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Abstract—The design of highly efficient clock distributions 

for integrated circuits is an active topic of research as there will 
never be a single solution for all systems. For high performance 
digital or mixed-signal circuits, achieving zero-skew clock over 
large areas usually comes with high costs in power 
requirements and design complexity. The present paper shows 
an overview of a recently proposed technique for ICs - on-die 
salphasic clock distribution, introduced by the author for 
CMOS processes. Initially reported in literature for rack-
systems, the present paper shows that further refinements are 
needed for the concept to be applicable on a silicon die. Based 
on the formation of a standing wave (intrinsically presenting 
extended in-phase regions) with a voltage peak at the input 
(creating a no-load condition), it is shown that any IC 
implementation must use transmission lines loss compensation 
techniques to maintain the proper standing wave 
configuration. Furthermore, the paper shows theoretical 
solutions and describes practical on-die techniques for pseudo-
spherical bidimensional surfaces, which, with the already 
reported orthogonal and pseudo-orthogonal structures, can be 
used to distribute with minimal power requirements a zero-
skew clock signal, over large silicon areas.  
 

Index Terms—bi-dimensional clock distribution, loss 
compensation, salphasic, standing wave, zero-skew. 

I. INTRODUCTION 

An essential part of every high performance synchronous 
integrated circuit (IC) is its clock distribution network – 
without it, system operation and performance cannot be 
guaranteed at the specified frequency. As detailed in [1], 
proper system operation requires the existence of a specific 
alignment between the active edges of the clock signal and 
the data processing paths. Given the very nature of the clock 
signal – i.e. having the maximum frequency in a system, 
while, in the same time, having the highest capacitive load – 
designing a good clock distribution network takes not only a 
large part of the project’s total time schedule, but also an 
important fraction of the power budget [2-4], reaching up to 
about half of total system power. 

Various techniques were proposed for dealing with the 
most critical aspects of good clock distribution networks – 
the power consumption and the clock skew. For instance, 
when talking about clock skew, a designer can choose 
between different tree topologies (buffered trees [5-7], 
symmetric H or X trees [1]), different post fabrication re-
alignment techniques – using phase locked loops, delay line 
loops or distributed synchronized oscillators [8-11] or using 
programmable delay elements [8], [12-16]. The complexity 
of the system is rising from the first to the last approaches. 

However, so does the system’s performance as the post-
fabrication de-skewing allows for tighter design timings.  

For the power dissipation problem, inspecting the known 
formula for the dynamic power used to charge and discharge 
the capacitance CCK with a voltage VSWING at the operating 
fCK frequency, Pd = fCK · CCK · VSWING

2, it becomes evident 
there are only a few possible strategies with an impact on 
system performance. A designer may try to reduce the 
operating frequency, but this comes with an increase in the 
parallelism and hence, in a larger clock capacitance. The 
only relatively free parameter and with the biggest overall 
impact due to the quadratic dependence, is the voltage 
swing. For this reason, [3-4], [17-21] are all trying to 
decrease system power by reducing the clock signal’s 
amplitude. As a cautionary note, the total power gain may 
not be as significant as the previous formula may indicate. If 
the swing reduction is achieved by using linear techniques, 
the quadratic dependence will be lost, so a 50% amplitude 
reduction will yield only 50% power reduction.  

All these techniques rely on classic principles for which 
the propagation delays are unwanted side effects that must 
be eliminated. As the operating clock frequencies are placed 
already in the microwave range and the chip sizes (5 – 
10mm on a side) are comparable with the signal 
wavelengths (10mm to several centimeters), another class of 
clock distribution techniques becomes possible – i.e. 
resonant or standing wave based distributions. Here, the 
clock source is no longer a point source but, instead, is 
spread over the entire IC surface. For instance, in [22-23], 
the loading of the clock network is used as a distributed 
capacitance for an LC oscillator tank, with the inductor 
either external [22] or internal [23]. 

References [24-25] are taking profit also of the 
transmission line properties of the clock networks. Here, 
line segments are used both as equivalent resonant elements 
and as supports for signal distribution. This combination of 
non-localized signal generation and propagation allows the 
formation of standing waves, with the advantage that 
extended, same-phase – i.e. zero skew – regions are created 
over the silicon area as an intrinsic property of the standing 
wave.  

The net benefit for the techniques used in [21-25] is the 
important reduction in the power needed to drive the clock 
network. For the resonant networks of [22-23], the injected 
energy is cycled between the reactive components – once 
the clock distribution reaches the steady state, the system 
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will use power only for sustaining the oscillations. This 
power is only a fraction of that needed to fully charge and 
discharged the same capacitive load. This is also valid for 
the distributions of [21], [24-25] with the difference that the 
initial energy is transported as direct and reflected waves.  

Although not at integrated circuit level, [26-27] 
demonstrated another standing wave distribution principle. 
Similarly with [21], [25], the salphasic approach, as named 
in the references, uses the standing wave configuration to 
address the skew problem. The power dissipation problem is 
further avoided by the careful selection of the termination 
impedance used for the creation of total reflection condition. 
By properly choosing the value of the load impedance it is 
possible to place a voltage peak at the input node. Form the 
clock generator’s point of view, this voltage anti-node 
translates in a no-load condition. Unlike the resonant 
techniques for which the distributed frequency is set mainly 
by physical system dimensions, the salphasic distribution 
can be tuned with the aid of the termination impedance, 
allowing for a wider operating range. 

As a note, this paper will use the word salphasic as a 
qualifier that denotes a standing wave having a particular 
pattern – i.e. the existence of a total reflection condition at 
the load with a voltage peak at the generator’s point (that is 
a no load condition) and the extended same-phase regions. 

The technique of [26-27] is applied at a rack-system level, 
but, as was first introduced by the author of the present 
paper in [28], the approach may be extended also for 
integrated clock distributions built directly on the silicon 
substrate. Furthermore, as it was suggested initially in [26], 
the technique can be generalized for extended surfaces, with 
net benefits with respect to power dissipation and clock 
skew. 

As it will be seen, any integrated salphasic clock 
distribution needs a transmission line loss compensation 
technique. As a note, this is also valid for the resonant or 
standing wave structures that are using transmission line 
segments of [24-25]. However, do to the oscillatory nature 
of those clock distributions, the loss compensation is 
achieved in the unitary oscillator cells. Compensating the 
integrated transmission line losses is not a new topic, as 
extensive research is done on this for distributed amplifiers 
and RF applications [29-31]. The topic is also researched for 
digital ICs where various techniques were proposed to 
improve the clock distribution network [32] or to 
compensate the propagation delays of the signal paths [33-
35]. 

The circuit configurations proposed in [32] or [35] have 
two major drawbacks for the salphasic distribution. The first 
drawback comes from the limitation of the voltage swing 
imposed by the source degeneration circuit. The second 
drawback comes from the limited online trimming 
possibilities as the circuits would need to adjust physical 
source degeneration resistors. So once built, these 
compensation cells will be highly dependent on the resulting 
process corner. As it was shown in [36], based on a classic 
cell (cross-connected inverter pair) it is possible to obtain an 
adjustable negative impedance circuit, well suited for 
standing wave based distributions. 

For the frequency range, the oscillating distribution 
networks require a strong correlation between the lengths of 

the trace segments and the oscillation frequency and can be 
operated only around the self-resonant frequency (or its 
harmonics). For the salphasic distributions, the formation of 
the salphasic standing wave pattern depends on the 
structure’s termination impedance that provides the total 
reflection condition. By properly choosing the termination 
network (which can be external to the IC), the user may tune 
the distribution to any operating frequency. 

Although the salphasic technique is not new per se, the 
novelty comes from its application at an IC level, by using 
loss compensation techniques and from the extension of the 
distribution over bi-dimensional silicon areas. With these, 
the technique proves to be a highly efficient method of 
distributing a zero-skew, high frequency clock signal with 
minimal power consumption. 

II. ON-DIE INTEGRATED SALPHASIC CLOCK DISTRIBUTION 

Assuming a (complex) harmonic signal applied at the 
input of the transmission line, similarly with [26] and [28], 
the standing wave can be determined based on the complex 
solutions of the transmission line equations. 

xγtωjR
0

xγtωjD
0 eeUeeU)t,x(u    (1) 

βjαγ     (2) 
 In the line-voltage solution (1), U0

D and U0
R stand for the 

direct and reflected waves amplitudes as seen at the 
generator’s node, while the complex propagation constant γ 
of (2), determines the attenuation constant α and the phase 
constant β. The time dependent complex exponentials 
represent the harmonic signal. 

For the lossless case, where the propagation constant γ is 
imaginary, and assuming total reflection at the far end of the 
transmission line, the amplitudes of the direct and reflected 
waves will be equal to U0 at all points. With an arbitrary 
phase shift φ in the reflected wave, the solution of the line 
voltage can be written as in (3) [26], [28]: 

 xβjφjxβjtωj
0 eeeeU)t,x(u      (3) 

From (3), the solution for the standing wave becomes: 
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In (4) it can be seen that the position dependent part (the 
cosine function) is completely independent of the time 
varying part (the complex exponential). This property 
explains the existence of the extended same-phase regions 
with steep 180 degrees phase steps at the zero crossings of 
the cosine, as illustrated in fig. 1. As the salphasic 
distribution requires the presence of a voltage anti-node at 
the origin of the system, based on (4), the phase shift φ, 
introduced by the line termination must be strictly zero. 

One of the key parameters for the salphasic operation is 
the propagation loss of the structure. As it was shown in 
[26] for the system level, once the transmission lines used 
are non-ideal, the standing wave no longer presents the 
extended same-phase regions. While [26] discussed the 
effects of the transmission lines losses, it did not offer any 
bounds for the attenuation coefficient for which the 
salphasic behavior is still acceptable. For the IC’s case, the 
problem is even more stringent if no special measures are 
taken, but, as it will be seen here for the first time, a design 
constraint for the acceptable attenuation constant may be 
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derived. 

 
Figure 1. Standing wave for the amplitude and the phase of the line voltage 

 
Similar with [26] and [28], assuming a lossy transmission 

line (with small enough losses to allow reasonable 
approximations), the voltage standing wave may be 
described starting from the general form of the solution as in 
(5) and (6): 

xjxtjR
0

xjxtjD
0 eeeUeeeUtxu   ),(   (5) 

d2D
0 eU       (6) R

0U 
As the amplitude of direct wave U0

D at the generator’s 
node is identical for both the lossless and the lossy case, for 
a direct comparison with the former case, it is assumed to be 
equal with U0 as in (3). In (6), the amplitude of the reflected 
wave U0

R, as seen at the generator node, is given by the 
amplitude of the direct wave affected by the attenuation 
constant α both for the flight and the return trip. The load is 
assumed being at d coordinate away from the generator. 

By manipulating (5) to bring it to a form similar with (4), 
it is possible to estimate the effect of the attenuation 
constant on the standing wave: 
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A major difference between (7) and (4) is the presence of 
a second term depending both on the position coordinate x 
and on the time instant t. The first term in (7) differs from 
(4) only through the attenuation constant’s effect. As this 
position dependent function is still a real valued function, 
the phase behavior of the first term in (7) is similar with that 
of (4). However, since the new term has a complex 
dependence on the position coordinate, it will destroy the 
zero-skew condition. 

Starting from the real and imaginary parts of the position 
dependent terms of (7) it is possible to evaluate the tangent 
of the phase angle for the standing wave voltage (8). 
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If the effect of the attenuation constant is small enough 
and using the inverse tangent function, (8) may be further 
reduced to (9): 

   xxd   tanarctan     (9) 

By assuming small angles, the argument of the complex 
standing wave voltage for points at a reasonable distance 
away from voltage nodes (where the tangent is infinite) is 

given by (10): 
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Note in (10) the presence of the 180 degrees phase shifts 
given by the integer function. In addition to these phase 
steps, (10) contains also an error term that shows the effect 
of the line losses. Looking at the error term, it can be seen 
that, as in [26], the magnitude of the phase error decreases 
towards the load of the transmission line as position x 
approaches d. Using a setup similar with that simulated in 
[26] – i.e. 12.7m long RG58 cable at 100MHz (equivalent to 
a line length d of 6.5 times the wavelength and an 
attenuation constant α of 0.0185m-1) – and estimating the 
phase error at 1/8 of the wavelength away from the 
generator, gives a phase error around 13 degrees (i.e. about 
3.7% of the signal’s period), compatible with the simulation 
results presented in [26]. 

For long lines that allow the existence of several voltage 
nodes, the phase error exhibits a pseudo-periodic behavior 
with a period of half the wavelength. For the short salphasic 
lines that are expected to be found in ICs, where the total 
length should not allow voltage nodes, the plot of the error 
term shows only one peak placed between the middle of the 
line (for very short lines) and the far end of the line. If the 
line length d is assumed to be, for instance, a quarter of the 
wave length (yielding a voltage peak at the generator and a 
voltage node at the load) and estimating the phase error at 
90% of the line length it results (11): 
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Imposing no more than 2% of the clock’s period (i.e 10ps 
for a 2GHz clock) as acceptable skew between theses points, 
the phase difference may not be larger than 4 · π / 100. 
Based on this and using (11), it is possible to estimate the 
tolerated attenuation constant as in (12): 


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For a heavily capacitively loaded transmission line, 
working in the range of 2 to 5GHz, the wavelength λ may be 
around 20 to 30mm. With these, the tolerated attenuation 
constant is found to be around 25m-1 to 40m-1. Although 
these values may seem rather large, since an e-2·α·(d-x) 
exponential term was approximated in order to derive (7) – 
with an error of -2% – and the right hand side term in (8) or 
(9) is still small enough to meet the small angle condition 
(about 12% error), the results obtained using (12) are valid 
for the considered line. 

If the transmission line is built on a silicon substrate using 
a standard CMOS process, the main contributor factor for 
the propagation losses is the resistive behavior of the metal 
layers. Dielectric losses (usually modeled as a conductance 
term G in the line equations) are introducing only second 
order effects so, for the purpose of this paper, they will be 
neglected. From the dielectric losses, the major effect is 
given by dielectric leakage currents – i.e. gate leakage – and 
not by the dielectric loss tangent. With these, the attenuation 
constant may be approximated with: 
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In (13), R, C and L are the per unit-length parameters of 
the transmission line and ZCI is the ideal characteristic 
impedance (i.e. excluding losses). For a line having a width 
of 20μm built on one of the last metal layers of a standard 
130nm CMOS process, the ideal characteristic impedance is 
found to be around 2 to 5Ω. Considering also the per square 
sheet resistance around 25mΩ, the achievable attenuation 
constant is found to be around 125m-1 to 300m-1, almost an 
order of magnitude higher than that imposed by (12). 

From this, it is clear that in order to work at an IC level, 
any salphasic clock distribution must implement loss 
compensation techniques. Given the maximum tolerated 
clock skew for the system, (12) and (13) may be used to 
determine the maximum acceptable attenuation constant of 
the lines used in the integrated clock distribution network. 

By uniformly distributing negative conductance cells 
along the transmission line [28], [32], [35] the propagation 
constant γ for the line can be made as close as desired to be 
imaginary and, hence, the line will be loss compensated. 
The elementary cell for the lumped circuit model, assuming 
also the compensation technique, becomes similar with that 
of fig. 2. The R, L, C, G parameters are the per unit-length, 
intrinsic line parameters. The capacitance of the integrated 
clock transmission line is not given only by the physical 
characteristics of the line, but, in large proportion, by the 
clock loads. GS represents the effect of the uniformly 
distributed negative conductance compensation cells and CS 
is the parasitic capacitance associated with them. Both GS 
and CS are per unit-length parameters, given by the total 
number of active compensation cells that are used and the 
physical length of the line. 

 
Figure 2. Elementary lumped-circuit model cell for the compensated line 
 

Starting from the general expression of the propagation 
constant (14), the losses may be compensated if the real part 
of (14) is (very close to) zero: 

   SS CCjGGLjR     (14) 

By imposing for the negative conductance an expression 
like (15), the real part of the complex propagation constant 
becomes zero: 

 
G

L
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G S

S 


     (15) 

A critical aspect for the salphasic distribution is that all 
losses must be compensated independent of process or 
operating conditions. Any uncompensated shift in the 
operating point of the active circuit will result in the 
degradation of the salphasic standing wave configuration. 
Additionally, although the expression in (15) is independent 
of the operating frequency, in reality there are a variety of 
second order effects (like the skin effect, or the dielectric 
loss tangent) that can affect the needed compensation 
conductance. From this, the loss compensation circuit must 
be adjustable over an extended range, as proposed by the 
author in [36]. 

III. BI-DIMENSIONAL SLPHASIC EXTENSIONS 

Although, it seems, the resonant or standing wave based 
distributions are capable of creating extended same-phase 
regions at a fraction of the power consumption of a standard 
solution, there is still room for improvements. A critical 
observation that can be made is that, as highlighted in [37], 
the clock distribution covers only a limited silicon area. The 
final driven clock tree leafs (where most of the total clock 
capacitance is situated) are using a classic buffered 
distribution, with the associated drawbacks. 

As a salphasic distribution is not a self-oscillating 
network, the effective shape of the distribution is not critical 
to system operation. In fact, as first proposed in [26], the 
distribution can work also for generalized geometries. If 
integrated, such a configuration would be capable of 
distributing the zero-skew clock signal over the entire 
silicon area, completely eliminating the need for a standard 
distribution on the last levels. Introduced for the first time in 
[28] with limited theoretical background and then fully 
expended in [37-38] for the IC case, the bi-dimensional 
salphasic clock distribution can achieve the same final 
timing parameters as other resonant techniques but with 
lower power consumption and in an extended frequency 
range.  

As seen in fig. 3, the model for the 2D configuration starts 
from the decomposition of the structure into an appropriate 
lumped-circuit model, depending on the excitation scheme. 
If the clock source is an equivalent extended generator that 
drives an entire edge of the structure, the model follows an 
orthogonal pattern [37]. For a point-like generator, the 
model follows a radial pattern [38]. For the general case, the 
orthogonal structure of fig. 3 may be used also for a point 
source excitation, however, the derivation of the theoretical 
model becomes difficult in that case.  

An observation that can be made for all 2D lumped-
circuit models – they may be regarded as many paralleled 
transmission lines, all driven by the same source. 

Assuming an excitation along the Oy axis, the theoretical 
differential equations for the orthogonal structure, as derived 
in [37], show a close resemblance with those for simple 
transmission lines. This result was expected as there is no 
current circulation in a direction perpendicular to the wave 
travel direction, the propagating electromagnetic wave 
assuming a plane-wave pattern. 
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The above equations represent the second order 
differential equations for the surface voltage (16) and 
surface current (17). The propagation constant is given by 
(18). For the considered model, since there is no variable 
current circulation along the Oy axis, the differential 
equations written with respect to the y variable can be 
discarded. 

The parameters LS, CS, RS and GS from the propagation 
constant are the per unit-surface specific parameters. If the 
model uses the same quantization for both axes (i.e. Δx = 
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Δy), then the above parameters are identical with the per 
square parameters. 
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Figure 3. Surface decompositions into orthogonal and radial lumped-circuit 
models 
 

Moving to the radial case, using a polar system of 
coordinates, the parameters for the lumped circuit of radial 
length Δρ, angular size Δφ and radial position ρ may be 
written as in [38]: 
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  In the above (19) to (22) equations, L
 (22)  

S, CS, RS and GS are 
the same, per square, surface parameters as used for the 
orthogonal case. As a note, the above relations where 
derived assuming infinitesimally small cells – i.e. with the 
radial length Δρ much smaller than the radial position ρ. 
Inspecting (19) and (20) it is clear that the system may not 
contain the origin, as both equations have a singularity for ρ 
= 0. However, assuming a generator with an infinitesimally 
small radius placed at the origin, starting from the lumped-
circuit cell o fig. 4 it is possible to write for the surface 

voltage (23) and current (24) along the radial direction: 
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Figure 4. Elementary lumped-circuit model cell for the radial structure 
(with node voltages and branch currents) 
 

Since the surface excitation is made by a point source, 
there is no current circulation along the angular coordinate 
and, hence, the equations written with respect to this 
coordinate may be discarded. Introducing the surface 
parameters as defined in (19) to (22) in (23) and (24) yields:
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In (25), if the considered cell has very small physical 
dimensions, the node voltage of the central point of 
coordinates (ρ + Δρ / 2, φ) may be approximated with the 
potential of the input node of coordinates (ρ, φ). With this, 
both in (25) and (26) it is possible to recognize the first 
order derivatives of the surface’s voltage and current. After 
further manipulation, the first order differential equations 
for the voltage (27) and current (28) may be written as: 
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By taking the second derivative of (27) and (28), the 
resulting system of second order differential equations 
describes a cylindrical wave (again, as expected) [38]. 
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It is interesting to note that the propagation constant γ has 
the same expression as (18) for the orthogonal case. This 
shows that, as stated before, the orthogonal model of fig. 3 
may be used also for a point-source excitation.  

For an ideal surface (i.e. with RS and GS both being zero 
or perfectly loss compensated, resulting in an imaginary 
propagation constant γ given by the phase constant β), the 
solution for the voltage wave is a linear combination of 
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Hankel functions of the first and second kinds and order 0 
(i.e. linear combinations of Bessel functions with complex 
coefficients, again, of the first and second kinds). Since 
there is no closed-form definition for the functions, the 
solution for the voltage wave equation (29) may be written 
in integral form as in (31):  
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In (31), U0
D and U0

R stand for the direct and reverse 
complex voltages, as measured at the origin of the system. 
From an engineering point of view, an important aspect for a 
signal distribution using the modeled structure is the phase 
velocity of the propagating wave as this sets a relation 
between the needed salphasic termination impedance and 
the physical dimensions of the system. However, since there 
is no closed-form form for (31) it is not possible to write 
such a relation for the radial structure leaving as valid option 
only an approximation based on tabulated / computed values 
for the Bessel functions. At most, the solution given by (31) 
may be regarded as a family of waves (easily seen if the 
integrals are switched to Riemann infinite series 
representations), with each propagating wave dependent on 
the phase constant β and on the integration parameter θ. This 
result, however, is of no practical use as, for real systems, 
there is no physical possibility to separate the direct and the 
reflected waves found in (31). In fact, he radial system may 
be regarded as a collection of parallel connected 
transmission lines with an increasing line width resulting in 
a non-uniform characteristic impedance. From this, signal 
reflection takes place at every point of the system and not 
only at its periphery. 

If the system is operated such as the direct and the reverse 
waves have equal amplitudes U0 but there is a phase 
difference of 2 · φ (for simpler relations) between them – the 
standing wave configuration may be described as in (32) by 
a combination of Bessel functions of the first and second 
kind and order 0: 
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(32) 

In the ideal salphasic case – that is 2 · φ = 0, the 
configuration of (32) reduces to the Bessel function of the 
first kind (i.e. the first term). If, however, this condition is 
not met, as the Bessel function of the second kind has a 
singularity in the origin, the second term in (32) may 
become the dominant one, at least for positions close to the 
generator. As the distributed signal’s amplitude at the 
injection point may be, at most, equal with the open-circuit 
generator’s amplitude, the presence of the second term in 
(32) translates in a steep dependence of the distributed 
signal’s amplitude relative to the phase shift induced by the 
termination impedance. Furthermore, as the injected signal’s 
amplitude depends on the ratio between the characteristic 
impedance of the structure and the generator’s impedance, 
this further accentuates the steep conversion of load phase 
errors into amplitude variations. To compensate for this 

effect and to tolerate as much as possible the above phase 
errors, since the surface impedance may be quite low, the 
system would need a large signal driver with high impact on 
the power requirements. 

With all the above considerations, the structure, as 
proposed in [26] proves to be un-attractive from a system’s 
perspective. 

As proposed in [38], the dependence of the characteristic 
impedance on the radial position may be compensated by 
artificially changing the surface parameters. The system will 
behave as if the wave propagation follows the simple case of 
plane-waves, similar with the orthogonal surface (and hence, 
the name proposed in [38] – pseudo-orthogonal structure). 

Reference [38] showed that such a case allows easy 
distribution of the clock signal over the silicon area. 
Furthermore, the modified radial surface may be used in an 
inverted mode, with the generator moved to the periphery of 
the structure [38]. The advantage is there is only one 
termination impedance that must be matched to the resulting 
characteristic impedance. The extended generator can be 
formed easily with the aid of a small, classic distribution, or, 
as in [38], with another salphasic structure. 

For the radial structure, the configuration proposed in [38] 
is not the single useful possibility. As new theoretical results 
are showing, by altering the surface’s parameters in order to 
accentuate the dependence on the radial position as in (33) 
and (34), the proposed system will behave as if the 
propagation assumes a spherical wave pattern (as a note, by 
modifying the system’s parameters, the radial structure 
becomes anisotropic and hence, it can support this pseudo-
spherical pattern). 
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In (33) and (34) the parameters LSS and CSS represent the 
per square parameters of the initial surface adjusted for 
measurement unit conservation – e.g. the LSS inductance is 
the per square inductance LS multiplied with a standard 
length of 1m. With this, the variable pseudo-spherical unit-
surface inductance L’

S(ρ) has the correct unit (Henries) and 
shows an inverse dependence of the radial position ρ. Note 
that similar relations may be written for the loss inducing 
elements R’

S and G’
S. 

Using (33) and (34) and repeating the steps used to 
determine the differential equations for the simple radial 
case, the first order differential equations for the voltage and 
current waves may be written as (35) and (36): 
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By taking the second derivative and separating the surface 
voltage and current terms, relations (37) and (38) depict a 
spherical wave: 
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The propagation constant γ from (37) and (38) is, in fact, 
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identical with that of the orthogonal case, given by (18). The 
advantage over the cylindrical wave is that the solution for 
the voltage wave has an closed-form form as in (39): 
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For a lossless or loss compensated structure (i.e. with the 
complex propagation constant γ imaginary, expressed as the 
phase constant β), assuming a total reflection at the far end 
(making thus the amplitude of the reflected wave U0

R equal 
with that of the direct wave U0

D) such that at the generator’s 
node the reflected wave is in phase with the direct one, the 
voltage standing wave configuration is given by (40): 
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Using Euler’s identity, the standing wave configuration 
becomes: 

   ρβU2φρu D
0  sinc,    (41) 

It is evident in (41) that, again, the standing wave presents 
extended same-phase regions, given this time by the cardinal 
sine function. An advantage of the cardinal sine over the 
simple sine function is the double distance between the 
origin of the system and the first voltage node The useful 
area covered by the pseudo-spherical structure can be 4 
times larger than for the pseudo-orthogonal one. 

A further research topic regarding the pseudo-spherical 
structure is the influence of the incorrect phase shift 
introduced by the termination impedance. At first sight, the 
effect appears similar with that present at the un-modified 
system – i.e. a conversion of the phase error into standing 
wave amplitude variations, but without a detailed 
comparison between the structures, it is not possible to 
identify the better configuration with respect to this aspect. 
Anyway, since the wave equation solution has an closed-
form form, in this regard, the proposed modified surface 
allows a simpler design procedure than the original 
structure. 

For a practical system realization according to [38] or to 
the above pseudo-spherical structure it is not possible to 
directly follow the lumped circuit parameters variation laws 
(this would require the implementation of a continuous 
variation of the structure’s parameters). Instead, a discrete 
approximation must be used. 

For pseudo-orthogonal systems, a critical aspect of the 
discretization is that it has to assure a constant characteristic 
impedance, independent of the radial coordinate. A possible 
solution is to divide the surface along the radial direction ρ 
in several annuli of identical radial width (i.e. using a 
uniform radial step Δρ) and along the angular coordinate φ 
with a fixed angular span Δφ. Each resulting annular sector 
may be regarded as a transmission line segment with the line 
parameters dependent on the sector’s dimensions and 
position. Considering an annular sector as seen in fig. 3 for 
the radial excitation model, the segment inductance and 
capacitance may be calculated using (42) and (43): 















1

L
L S ln    (42) 











2
CC

2

S

   (43)
 

In (42) and (43) LS and CS represent the per square 

inductance and capacitance parameters. As a note, the loss 
inducing components R and G have a similar behavior with 
that of (42) and (43). Given the inverse dependence of the 
radial coordinate in (42), the model cannot contain the 
origin of the system but can be made arbitrarily close to it 
by choosing a small enough radial step Δρ. With this, the 
first annular sector starts at the radial coordinate ρ0 and its 
parameters will be considered as reference parameters for 
the rest of the annular sectors. By taking the ratio between 
the values for an arbitrary radial coordinate ρ and for the 
reference segment, the discrete scaling of the per square 
surface results as: 
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Parameters L’
S and C’

S from (44) and (45) represent the 
per square parameters for the pseudo-orthogonal surface as 
defined in [38]. If the radial width Δρ goes to zero, the 
variation laws given by (44) and (45) reduce to those 
defined in [38] for the theoretical model. 

From a physical point of view, the adjustment of the 
lumped circuit model parameters as given by (44) and (45) 
(or given by a similar model for the pseudo-spherical case) 
may be achieved by changing the shape of the clock 
distribution along the radial distance, as seen in fig.5. 
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Figure 5. Adjustment of the per unit-area resistance and inductance by 
using different mesh structure and several metal layers 
 

For instance, the adjustment of the per unit-area resistance 
may be realized by having a metal mesh with different eye 
openings and densities, according to the position coordinate. 

For the adjustment of the per unit-area inductance, one 
can start from the observation that the inductance depends 
on the magnetic loop area – in order to increase the area, the 
distance between the conductive levels must also increase. 
By using several metal layers, as depicted in fig. 5, the 
elementary inductance can be shaped to follow the desired 
law. The adjustment of the capacitance can be easily 
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achieved by the use of dummy clock loads, distributed un-
evenly across the IC’s surface and, thus, poses no specific 
problem. 

IV. SIMULATION RESULTS 

Similar with [37-38], the structures simulated using 
HSpice showed the formation of the expected standing 
waves with a voltage anti-node at the generator’s side. 
Although not ideal for a normal clock distribution, the 
results of fig. 6 are presented for an excitation frequency 
where the pattern has a voltage node placed in the middle of 
the surface – i.e. the length of the structure corresponds to 
half of the wavelength. This configuration was chosen only 
for graphic purposes. For an integrated circuit case, the best 
configuration is to use a structure with a length less than a 
quarter of the wavelength. In this way all of the clock driven 
points see a sufficient signal amplitude. 

 
Figure 6. Salphasic standing wave configuration for orthogonal and 
(pseudo-orthogonal) radial structures 
 

As a note, the radial structure was used in an inverted 
mode – i.e. the surface is driven as in [38] by an extended 
generator placed at the periphery of the system. Additionally 
– it is important to stress that a designer targeting a radial 
salphasic structure must strive to create a surface as 
symmetric as possible in order to a void excitation modes 
along the angular direction. The same is true also for 
orthogonal structures where excitation modes along a 
direction parallel with the extended generator must be 
avoided. 

For the orthogonal case, the simulated structure has a 
width of 15mm (on the generator’s extended node) and a 
length of 15mm for the long edge and 10mm for the short 
edge. The width of the short edge is 5mm. The radial 
structure has a diameter of 16mm with the observation that 
the first millimeter around the origin was not simulated (to 
avoid the singularity in the surface’s parameters). This 
makes the effective radial length of the surface to be 15mm. 

Both simulated structures are using a decomposition into 
square elementary cells. Each cell has a size of 1/3mm by 
1/3mm. Given the shapes of the simulated structures, a total 

of 1800 cells were used for the orthogonal model and about 
3600 cells for the radial structure. For ease of simulation, 
the electrical model for the cell follows that of fig. 7, being a 
lossless structure. 

The radial case uses the modified parameters structure, 
emulating a pseudo-orthogonal system. To this end, the 
surface was subdivided in 15 annuli as seen in fig. 8 with 
each annulus having a different set of per square parameters, 
according to (44) and (45). Correlating with the sizes of the 
unit cells, this division translates in 3 unit cells per annulus 
along a radial direction. Fig. 8 also shows the effect of the 
surface discretization according to an orthogonal model, 
resulting in a rugged contour for the considered annuli. 
Starting from the first annulus (considered as the reference 
segment), the parameters of consecutive segments are scaled 
by approximately 1.71, 2.41, 3.10, 3.80, 4.5, 5.19, 5.88, 
6.58, 7.27, 7.97, 8.66, 9.35, 10.05 and 10.74 for the 
inductance and by 0.6, 0.428, 0.333, 0.273, 0.231, 0.2, 
0.177, 0.158, 0.143, 0.13, 0.12, 0.111, 0.103 and 0.097 for 
the capacitance.  
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Figure 7. Unit surface cell for Spice simulation 
 

 
Figure 8. Simulated radial salphasic structure with a decomposition into 
consecutive – different parameters – annuli 
 

Since the radius of the structure corresponds to half of the 
wavelength, the termination impedance ZLD should be 
infinite (i.e. left open) in order to place the voltage anti-node 
at the generator. This holds also for the orthogonal structure 
on the longer edge. For the shorter edge, a distributed 
capacitive load is necessary in order to compensate the 
electrical length difference. Since the behavior of the 
orthogonal surface is similar with that of a simple 
transmission line, the value of the needed capacitance may 
be calculated using the same mathematical formalism. 
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The electrical parameters for the elementary cell are L = 
6.37pH total inductance and C = 1.8pF total capacitance, 
yielding a characteristic impedance for the cell of 1.88Ω. 
Since the width of the orthogonal structure is 15mm, the 
characteristic impedance of the entire orthogonal system is 
41.7mΩ, that is, the paralleled characteristic impedance of 
45 transmission lines, each of 1.88Ω. 

For the radial case, the impedance may be calculated 
based on the number of elementary cells that can be fitted 
into the length of the chord situated at the average radius of 
the first annulus. For the simulated structure, this number is 
14, resulting in a characteristic impedance around 134mΩ. 
Both circuit configurations were driven from an extended 
clock buffer (unit buffers uniformly distributed along the 
generator’s edge) with an equivalent output impedance of 
about 0.5Ω for the orthogonal case, as in [37] and with an 
output impedance of 1Ω for the radial case, similar with 
[38]. 

 The results of both fig. 6 and fig. 8 are obtained at a 
clock frequency of 3.28GHz. 
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Figure 9. Skew along a radial direction of the pseudo-orthogonal structure 
 

Inspecting fig. 8, depicting the simulated signal skew 
along a radial direction for the pseudo-orthogonal structure, 
it can be seen that the maximum signal skew realized by the 
simulated structure is around 3.6ps (i.e. 1.18% of the 
signal’s period), with steep slopes around the voltage node’s 
position. From a real system’s perspective, as practical IC 
applications are not expected to use regions around the 
voltage nodes, these steep slopes translate in much lower 
achievable skews – for instance, for systems having a radius 
of only 4mm, the maximum skew error is expected to be at 
least one order of magnitude lower – i.e. in the sub-
picoseconds range (from fig.8, for points having a radial 
coordinate of 12mm – the expected skew is found to be 
around 0.1ps).  

Reference [37] made also a comparison between the 
power requirements at 3.28GHz and 1V VDD for the 
simulated structure (1.1W), compared with a buffered clock 
distribution (55W), showing a net advantage towards the 
salphasic clock distribution. 

V. CONCLUSIONS  

A major difference between the salphasic clock 
distribution and other standing wave based configurations is 
the ability to generate the in-phase clock signal over the 

entire silicon area, without using standard distribution 
techniques for the highly loaded nodes. At most, the 
standard technique is used to generate the extended 
generators that are driving the salphasic network – a critical 
observation that must be made is that, by design, the input of 
the salphasic structure presents a no-load condition for the 
signal generator. This means that, although the input clock 
source sees the entire silicon area, it can be designed to be 
much smaller than for any other clock distribution. 

By generating a standing wave pattern over the entire 
silicon area, a bi-dimensional salphasic structure shows a net 
improvement for the power consumption as the whole clock 
load capacitance is an integral part of the clock distribution 
network. 

As a new theoretical result for radial structures, the 
present paper showed that by accentuating the dependence 
of the R, L, C, G parameters of the lumped circuit model on 
the radial position, the system assumes a pseudo-spherical 
wave propagation mode. This allows the formation of a 
standing wave according to a cardinal sine function, with the 
main advantage of a double length between the origin and 
the first voltage node. 

The integration of the salphasic structure on the silicon 
die is not a straightforward process since the transmission 
lines structures that can be built on the silicon substrate 
usually have high losses. However, starting from already 
existing techniques and structures and modifying them 
according to the salphasic distribution’s requirements (i.e. 
the need to adjust the negative conductance over an 
extended range to compensate for the operating point drifts 
[36]), it was shown in [28] that the salphasic concept can be 
not only implemented in ICs, but also made highly efficient 
[37-38] and here, even compared to other, state of the art, 
standing wave based techniques. 

Furthermore, regarding this topic, the present paper set 
for the first time a design constraint for the attenuation 
constant which still maintains the phase error in the standing 
wave pattern below the imposed clock skew limits. 

As a last observation, for the radial structures with a 
simulated behavior (pseudo-orthogonal or pseudo-
spherical), the present paper also provided theoretical 
support and practical methods on how to adjust the needed 
surface parameters. 
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