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1Abstract—Usually, when analyzing a data series, dynamical 

systems theory is used to reconstruct the state space of the 
original system. This work aims to determine which of a 
chaotic system’s states is best suited as output when 
transmitting secret messages. This is the first step prior to 
designing an actual communication scheme. As an example, the 
three states of Sprott’s jerk circuit are analyzed in terms of the 
local observability they ensure for the original dynamics when 
transmitted as a scalar data series. Results show that its first 
two states enable accurate estimation of the transmitter’s 
dynamics at the receiving end. However, its third state 
generates, in some regions of the state space, a non-invertible 
transformation between the original state space and the one the 
receiver sees. This is due to the exponential nonlinearities 
present in this state’s derivatives. Given that these 
nonlinearities remain inaccessible to the receiver, they are 
neglected in order to allow the partial reconstruction of the 
dynamics of the transmitter. But, since these nonlinearities are 
essential for the chaotic behavior, this makes the third state 
unusable for cryptographic purposes. This analysis may be 
applied to any bipolar junction transistor or diode based 
chaotic circuit. 

 
Index Terms—chaotic communication, nonlinear dynamical 

systems, observers, signals analysis, sliding mode control. 

I. INTRODUCTION AND PROBLEM STATEMENT 

Chaos theory studies systems which present dynamical 
instability, topological mixing (stretching and folding of the 
phase space) and dense orbits (aperiodic trajectories 
arbitrary close to an infinite set of periodic orbits). These 
characteristics, together with their capability of engendering 
complex behavioral patterns from simple real systems or 
low dimensional systems given by a small set of equations, 
make chaotic systems useful for applications in 
cryptography. The reader may see [1] for a discussion about 
chaos-based cryptography. A parallel between block ciphers 
based on chaotic systems and standard block ciphers is made 
in [2], demonstrating by well-known cryptanalysis 
techniques that the former are as good as the latter. Some 
definitions of the so-called chaotic behavior are given in [3]. 
The potential application of chaotic behavior in weather and 
climate, population growth in ecology, economy, lasers, 
chemical reactions, fluid dynamics, or mechanical systems, 
are pointed out. See paper [4] for a mathematical frame. 

A chaotic system is used in [5] to generate random pulses. 

Chaotic elements are analyzed in applied hydrology in [6]. 
In [7] some applications of chaos theory in economics are 
highlighted.  Numeric methods based on a modified logistic 
map can be applied in complexity calculus as suggested in 
[8], which targets the use of fractal iterative techniques in 
pattern recognition. It should be noted that the logistics map 
is the simplest chaotic system from an analytical point of 
view. Time series representing biomedical signals are 
analyzed in [9] with chaotic dynamics specific parameters 
such as the Lyapunov exponents and fractal dimension of 
the attractor dynamics.  
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Implementation of chaos-based cryptosystems, key 
management, and security analysis, aiming at standardizing 
a framework for their design, are addressed by [10]. The 
chaos-based ciphers are categorized into digital and analog 
techniques upon the system they use as transmitter and 
receiver. Some recommendations regarding practical aspects 
of analog chaos-based secure communications, such as 
channel noise, limited bandwidth, and attenuation are made. 
Chaotic cryptography has been a rich research field and has 
given the opportunity for many developments in 
cryptanalysis also. An analysis with respect to the security 
and performance of such algorithms is made in [11]. 
Furthermore, [12] presents some main problems in chaos-
based cryptography and proposes design rules to overcome 
them. 

Aiming to contribute to the field of chaos-based 
cryptography, the present work analyzes how suitable as 
output of a chaotic system each of its states is. The receiver 
targets the reconstruction of the entire state space of the 
transmitter, when the only information measured is its 
output. Depending on the chosen state, observability 
singularities may appear due to the non-invertibility of the 
engendered embedding between the original state space and 
the one the receiver sees. Sprott’s jerk system [13], being 
representative for bipolar junction transistor or diode based 
chaotic circuits, is used for exemplification. The considered 
circuit is the simplest autonomous dissipative ordinary 
differential equation with a quadratic nonlinearity 
manifesting chaotic behavior as stated by [14] and 
generalized in [15] to the form: 

0)(  xfxxx    (1) 

where  is a nonlinear function 

representing the characteristic of an ideal diode, with  

being the saturation current,  the resistor from the circuit 
in [13], and 

)1()( /
0  xeRIxf 

R
,026.0 V

0I

  the thermal voltage at room 

       63
1582-7445 © 2015 AECE

Digital Object Identifier 10.4316/AECE.2015.04008

[Downloaded from www.aece.ro on Friday, April 26, 2024 at 11:35:20 (UTC) by 18.116.90.141. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 15, Number 4, 2015 

temperature. We recall that a nonlinear function which gives 
the third-time derivative of the position x, corresponding to 
the first time derivative of acceleration, in a mechanical 
system, is called a jerk function. By setting 

with  system (1) 

can be rewritten as follows: 
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where   and /
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.4.0)0 V

08.0(),,( 321

1b  are chosen such that the 

transmitter (2) manifests chaotic behavior. Thus, the 

parameter  is equal to 10  which corresponds to a 

current  multiplied by a resistance  

and .  
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The Lyapunov exponents characterizing the rate of 
divergence of two trajectories initially situated in a small 
vicinity in the three coordinates of system (2) are computed 
using the algorithm described in [16], and compared to the 
values obtained by Sprott, (  for the 

above-mentioned parameters  and initial conditions 
 and  The results obtained 

by using the algorithm [16] are 
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We recall that the positive value of the greatest Lyapunov 
exponent attests the instability of the investigated system, 
therefore its chaotic behavior. 

The second section of this paper recalls the theoretical 
tools used, based on chaotic synchronization [17-18]. The 
third section analyzes the three possible choices for the 
output y of the chaotic transmitter (2): either one of the 

states . The analysis is performed in terms of the 

observability they engender for the original dynamics. 
Observability singularities are highlighted for the third state 
as output, while the first two states allow accurate 
estimation of the entire state space of the transmitter. The 
fourth section is dedicated to graphical illustration of the 
recovery of the transmitter’s dynamics by using a higher-
order sliding mode observer [19]. Given that the 
nonlinearities present in the third state’s derivatives remain 
inaccessible to the receiver, they are neglected, in 
simulation, in order to allow the partial reconstruction of the 
transmitter’s dynamics. Conclusions are drawn with respect 
to these approximations and the proper use of the analyzed 
circuit for cryptographic purposes.  
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II. GENERALITIES ON OBSERVABILITY SINGULARITY 

MANIFOLDS  

Let us consider the continuous-time dynamical system 
described by (3): 
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where  is the n-dimensional 

state vector,  is the p-dimensional output of the system 

and  and  are infinitely derivable vector fields, i.e. 

defined in  
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Often, only one variable is measurable, and we 
subsequently call it observable. When analyzing a data 
series, dynamical systems theory is used to reconstruct the 
state space of the system generating the investigated 
information. Although the vector field is not usually 

known, one can reconstruct a state space equivalent to the 
original flow. Chaotic time series are predicted in [20]. The 
method is based on the redundancy of the information 
contained by a physical system, in the sense that any 
variable chosen as output of the analyzed system has its 
temporal evolution connected with that of all the other 
variables in the considered system.  

f

In this paper the original flow (3) has three dimensions. 
Thus, it can be written as in (4). 
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The evolution of only one of these states, a scalar 
temporal data series, is known. The goal is to find a 
differential embedding of the dynamics (4), in a standard 
[21] or canonic system form [22], starting from the 
measured variable belonging to the original system. 

Assuming the known evolution that of the variable  the 

obtained standard system is described in (5): 
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A coordinate change which allows the transformation 
from the state space of the original system defined by 
variables  to the state space  is 

expressed by:  
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This application must be a local diffeomorphism, as the 
reconstructed space has the same dimension as the original 
one. How the choice of the observable may influence the 
analysis of non-linear dynamical systems is discussed in 
[23]. An approach concerning synchronization in such 
systems is considered in [24]. The local inversion theorem 
from [25] states that the transform  defines a 

diffeomorphism if the determinant of its Jacobian 
2

2 - the 

observability matrix is non-null over the entire state space. 
When the observability matrix has a zero valued 
determinant, i.e. it is singular, system (6) becomes 
undetermined, and it either has multiple solutions or none at 
all. This corresponds to regular local weak observability 
singularity. Regular means that we derive only to the (n-1) 
derivative. 

The observability matrix is given in (7). See [26] for a 
rank condition for local weak observability: system (3) is 
local, i.e. in  weakly observable if the rank of the 

observability matrix equals the dimension of its state space.  

,0x
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where  is the Lie derivative [27]. hLi
f

The observability singularity manifold  of a system is 

the mathematical space in which, seen from the measured 
variable, the system loses its observability property. For a 
three dimensional system, the regular observability 
singularity space is given in (8), where  is the number of 
the observed state. 
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Some definitions are given in the case of the discrete-time 
chaotic Rössler system in [28]. 

We conclude this section by some comments with respect 
to the extra difficulty to obtain, in addition to the state-
space, the unknown input, e.g. the message. This problem is 
known in the literature as the left invertibility problem [29]. 
A simple example is given in order to show some left 
invertibility drawbacks. Let as consider the continuous time 
system (9), with  the unknown input. Ru
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The regular observability singularity manifold is: 

}01|),{( 1
2

211,  xRxxSO   (10) 

At this observability singularity manifold a new difficulty 
adds, when aiming to obtain the unknown input. The 
derivative of  allows the estimation of the unknown input 

 only if .  In conclusion, the set of singularity 

manifolds for the left invertibility problem is given by: 
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This extension of the singularity set is interesting in data 
secure transmission. See for example [30]. 

III. THE OBSERVABILITY PROPERTIES OF SPROTT’S JERK 

CIRCUIT  

A. The first state as output 
If the output of system (2) is  the recovery of its 

entire dynamics by an authorized receiver who knows the 
bifurcation parameters  and disposes of the 

information embedded in the manifold  from: 
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is trivial.  The output and its first and second derivative are 
needed, at the reception, in order to obtain the estimated 
states vector: 

Txxxx )ˆ,ˆ,ˆ(ˆ 321    (13)  

System (12) can be easily inverted due to the fact that its 

corresponding observability matrix is the identity matrix. 
 

B. The second state as output 
When 2xy   is the output of system (2) the information 

available at the reception is embedded in: 
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The associated observability matrix ,/)( 22 xJ   

given in (15), has the determinant  which, again, 

guarantees the existence of its inverse. 

12 




















11

100

010

)(
2

2
bxabe

J    (15) 

The states of the transmitter are well recovered, when the 
transmission is done over a noiseless channel, as it can be 
observed from (16).  
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C. The singular case - the third state as output 
When 3xy   is the measured state, the information 

available at the reception is embedded in: 
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The associated observability matrix  given in (18), 

has the determinant  which, for 

 does not allow the observability of the 

dynamics (2), because in this case the inverse does not exist. 
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The intersection between the state space of system (2) for 
initial conditions given in the next section and the 
observability singularity manifold:  

   ))}exp(/(1|),,{( 2
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3
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is given in Fig. 1. In this case,  local exact formal 

computation o 1
3
  is not obvious and some 

approximations are done, in the next section, aiming to 
recover the original dynamics. The theoretical results 
obtained above are exemplified for certain parameters and 
initial conditions, in the next section. Graphica

,3xy 

f 

l 
representations are interpreted. 
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Figure 1. The intersection between the state space of the transmitter and the 
observability-singularity manifold (gray), when the output is .3xy   

IV. RECOVERY OF THE ORIGINAL DYNAMICS THROUGH 

HIGH-ORDER SLIDING MODE OBSERVERS 

This section is dedicated to graphical illustrations of the 
estimation of the dynamics of transmitter (2), with 

parameters  and their 

interpretation. Initial conditions are 
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 for the fourth order 
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with  The additional state  was added in 

order to avoid chattering in the estimated values 

 The notations  were 

used for the ease of writing and for conformity with [31], 
where detailed explanations about the high order sliding 
mode differentiators can be found. The expression 

 depends on the chosen output 

 as follows: 
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where  are according with the chosen output 321 ,, zzz ,y  

and the term  in  was 

neglected, as it remains unknown to the receiver. 
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All initial conditions for the observer are particular 
instances of a random uniformly distributed variable in , 

truncated to two digits. Also, [32] points out the advantages 
high order sliding mode observers have when applied to the 
case of AC motors where some similar observability 
singularities occur. 

]1,0[

The output of the transmitter is  for Fig. 2 and  for 

Fig. 3. As previously demonstrated from a theoretical point 
of view, all three estimates converge to the corresponding 
original states. The fixed step used in the Euler solver is 

.   Simulations are run in Matlab-Simulink R2013a. 
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Figure 2. The estimation of the states of the transmitter when the output 
is .  Original signals in solid line, estimated in dashed. 1xy 

 
Figure 3. Estimation of the states of the transmitter when the observable 

is .2xy   Original signals in solid line, estimated in dashed. 

 

When the observable is  getting the inverse of the 

observability matrix (18) is not possible for 

 due to its singularity for these values. 

Moreover, it is not at the ease of the receiver to get the 
solution of equation 
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from (17) by considering the output  and its derivatives 

 and  Nevertheless, Sprott’s chaotic jerk circuit 

studied in this paper obeys the physics laws and its 
parameters  and  are chosen accordingly. Thus, in the 

considered case,  the unknown 

term is  Therefore, the 

regular observability singularity is situated at values much 
greater than the domain in which the state  is bounded, 

i.e. (-1,1).  
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Due to the linearity and invertibility ( ) of 

the matrix (21), system (17) has the solution given in (22). 
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The  estimates are obtained with the fourth order 
sliding mode observer (19) where  from (20). 

Numerical results are given in Fig. 4 where the estimates 

 and  converge to the original states (22), for the 

regions where   

ẑ
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1 Vezab bx  Figure 5. The gradient algorithm applied to the estimation of the first and 

the second state of the transmitter when its output is .3xy   Original 

signals in solid line, estimates in dashed line.  
We can conclude that the difficulties in recovering the 

dynamics of the jerk system (2) when its third state is 
chosen as output have two causes: the approximations in the 
exponential terms and bifurcation parameters illustrated in 
Fig. 4, and those due to the observability singularities 
highlighted in Fig. 5, where the gradient algorithm, with 
initial guess  was used. )),0(),0(( 21 xx

 
its derivatives of the exponential nonlinearities which induce 
the chaotic behavior. Given that the unmeasured state 
variables containing these nonlinearities remain inaccessible 
to the receiver, some approximations were made, allowing 
the partial reconstruction of the dynamics of the transmitter. 
But, since these nonlinearities are essential for the chaotic 
behavior, this makes the third state unusable for 
cryptographic purposes. 

 

In conclusion, for Sprott’s circuit, any of its first two 
states, chosen as output, enables accurate estimation of the 
transmitter’s dynamics, while its third state is to be avoided 
when designing a communication scheme. The considered 
system is intended to be used as transmitter in an extension 
of the scheme proposed in [32] for the Colpitts chaotic 
oscillator [33].  

The analysis may be applied to any other chaotic circuit 
whose functionality is based on bipolar junction transistors 
or diodes, due to the exponential nonlinearity specific to the 
Ebers-Moll model, being the first step prior to designing the 
actual communication scheme. 

Figure 4. Approximation of nonlinear exponential terms and bifurcation 
parameter  to zero. The output of the transmitter is  Estimation 

of its first and second state. Original signals in solid line, estimates in 
dashed line. In bold line  

a .3xy 

).exp( 23 bxabx
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