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Abstract—In this paper we show a successful side-channel 

timing attack on a well-known high-complexity cognitive 
authentication (CAS) scheme. We exploit the weakness of CAS 
scheme that comes from the asymmetry of the virtual interface 
and graphical layout which results in nonuniform human 
behavior during the login procedure, leading to detectable 
variations in user’s response times. We optimized a well-known 
probabilistic decision tree attack on CAS scheme by 
introducing this timing information into the attack. We show 
that the developed classifier could be used to significantly 
reduce the number of login sessions required to break the CAS 
scheme. 
 

Index Terms—access control, authentication, classification 
algorithms, computer security, human factors. 

I. INTRODUCTION 

The emergence of a whole variety of attacks on various 
authentication schemes has led to the fact that designers of 
such schemes spend more and more time trying to improve 
existing schemes or invent new ones.  PIN/password-based 
authentication schemes, although still the most popular way 
of user authentication, have proven to be vulnerable to 
different forms of observation attacks, such as shoulder-
surfing [1], keylogging or camera recording attacks [2]. 
Newly proposed authentication schemes are in most cases 
challenge-response protocols, where users respond to given 
challenges in one or more challenge-response rounds.  

Appearance of new types of authentication protocols had 
as a result the invention of even more complicated attacks 
(such as a side-channel attack). In such attacks, the 
adversary exploits various information gained from the 
actual implementation of the system, either physical or 
virtual. Timing attack, as an example of a side-channel 
attack, focuses on the time the user invests in order to 
complete various computations required by the system. 

Protocols vulnerable to this kind of attack have one thing 
in common: subtle variations in the cognitive difficulty of 
challenges given to users, lead to observable variations in 
users’ response times. Designers of new authentication 
protocols often invest too much effort on maintaining the 
usability of the system, unfortunately they often neglect this 
asymmetry in the user’s cognitive load. This, along with the 
fact that the users respond to given challenges immediately 
after they calculate the response, results in unsecured 
protocols. In our recent work [3] we have shown how timing 
information could be used in cognitive-asymmetry side-
channel attacks. Unfortunately, not only the asymmetry in 
the user’s cognitive load can result in a successful timing 
attack, but also the asymmetry of the physical user 
interfaces [4] (such as keyboards) and, as we will show in 

this paper, of the virtual interfaces [5] and graphical layouts. 
In order to demonstrate the feasibility of the timing attack 

that results from the asymmetry of virtual interfaces and 
graphical layouts, we will use the asymmetry found in a 
well-known high complexity CAS scheme [6]. In this 
protocol, the user’s secret consists of 30 images extracted 
from the pool of altogether 80 images. In each challenge-
response round, the user is presented with an 8 × 10 grid 
consisting of randomly scattered 80 images, as can be seen 
in Fig. 1. In every challenge-response round the user 
visually forms the path from the upper left corner of the grid 
(the set of images) to one of the responses based on simple 
rules and his secret password. 

 
Figure 1. The graphical layout of the high-complexity CAS scheme 

 
From the design of the graphical layout of the high-

complexity CAS scheme, it is obvious that not all responses 
require an equal number of steps the user has to make before 
obtaining the response. This is of great importance, since 
differences in the number of steps required to obtain the 
response are highly correlated with (observable) variations 
in the user’s response times. In this paper we will 
demonstrate how to build a classifier that exploits these 
variations and allows the adversary to successfully perform 
the timing attack on high-complexity CAS scheme. 
Although we agree that CAS scheme is already insecure 
against SAT solver attacks [7] and probabilistic decision 
tree attacks [8], in this paper we show how to increase the 
speed of such attacks (reduce the number of login sessions 
the attacker has to observe) by observing the timing 
information in every challenge-response round. 

We show that with timing information it is possible to 
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Figure 2. An example of the proposed human model running CAS authentication scheme. In the simplest version of this human model where  )(d  and 

we get the same equation for the expected user’s response time as in (X):    RTE    )0383.03694.0( kRTE , where   is the 

average decision path length 

 
reduce the number of observations required to discover all 
secret elements with high probability by 150 challenge-
response rounds, i.e. by 15 login sessions! We also believe 
that our attack can be extended to work on plethora of other 
cognitive authentication schemes that have asymmetry in 
virtual interfaces and graphical layouts. 

II. RELATED WORK 

There is a body of research focused on designing secure 
PIN-entry schemes in face of the threat posed by 
observation attacks [9-11]. Some researchers design their 
solutions secure against a short-term memory attackers, 
using the fact that the human short-term memory has a 
limited capacity. In these solutions, the user is requested to 
give answers to a set of challenges during a login procedure. 
However, the authentication scheme is designed in a way 
that the user can easily respond to questions, whereas the 
cognitive capacity exceeds the attacker (human) memory.  

Roth et al. [9] developed a scheme where digits are placed 
in distinct sets. To authenticate, the users have to repeatedly 
indicate the respective target set. Similar approaches were 
proposed by Zezschwitz et al. [12], De Luca et al. [11] and 
Lee [10], exploiting the limitations of the human short-term 
memory. Unfortunately, scheme proposed by Roth et al. [9] 
is insecure against recording attacks, as indicated by Kwon 
and Hong [13]. As a results of their experimental and 
theoretical analysis, they have proposed a new scheme 
secure against camera-based recording attacks. 

Bianchi et al. proposed a nonvisual unimodal schemes, 
which uses hidden audio and vibration challenges for user 
authentication [14]. In another work by Bianch et al. 
Spinlock, Colorlock and Timelock schemes achieve faster 
times than Spinlock [15-16]. However, all three schemes 
have partial leakage of information in the observation attack. 

Other solutions assume the existence of stronger attacker 
that can record the complete login session and try to recover 
the user’s secret PIN/password [17-21]. However, all these 
schemes are not usable in practice since they all take large 
authentication time. 

Designing a scheme secure against even a simple passive 
attack in a model where the attacker can observe both 

challenges and responses appears to be challenging [6], [14]. 
In Cognitive authentication scheme (CAS) [6], a user 
mentally computes a path formed by his set of secret 
images, and gives an answer based on that (mentally) 
computed path. CAS scheme is vulnerable to SAT solver 
attacks [7] and probabilistic decision tree based attack [8].  

To speed up the login process and keeping the solution 
safe against observation attacks, some solutions rely on the 
presence of secondary-based (unobservable) channels. 
Kuber and Yu [22] and Sasamoto et. al. [23] use a tactile 
channel as a secure hidden challenge channel. 

In VibraPass authentication system user receives hidden 
challenges via his mobile phone [24] (a vibration telling the 
user to enter true/false response). Hidden challenges are 
used to avoid possible manipulations by the attacker. The 
authors mentioned confused waiting as a potential timing 
attack. 

In the Undercover solution the user simultaneously 
receives a visual challenge and a hidden tactile challenge via 
a protected channel and authenticates by answering correctly 
to several challenges. One of the authors of Undercover, 
Hasegawa et. al. [25] proposed two alternative designs to 
Undercover [23], one of which uses an audio channel as the 
carrier of the hidden challenges. However, the proposed 
solution is prone to intersection attacks [5]. Unfortunately, 
Undercover is also prone to intersection attacks as 
independently demonstrated in [5] and [8]. This problem can 
be easily mitigated if challenges are fixed instead of being 
randomized [5]. 

In recent paper Asghar et al. [26] show how to attack CG 
protocols [27] and a modified version of Foxtail protocol 
[18], by transforming them into a system of linear 
congruences. A as result, the attack places the upper bound 
on the number of allowable sessions to recover the secret. 

Recent discoveries in human user’s nonuniform behavior 
have shown that a lot of information about the user’s secret 
can be discovered only by observing user’s response times 
to (hidden) challenges. For example, timing attack on 
Undercover [23] is based on design flaws that lead to 
nonuniform user’s behavior that results from the asymmetry 
of virtual interfaces, i.e. asymmetric graphical layouts. 
Recently, a timing based side-channel attack has been found 
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on HB protocols and Mod10 scheme [3] that exploit the 
difference in response times that result from the difficulty of 
cognitive operations while calculating the user’s response, 
i.e. cognitive asymmetry side-channel attacks. 

III. HIGH-COMPLEXITY CAS SCHEME 

k-out-of-n 
pa

lgorithm 1 High-complexity CAS scheme 
er left corner of 

 secret set s, move 

with the 

IV. THE ATTACKER MODEL 

Th is a passive 
at

V. TIMING ATTACK ON HIGH-COMPLEXITY CAS SCHEME 
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r

A. Modelling a Human Running CAS Scheme 

el describing 
th
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  (1) 

where  represents a random penalty associ

p  f mode eactio

High-complexity CAS scheme is based on 
radigm, where the user (U) is assigned with k=30 images 

(which form the user’s secret set s) chosen from the pool of 
altogether n=80 images. In each challenge-response round, 
the system (S) forms an 8 × 10 grid from independent 
random permutations of the original 80 images. Positions 
next to terminal row and column of the grid are exit 
positions (squares in Fig. 1). Each exit position is associated 
with a number from the set [0, 1, 2, 3] that represents the 
response to the given challenge. Please note that every 
number from the set [0, 1, 2, 3] has approximately the same 
probability of occurrence. The user mentally computes the 
path and gives back the obtained response based on the 
Algorithm 1: 
 
A
1) Starting point (the current cell) is the upp
the 8 × 10 grid (colored circle in Fig. 1). 
2) If the current cell belongs to the user’s
down by one cell, otherwise move right by one cell. 
3) When the user reaches the exit position, respond 
given response. 

e attacker we consider in this paper 
tacker who can eavesdrop on all public communication 

between the user and the end system, and can also measure 
and record user’s reaction time when responding to 
challenges given by the system. 

In this section, we will explain how variations arising
om the asymmetric graphical layout of the high-

complexity CAS scheme could be used to successfully 
perform the timing side-channel attack. Let us denote 
with  the number of steps (movements to the right or down 
by one cell) that the user makes before reaching the exit 
position. Due to the design of the CAS scheme, the number 
of steps may differ with each challenge-response round. 
Moreove , higher the number of steps the user requires to 
make to reach the exit position, longer the time he will 
require to respond to the given challenge (as users tend to 
enter the response immediately after observing it). This 
means that for different challenges, user will with high 
probability respond with observably different response times 
RT. A passive attacker can observe and record these times, 
and use this knowledge to gradually learn the user’s secret 
through the attacking algorithm we propose in this paper. 

 

 

We now present a general and realistic mod
e user running the CAS scheme. Let 

RT  be the 

probabilistic model for the response time assoc d with   

number of steps the user makes before reaching the ex t 
position (either bottom or right). Equation (1) that we 
propose is an extended version of equation given in [8]: 
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such ex-Gaussian [28], ex-Wald, Weibull, etc. We now 
write: 



)(tfD
. 



)),(|()( p


dtftfD  ,   with suppor ,    (2) 

where in equation (2) is 

nts p  etc. 
ption is 

th

t 0t

)(d the mean of f , and p )(tD

represe arameters such as variance, shape,
Please recall, our main (and reasonable) assum
at the higher number of steps   the user makes before 

reaching the exit position, longer the time he requires to 
respond to the given challenge. This can be formalized in a 
general way if we assume that )(d is an arbitrary increasing 

positive function that is strictly easing for at least one  . 

We can now derive the distribution of 
RT  (equation (3)). 

)),(|()( pdtftfRT

 

cr in


 ,   with pport 0t .     (3 su ) 

To build our classifier, we m he m
di

ust first derive t ixture 
stribution that characterizes the observable user’s response 
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obvious that for one exit to the bottom there are numerous 
paths leading to it, however, all these paths share the same 
number of steps  (starting from the upper-left corner). 
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where
1 and

2 in equation (5) represent probabilities that 

the use  will reach a certain exit position (u
ident by e number of steps ) to the bottom o
right, res ectively (Fig. 1). In r words, each of these 
prob ilities rep esents the total n mber of paths consisting 

te

r
ified 

p
ab

ctl

niquely 
r to the  th

r
 s


othe

u
of exa y  teps, multiplied by the probability of 
occurrence of such paths (which is the same for all of them). 
Please note that, in order to stay general, we take into 
account “the human factor” by introducing the 
aforementioned distribution )(tf RT

 into equation (4). 

The expec d value of RT can be defined as follows: 
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probability according to the following equation: 
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secret set within a decision path, it will be assigned a 
uniform probability k/n, otherwise it will be assigned a 

probab  th  the challenge 
matrix. For example, if the corresponding individual 
element belongs to the secret set within a decision path, and 

is placed in the row 3 and column 4, then its probability will 
be 28/77. This means that from the overall n=80 elements, 
there still have left 77 candidates while traveling through the 
decision path (form the upper left corner), but also 28 
overall candidate images for the secret vector, since user has 
already moved two positions down (as can be seen in Fig. 
1). As a final result the average decision path length has 
been slightly changed as compared to the average path 
length being 14.5539 in [8]. 

In the case of a high-complexity CAS scheme, where 
k=30, n=80, r=8 and c=10, there are 43758 possible decision 
paths in total, with average decision path length being 


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Figure 3. High-complexity CAS scheme. Light shaded responses present 

responses smaller than 

 

steps, whereas dark shaded responses are the ones 

that require more than  steps 

 
Please note in Fig. 3 dark shaded squares represent 

responses that require more steps from user to perform than 

the average   number of steps, whereas light shaded 
responses require from user more than the average number 

f steps o  . Reca l, eacl h response is associated with a 
u

e 

n mber from the set [0, 1, 2, 3] that has approximately the 
same probability of occurrence. At the same time, the 
probability of reaching either light or dark shaded responses 
in Fig. 3 is approximately the same. 

According to the human model presented in previous 
section, th user will require more time to respond if he has 
to conduct more steps before reaching the exit position. In 
the simplest version of the human model (as explained 

below Fig. 2, where  

in

probability 1-k/n. In our scenario the values of such 
ilities depend on e position within

 )0383.03694.0( kRTE ), we 

can easily calculate the expected value for the user response 
time E[RT]=22.3687s. We now present the classifier that 
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defines what responses should be taken into account by the 
adversary based on the timing information:  

Classifier 1: if the u more 
time more than E[RT], take into account responses that 

require more than 

ser’s response time RT takes 

 steps to be obtained from the user (long 
paths). Otherwise, take into account responses that require 

 or less steps (short paths). 

 
Figure 4. A trace of response times RT generated by the proposed 
generative model of the human behavior. We used the average of the 
collected response times as a threshold 

 
Fig. 3 shows an example of short path (dashed line) and 

long response path (solid line). The adversary can now build

score table 
1)

e 

 
and update a t-element score table using Algorithm 2. 

 
Algorithm 2 Building t-element 

 Enumerate all consistent decision paths leading to all exit 
positions with the current response. 
2) Eliminate those decision paths that lead to responses that 
do not satisfy the classifier based on timing information.  
3) For all remaining decision paths X, calculate th
probability of the decision path P(X), where 

1)( pXP   or 

2)( pXP  , depending on whether t


the bottom or to the right side of the grid, respectively. 
4) Calculate p - the sum of all P(X) of the remain

he curre ds at 

ing to 
conditional

core 

e highest scores). 

llowing 
 user’s secret  by 

C.

ck is the extension of the previously introduced 
pr abilistic decision tree attack introduced in [8]. However, 

can, along with all public 

nt path en

sum ing 
decision paths. 
5) Update the t-element score table accord the 

 probability
sumpXPresponseXP /)()|(  ; i.e. in 

the currently observed decision path, add s
by )|( responseXP if the image is followed by the step to the 

bottom, otherwise deduce the score by |( responseXP ) . 

6) Repeat the procedure until all k images from the secret 
set are revealed (have th

 
By fo Algorithm 2, the adversary can gradually 

learn, and finally discover the exact  s
observing a polynomial number of challenge-response 
rounds. 

 

 Results of the Attack 

Our goal is to estimate the number of rounds T required to 
discover all k elements of the user’s secret set of n images. 
Our atta

ob
in our attack the adversary 
challenges and responses, also observe response times the 
users require to enter the response. This way, by introducing 

a classifier based on response times into probabilistic 
decision tree attack, we hypothesize that the attacker can 
speed up the attack and thus reduce the number of observed 
challenge-response rounds (login sessions). 

 
Figure 5. The average false positive rate of the high-complexity CAS 
scheme for probabilistic decision tree attack [8] and the probabilistic 
decision tree attack aided with timing attack 
 

To model the human running the high-complexity CAS 
scheme we used a generative model introduced in Section

near positive function

 
IV-A. Recall, in our model we assume that the probability 
distribution function of the response time is given by a 
li  :)( 10  ld , however in our 

model we used 00   and 11  , which is the 
simplification that leads us to the similar equation as the one 
given in [8]. The density parameters in p (the distribution 
shape, variance) are mod  ex-Gaussian [28] 
distribution used for mode on times. 

To estimate the efficiency of our attack compared to the 
probabilistic decision tree attack and to estimate the number 
of rounds T required to break the high-complexity CAS 
scheme, we implemented and compared both attacks: the 
probabilistic decision tree scheme attack introduced in

eled by using
ling human reacti

 [8] 
and probabilistic decision tree scheme attack aided with our 
timing-based classification attack. The main difference 
between our attack and the one introduced in [8] relies on 
the fact that in our observation we can differentiate between 
long or short response paths, i.e. paths that lead to the 

observed response which fall either within   steps, or 

require from user to perform more than   steps. By 
observing only fast or slow response times we consider only 
such decision paths that lead to all exit positions with the 
current response which fall within short or long response 
path, respectively. This way we eliminate unwan ed decision 
paths used to calculate/update t-element score table (Section 
IV-B) and finally speed up the attack by significantly 
reducing the number of challenge-response rounds required 
to break the high-complexity CAS scheme. 

Fig. 4 shows a trace comprising of 700 challenge-
response rounds. Since in our human behavior model we 
consider a linear positive function d(  ), where the response 
time is a linear function of the number of steps the user has 
to make before obtaining the response, we u

t

sed the expected 
response time E[RT] as a threshold to differentiate between 
slow and fast responses (response times). More precisely, as 
a threshold we used the average of t e generated response 
time of 22.46s (which is close to the expected resp. time 

h

  sRTE 3687.22  obtained from the expression 
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   )0383.03694.0( kRTE , where 7318.14 ). 

We can see from Fig. 5 that the timing attack significantly 
in e speed of the probabilistic decision tree attack. 

 t e original probabilistic decision tree 
lements nt t

[9]
creases th

For comparison, in h
attack, to discover 90% of secret e  it is sufficie
ob

gnitive authentication scheme (CAS) to sid
channel timing attacks. CAS scheme is a representative 
an authenticatio rs visually/m
fo

SOUPS. ACM, 2006, pp. 56–66 
[2] M. Backes, M. Durmut mpromising reflections-

ystem Security Symposium 

004, pp. 236–245. 

1 

N: 

ms, CHI. pp. 

cs and Security, vol. 10, no. 2, pp. 278–292, 2015. 

M, 2010, pp. 1089–1092. 

, 2012. 

90. doi:10.1007/978-3-642-22950-

mation Security: Advances in Cryptology, ser. ASIACRYPT, 

rchive, Report 2005/268,” 2005. 

Security. Springer, 2010. 

Interfaces, ser. 

and Applications Workshops - 

and E. Hayashi, “Undercover: 

 

M, 2009, pp. 

), 2009. 

ng theory and lattices,” in IEEE Transactions on 

nce, 2008. 

o 

(N

[8] Q. Yan, J. Han, Y. LI, and R. Deng, H., “On limitations of designing 
usable leakage-resilient password systems: attacks, principles and 
usability,” in Network & Distributed S

DSS), Distinguisged Paper Award, 2012. 
 V. Roth, K. Richter, and R. Freidinger, “A PIN-entry method resilient 

against shoulder surfing,” in Proc. ACM Conf. Computer and 
Communications Security, ser. CCS. ACM, 2

[10] M.-K. Lee, “Security notions and advanced method for human 
shoulder-surfing resistant PIN-entry,” in IEEE Trans. Inf. Forensics 
and Security, vol. 9, no. 4, 2014. doi:10.1109/TIFS.2014.230767

serve around T=350 challenge-response rounds (35 
sessions), where by adding our timing-based classification 
algorithm we can reduce the number of observations to 
T=200 challenge-response rounds (to 20 sessions). 

The above results indicate that asymmetry of virtual 
interfaces and graphical layouts found in a well-known CAS 
scheme [6] can result in nonuniform human behavior which 
can be further exploited to fully recover the secret s. As we 
sh

[11] A. D. Luca, K. Hertzschuch, and H. Hussmann, “ColorPIN: securing 
PIN entry through indirect input.” in CHI. ACM, 2010. 

[12] E. Zezschwitz, A. D. Luca, B. Brunkow and H. Hussmann, “SwiPI
fast and secure PIN-entry on smartphones,” in ACM Proceedings of 
the Conference on Human Factors in Computing Syste
1403-1406, 2015. 

[13] T. Kwon and J. Hong, “Analysis and improvement of a PIN-entry 
method resilient to shoulder-surfing and recording attacks”, in IEEE 
Trans. Inf. Forensiow in this paper, timing attack in combination with 

probabilistic decision tree attack can increase the speed by 
15 login sessions in the case of a high-complexity CAS 
scheme. 

VI. CONCLUSION 

In this paper we have shown the vulnerability of high-
complexity co

doi:10.1109/TIFS.2014.2374352 
[14] A. Bianchi, I. Oakley, and D. S. Kwon, “The secure haptic keypad: a 

tactile password system,” in Proc. SIGCHI Conf. Human Factors in 
Computing Systems, ser. CHI. AC

e-
of 

doi:10.1016/j.intcom.2012.06.005 
[16] A. Bianchi, “Spinlock: a single-cue haptic and audio PIN input 

technique for authentication.” in Haptic and Audio Interaction Design, 
vol. 6851. Springer, 2011, pp. 81–

[15] A. Bianchi, I. Oakley, and D.-S. Kwon, “Counting clicks and beeps: 
exploring numerosity based haptic and audio PIN entry.” Interacting 
with Computers, vol. 24, no. 5, pp. 409–422

n scheme in which use entally 3_9 
[17] N. Hopper and M. Blum, “Secure human identification protocols,” in 

Proc. Int. Conf. on the Theory and Application of Cryptology and 
Infor

rm a path to reach the response. As we show, the 
vulnerability comes from design flaws of visual interfaces 
that lead to detectable timing variations in human behavior. 
The attack is based on asymmetry in the visual interface of 
CAS scheme. We show that timing information can increase 
the speed of the probabilistic decision tree attack by 150 
challenge-response rounds and thus significantly reduce the 
number of logins the attacker is required to observe. In 
future work we will focus on finding timing attacks on 
CAS-like designs and other human authentication systems.  
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