs built from our algorithm can be used in many
applications such as building good non-binary LDPC codes
in high order fields. The column weight two graphs
constructed from our algorithm could be utilized for
nonbinary coefficients in GF(64).

 90

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:43:31 (UTC) by 3.80.155.163. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

The presented algorithm could be used to build
protographs which serve as a blueprint for the construction
of LDPC codes [24]. A protograph is a bipartite graph with
a relatively small number of nodes. It consists of variable
nodes and check nodes. A larger graph can be obtained from
a protograph through a copy and permute procedure [24].
The copies are overlaid in such a way that the same-type
vertices neighbour each other. However, the subgraphs are
disconnected. Connection of the subgraphs is achieved
through swapping of endpoints of edges [24]. This
procedure results in a derived graph from a prototype LDPC
code. In [25] and [26], new QC protograph LDPC code
constructions are presented. In this work, the presented
algorithm can be used as protographs to build larger codes.
The protograph will consist of a bipartite graph of small size
constructed as per Algorithm 1 in Fig. 2. After updating the
BC metric of all nodes of the protograph, it will become an
optimized version which can be duplicated a certain number
of times. The duplicated graphs will then be permuted
according to some structural rules. The derived graph will
become optimized in itself from the protographs.

C. Error-correction performance

This subsection deals with the error-correction
performance of the LDPC code with the BC metric over
other LDPC codes with results shown in Fig. 11-13 as
graphs of Block Error Rate (BER) against (Eb/No) where
(Eb/No) is the ratio of energy per information symbol to
noise spectral density.

Simulations were carried out using the AWGN channel
with the SPA as decoding algorithm. For a (504,252) LDPC
code, our algorithm outperformed the PEG code [12] and
the MacKay code [2] with a coding gain of 0.3 dB and 0.6
dB respectively at a BER of 1.00x10-6 in Fig. 11. The
performance of our algorithm was compared with the DPEG
code in [19]. For a (200,100) LDPC code, coding gains of
0.15 dB and 0.55 dB were achieved by the new code over
the DPEG and MacKay codes respectively at a BER of
5.03x10-7 shown in Fig. 12. For a larger (400,200) code, a
coding gain of 0.15 dB is obtained over the DPEG code at a
BER of 7.45x10-7 in Fig. 13. It is therefore observed that the
presented algorithm gives better error-correction
performance.

Figure 11. Graph of BER against (Eb/No) in dB for (504,252) girth 8
MacKay, PEG and LDPC code with the BC metric

Figure 12. Graph of BER against (Eb/No) in dB for (200,100) girth 8
MacKay, DPEG and LDPC code with the BC metric

Figure 13. Graph of BER against (Eb/No) in dB for (400,200) girth 8
MacKay, DPEG and LDPC code with the BC metric

IV. CONCLUSION

In this work, a new PEG algorithm construction based on
the BC metric is proposed. The smallest graph size the new
code could construct surpasses those obtained from the
RandPEG algorithm in [13]. The new code can also be used
in non-binary LDPC codes and serve as protographs to build
larger optimized codes. In addition, the technique proves to
be competitive in terms of error-correcting performance.
When compared to the MacKay [2] and DPEG [19] codes,
our algorithm gives better performance over high SNR.

REFERENCES
[1] R. Gallager, “Low-density parity-check codes,” IRE Transactions on

Information Theory, vol. 8, no. 1, pp. 21–28, 1962. doi: 10.1109/TIT.
1962.1057683

[2] D. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Transactions on Information Theory, vol. 45, no. 2,
pp. 399–431, 1999. doi: 10.1109/18.748992

[3] J. M. F. Moura, J. Lu, H. Zhang, "Structured low-density parity-check
codes," in IEEE Signal Processing Magazine, vol. 21, no.1, pp. 42-55,
2004. doi: 10.1109/MSP.2004.1267048

[4] C. A. Cole, S. G. Wilson, E. K. Hall, T. R. Giallorenzi, "Analysis and
Design of Moderate Length Regular LDPC Codes with Low Error
Floors," in 40th Annual Conference on Information Sciences and

 91

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:43:31 (UTC) by 3.80.155.163. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

 92

Systems, Princeton, NJ, 2006, pp. 823-828. doi: 10.1109/CISS.
2006.286581

[5] C. -C. Wang, S. R. Kulkarni, H. V. Poor, “Finding all small
errorprone substructures in ldpc codes,” IEEE Transactions on
Information Theory, vol. 55, no. 5, pp. 1976–1999, 2009. doi:
10.1109/TIT.2009.2015993

[6] J. Campello, D. S. Modha, S. Rajagopalan, “Designing ldpc codes
using bit-filling,” in IEEE International Conference on
Communications, Helsinki, 2001, pp. 55-59. doi: 10.1109/ICC.2001.
936272

[7] J. Campello, D. S. Modha, “Extended bit-filling and ldpc code
design,” in IEEE Global Telecommunications Conference
(GLOBECOM '01), San Antonio, TX, 2001, pp. 985-989. doi:
10.1109/GLOCOM.2001.965565

[8] Y. Kou, S. Lin, M. P. C. Fossorier, “Low-density parity-check codes
based on finite geometries: A rediscovery and new results,” IEEE
Transactions on Information Theory, vol. 47, no. 7, pp. 2711–2736,
2001. doi: 10.1109/18.959255

[9] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, D. J. Costello,
“Ldpc block and convolutional codes based on circulant matrices,”
IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 2966–
2984, 2004. doi: 10.1109/TIT.2004.838370

[10] H. -Y. Liu, X. -Y. Lin, L. -R. Ma, J. Chen, “On the stopping distance
and stopping redundancy of finite geometry ldpc codes,” IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., vol. E91-A, no. 8,
pp. 2159–2166, 2008. doi: 10.1093/ietfec/e91-a.8.2159

[11] Y. Cui, X. Si, Y. Shen, “A novel algorithm of constructing ldpc
codes with graph theory,” in IEEE Conference on Cybernetics and
Intelligent Systems, Chengdu, Sept. 2008, pp. 602–605. doi: 10.1109/
ICCIS.2008.4670752

[12] X. -Y. Hu, E. Eleftheriou, D. Arnold, “Regular and irregular
progressive edge-growth tanner graphs,” IEEE Transactions on
Information Theory, vol. 51, no. 1, pp. 386–398, 2005. doi: 10.1109/
TIT.2004.839541

[13] A. Venkiah, D. Declercq, C. Poulliat, “Design of cages with a
randomized progressive edge-growth algorithm,” IEEE
Communications Letters, vol. 12, no. 4, pp. 301–303, 2008. doi:
10.1109/LCOMM.2008.071843

[14] P. Prompakdee, W. Phakphisut, P. Supnithi, “Quasi cyclic-ldpc codes
based on peg algorithm with maximized girth property,” in
International Symposium on Intelligent Signal Processing and
Communications Systems (ISPACS), Chiang Mai, Dec. 2011, pp. 1–
4. doi: 10.1109/ISPACS.2011.6146165

[15] Z. Fan, W. Zhang, X. Liu, H. Cheng, “An improved algorithm for
constructing qc-ldpc codes based on the peg algorithm,” in Fourth
International Conference on Communications and Networking in

China (ChinaCOM), Aug. 2009, pp. 1–4. doi: 10.1109/CHINACOM.
2009.5339908

[16] Y. Huang, Y. Cheng, Y. Zhang, H. Han, “Construction of non-binary
quasi-cyclic ldpc codes based on peg algorithm,” in 12th IEEE
International Conference on Communication Technology (ICCT),
Nanjing, Nov. 2010, pp. 266–268. doi: 10.1109/ICCT.2010.5689251

[17] L. Huang, Y. Wang, P. Gong, “An improved construction method of
qc-ldpc codes based on the peg algorithm,” in Third Pacific-Asia
Conference on Circuits, Communications and System (PACCS),
Wuhan, July 2011, pp. 1–4. doi: 10.1109/PACCS.2011.5990282

[18] Z. Zhou, X. Li, D. Zheng, K. Chen, J. Li, “Extended peg algorithm for
high rate ldpc codes,” in IEEE International Symposium on Parallel
and Distributed Processing with Applications, Chengdu, Aug. 2009,
pp. 494–498. doi: 10.1109/ISPA.2009.80

[19] P. C. Catherine, K. M. S. Soyjaudah, “A density-based progressive
edge-growth matrix creation technique for ldpc codes,” in 6th
International Symposium on Turbo Codes and Iterative Information
Processing (ISTC), Brest, Sept. 2010, pp. 211–215. doi: 10.1109/
ISTC.2010.5613841

[20] C. T. Healy, R. C. de Lamare, “Decoder optimised progressive edge
growth algorithm,” in IEEE 73rd Vehicular Technology Conference
(VTC Spring), Yokohama, May 2011, pp. 1–5. doi: 10.1109/
VETECS.2011.5956769

[21] S. Khazraie, R. Asvadi, A. H. Banihashemi, “A peg construction of
finite-length ldpc codes with low error floor,” IEEE Communications
Letters, vol. 16, no. 8, pp. 1288–1291, 2012. doi: 10.1109/LCOMM.
2012.060112.120844

[22] G. Srirutchataboon, A. Bajpai, L. Wuttisittikulkij, P. Kovintavewat,
“Peg-like algorithm for ldpc codes,” in International Electrical
Engineering Congress (IEECON), Chonburi, March 2014, pp. 1–4.
doi: 10.1109/iEECON.2014.6925956

[23] M. Kas, S. Appala, C. Wang, K. M. Carley, L. R. Carley, O. K.
Tonguz, “What if wireless routers were social? approaching wireless
mesh networks from a social networks perspective,” in IEEE Wireless
Communications, vol. 19, no. 6, pp. 36–43, Dec. 2012. doi: 10.1109/
MWC.2012.6393516

[24] T. V. Nguyen, A. Nosratinia, "Rate-compatible short-length
protograph ldpc codes," IEEE Communications Letters, vol. 17, no.
5, pp. 948-951, 2013. doi: 10.1109/LCOMM.2013.031313.122046

[25] I. Diop, S. M. Farssi, M. Ba, H. B. Diouf, “Construction of codes
protographes ldpc quasi-cycliques based on an arithmetic
progression,” in Second International Conference on Innovative
Computing Technology (INTECH), Casablanca, Sept. 2012, pp. 194–
199. [Online]. doi: 10.1109/INTECH.2012.6457749

[26] M. Karimi, A. H. Banihashemi, “On the girth of quasi-cyclic
protograph ldpc codes,” IEEE Transactions on Information Theory,
vol. 59, no. 7, pp. 4542–4552, 2013. doi: 10.1109/TIT.2013.2251395

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:43:31 (UTC) by 3.80.155.163. Redistribution subject to AECE license or copyright.]

