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1Abstract—This paper presents an automated surveillance 

system that exploits the Fisher Kernel representation in the 
context of multiple-instance object retrieval task. The proposed 
algorithm has the main purpose of tracking a list of persons in 
several video sources, using only few training examples. In the 
first step, the Fisher Kernel representation describes a set of 
features as the derivative with respect to the log-likelihood of 
the generative probability distribution that models the feature 
distribution. Then, we learn the generative probability 
distribution over all features extracted from a reduced set of 
relevant frames. The proposed approach shows significant 
improvements and we demonstrate that Fisher kernels are well 
suited for this task. We demonstrate the generality of our 
approach in terms of features by conducting an extensive 
evaluation with a broad range of keypoints features. Also, we 
evaluate our method on two standard video surveillance 
datasets attaining superior results comparing to state-of-the-
art object recognition algorithms. 
 

Index Terms—automated video surveillance, Fisher Kernel 
representation, multiple-instance object retrieval. 

I. INTRODUCTION 

During the last years, mainly because of the recent 
turbulent world events, the automated video surveillance 
techniques became an important research field. Fast 
developments in digital camera and video processing 
technology facilitated the availability of intelligent video 
surveillance systems basically in any public places. 
However, they provide only the infrastructure to capture, 
store and distribute video documents, while leaving the task 
of event detection mainly to human operators. Manually 
analyzing footage is a highly labor-intensive and time 
consuming task. 

Today, a fully automated indexed video surveillance 
system is not commercially available. In the last years, most 
of the existing research progress was made for behavior, 
motion detection and human tracking methods. However, 
the main limitation of automated video surveillance remains 
in the searching capabilities. Once one has identified a 
possible target event, the system is not able to provide 
tracking capabilities of the entities causing that event during 
previous or future recordings, e.g., finding the other crimes 
where the burglar was involved in. Currently, this is actually 
done manually, by human operators. Considering the fact 
that a typical video surveillance system, in its simplest form 
(using only one video source), involves the recording of 
countless hours of footage, manually searching within 

records is hugely time consuming and at the same time 
inefficient and often unreliable. In practice, video 
surveillance systems feature tens of video sources, making 
the problem even more challenging. An automated 
surveillance system should help the operator in detecting 
certain persons, and make it possible to discover unlawful 
activities more quickly (either in real-time or by searching in 
existing video footage). The goal is to eventually have a 
system that can quickly and accurately monitor large and 
very complex areas for human behaviors, and when needed 
to report observed activities to an operator, or even deploy 
assistance if required. 

 
Part of this work was supported under InnoRESEARCH POSDRU/ 

159/1.5/S/132395, ExcelDOC POS-DRU/159/1.5/S/132397 (2014-2015) 
and SCOUTER PN-IIIN- DPST-2012-1-0034 (2013-2015). 

The objective of this work is to discuss a solution for a 
system capable of providing content-based search 
capabilities within multiple-source video surveillance 
footage.  

The proposed system is based on Fisher Kernel (FK) and 
Support Vector Machines (SVMs) and is capable of 
automatically identifying the occurrences of a certain person 
of interest during the video footage. After a human operator 
selects the person to search for from one of the frames, our 
system does the retrieval in two steps. Firstly, we extract the 
contour of persons by using a motion detection approach. 
For each contour that contains a specific person we compute 
a set of keypoints. Then, we train a Gaussian Mixture Model 
(GMM) with these features, and determine the Fisher Kernel 
representation with respect to this new GMM. Finally, a 
SVM is trained using the initial human feedback, yielding a 
specialized classifier in the new feature space.  

This paper extends our previous work in [1] by 
introducing a new Fisher Kernel representation framework 
for video surveillance, including evaluation on new datasets 
and considering more feature extraction schemes. In [1] we 
propose a new relevance feedback algorithm based on 
Fisher Kernel representation in the context of multimodal 
video classification (using the visual, audio, motion and 
textual information). The algorithm is developed specifically 
for capturing in particular video temporal variation for video 
scenes/sequences classification. In contrast, the novel 
contributions of this work can be synthesized with the 
following:  

- We propose a novel, frame-based, method for automated 
content-based retrieval of regions of interest in video 
surveillance that exploits a combination of Fisher Kernels 
and SVMs; 

- We demonstrate the generality of our approach by 
evaluating it on a broad range of keypoint descriptors. We 
achieve better performance than other state-of-the-art 
approaches whereas evaluation is carried out on two 
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standard datasets [2-3]. This makes the results both relevant 
and reproducible. 

The reminder of the paper is organized as follows. 
Section II discusses several relevant video surveillance 
approaches and situates our work accordingly. The proposed 
system is presented in Section III. Section IV reports the 
experimental results. Finally, Section V provides a brief 
summary and concludes the paper. 

II. PREVIOUS WORK 

Traditional passive video surveillance has two main 
drawbacks: (1) finding available human resources to observe 
the output is expensive and; (2) manual systems are 
ineffective when the number of cameras exceeds the ability 
of human operators to keep track of the evolving scene.  

Currently, video surveillance systems are mostly passive. 
They require a human operator to monitor the video feeds 
on a screen, and to alert security crews when their assistance 
is required in case of emergency. In order to remove these 
drawbacks, over the recent years there have been extensive 
research activities in proposing new ideas, solutions and 
systems for robust automated surveillance systems. A large 
number of methods are reported in recent surveys [4]. In 
general, all existing approaches rely on efficient content 
description of the video information as an intermediate step, 
namely: color and texture [5], shape [6], audio [7] and 
feature points [8].  

For instance, Landabaso et al. [9] introduced a robust 
multimodal tracking and classification system, that takes 
into account multiple characteristic features (e.g., velocity, 
shape, colour) of a 2D object appearance simultaneously in 
accordance with their respective variances. The system also 
further incorporates a classification module to classify each 
persistently tracked object, based on the analysis of local 
repetitive motion changes within the blob representation 
over a period of time. Ikizler-Cinbis and Sclaroff [13] 
extracted multiple features on the human, objects and scene, 
and employed a multiple-instance learning framework for 
human action recognition. Yang and Ramanan [14] 
proposed a method for articulated human detection and 
human pose estimation in videos based on a new 
representation of deformable part models. They detect small 
bounding boxes with a multi-scale Histograms of Oriented 
Gradients (HoG) descriptor, instead of complete body limbs, 
making their work more efficient because it prevents the 
problem of double counting. The body part detector 
combined with the Histograms of Optical Flow (HoF) 
features obtained good results on daily living activities [15]. 
However, this framework is adapted to a specific task and 
requires the use of motion compensation for foreground 
estimation and the detection and tracking of the human in 
the scene, generating a high computational cost. The 
accuracy of the algorithm is highly correlated with the 
performance of the human detector. 

More recently, most of the contribution has been made to 
find automatic ways of describing video contents with 
parameters having enough representative power for the 
retrieval task. The approaches focused on the understanding 
of video contents using the visual and spatio-temporal 
information [10]. For instance, Muller-Schneiders et al. [11] 
proposed a real-time video surveillance system which was 

specifically designed for a low volume of false positives 
because surveillance guards might get deviated by too many 
alarms caused by, e.g., rain, trees, varying illumination 
conditions or small camera motion. This system uses the 
temporal information of the video, e.g., Cuboid detector, 
Hessian 3D detector or SURF 3D [12]. In spite of their good 
performance, feature descriptors are limited by their 
computational complexity (e.g., processing a large-scale 
video database may take days or weeks) that makes them 
unsuitable for real-time scenarios. 

In this respect, current research addresses the 
development of low complexity algorithms to combine 
global with local strategies. One alternative is to use the 
Fisher Kernel representation. The Fisher Kernel theory was 
introduced by Jaakkola et al. [16] to combine generative and 
discriminative methods. Specifically, a collection of features 
is represented by its gradient with respect to a generative 
distribution. The resulting vector is then used in 
discriminative classifiers. Fisher Kernels were introduced in 
computer vision by Perronnin et al. [17], which applied the 
FK framework to represent collections of local visual 
features such as SIFT [8] using Gaussian Mixture Models as 
generative distribution. FKs found their application in other 
fields as well as, starting from web genre classification, 
event classification [9] to topic-based text segmentation [20] 
and web audio genre classification [19]. Aran and Akarun 
[18] introduced a multi-class classification strategy for a 
sign language data set. More recently, the Fisher 
representation was used by Myers et al. [21] for detection of 
user-defined events. They propose a set of multimodal 
features (i.e., audio, motion, visual) together with a set of 
late fusion techniques. 

In this paper we adapt this particular class of methods for 
the design of an automated surveillance system. We 
introduce a new approach designed specifically for 
classification that uses a combination of Fisher Kernel 
representations and Support Vector Machines (SVM) 
classifiers. The FK representation has been successfully 
applied to many fields, but to the best of our knowledge, the 
FK have never been used in automated video surveillance.  
The FK representation is particularly suited for this scenario 
because it highlights the frames that contain occurrences of 
certain objects of interests. Experimental validation on two 
standard datasets proved the superiority of this approach 
compared to other state-of-the-art methods from the 
literature. 

III. THE PROPOSED SYSTEM 

The proposed system works as in the following. The 
proposed system works as following. The human operator 
selects in a few frames, at a certain time stamp, a region of 
interest of the object/human that needs to be searched in the 
video surveillance database, i.e., the search query. Then, the 
system uses these frames (positive examples) to create a 
model for the searched object adding automatically some 
negative examples from the existing data (e.g., some random 
frames). Then, the model (i.e., classifier) in used to search 
the entire database for other instances of the target 
object/human.  

The architecture of the proposed system is presented in 
Figure 1, and it consists of four different layers, namely: 
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Figure 1. The proposed automated surveillance system: (1) motion detection and feature extraction, (2) dictionary representation,  
(3) Fisher Kernel representation, (4) SVM classification. 

(1) Firstly, the cameras collect the video information, 
which is transmitted to the motion detection layer. This 
module targets the extraction of moving objects, such as 
persons or cars. Motion analysis is very important because it 
optimizes the next stages performance by selecting relevant 
information, removing the irrelevant frame sections and so 
reducing the computational load. For each extracted object a 
set of keypoints are extracted. Feature extraction component 
addresses the creation of visual patterns for each segmented 
moving object in the video. We extracted the keypoints by 
using several state-of-the-art algorithms. These approaches 
were chosen due to their robustness, compact representation 
and significance for human perception;  

(2) Having these keypoints, we learn a generative 
Gaussian Mixture Model [24] from the extracted keypoints;  

(3) Then, we represent all the objects using a Fisher 
Kernel representation with respect to this GMM. 

(4) The final step is represented by the discriminative 
training step, thus, we train a SVM classifier on the Fisher 
Kernel vectors. We apply this SVM and we obtain a final 
ranking.  

A. Motion detection 

Motion detection algorithms represent the first component 
of our system. These algorithms have as main purpose to 
obtain motion information, which further is required for 
objects’ extraction.  A widely-used technique for moving 
object segmentation is the background subtraction, which 
compares color or intensity of pixels in adjacent video 
frames. Significant differences are attributed to object 
motion. For this paper, we used the method presented in 
[25], where the authors propose the use of a Gaussian 
probabilistic density function (pdf) on the most recent n 

frames. Each pixel is characterized by mean t and 

variance , and it is classified as object if the following 

condition is accomplished: 
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where  is the intensity of the current pixel, and the th 

represent a threshold (a common setting is to have th = 2.5). 
We choose this method because it obtained good results in 
automated surveillance tasks [1] and proved robust to 
different types of noise and illumination changes. 

tI

B. Feature extraction 

We extract a set of keypoints for each moving object. In 
order to describe the visual content, we compute the 
following features: 

Scale-Invariant Feature Transform (SIFT) [8] represents 
a standard for the local image description. The computation 
of the SIFT descriptor consists of several steps. First, a set 
of orientation histograms is created on 4 x 4 pixel 
neighborhoods with 8 bins each. These histograms are 
computed from magnitude and orientation values of samples 
in a 16 x 16 region around the keypoint such that each 
histogram contains samples from a 4 x 4 sub-region of the 
original neighborhood region. The magnitudes are further 
weighted by a Gaussian function with standard deviation σ 
equal to one half the width of the descriptor window. 
Finally, the descriptor becomes a vector of all the values of 
these histograms. 

Speeded Up Robust Features (SURF) [22] represents 
another robust local feature representation. SURF uses the 
sum of the Haar wavelet responses around the point of 
interest, which can be calculated very fast with the aid of the 
integral image.  

Pyramid Histogram Of visual Words (PHOW) [23] are a 
variant of dense SIFT descriptors, extracted at multiple 
scales (e.g., 5, 7, 10, 12 pixels). It uses a color space 
version, named PHOW-color that extracts descriptors on the 
three HSV image channels.  
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In order to compute these features we used the VLFeat 
library [27], maintaining the default settings as provided in 
[26]. 

C. Fisher Kernel proposed approach 

The main idea behind Fisher Kernel (FK) representation is 
to describe a signal as the gradient of the probability density 
function that is a learned generative model of that signal.  

Intuitively, such representation measures how to modify 
the parameters of the probability density function in order to 
best fit the signal, similar to the measurements in a gradient 
descent algorithm for fitting a generative model [16]. The 
gradient vector is, by definition, the concatenation of the 
partial derivatives with respect to the model parameters. Let 

i  and i  be the mean and the standard deviation of i’s 

Gaussian centroid, )(i  be the soft assignment of 

descriptor i  to Gaussian i (with t = 1, ..., T), and let D 

denote the dimensionality of the descriptors . is 

the D-dimensional gradient with respect to the mean 

tx x
iG ,,

i  and 

standard deviation i  of Gaussian i. Mathematical 

derivation leads to [17]: 
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where the division between vectors is a term-by-term 
operation. Using this representation, the final gradient 

vector , i.e., our new descriptor, is the concatenation of 

the  and  vectors, for i = 1, ..., T. This leads to a 2 

· T · D, where D represents the size of keypoint features. 

xG
x

i,G x
iG ,

Initially, the user selects a few frames (approximately 2-3 
seconds of video footage - n frames), where the sought 
person appears. Then, we add to these frames a set of 
unrelated k frames which will be used as negative examples. 
Using all these frames together, i.e., n + k, we train a 
Gaussian Mixture Model on the keypoints features.  

The GMM contains several parameters which impact the 
performance of the algorithm: the number of clusters c, the 
size of keypoints features and the normalization techniques. 
First of all, to make the Fisher Kernel computationally 
feasible, we apply PCA on the original keypoints vectors of 
the frames. After having obtained the mixture model, we 
convert the original features of the frames into the Fisher 
Kernel representation using Equations 1 and 2. The final 
step is represented by the use of normalization, applied on 

the final Fisher Kernels. We applied the  and power 

normalization to the final vector. 
2L

D. Classification 

The training step is represented by a two-class Support 
Vector Machine (SVM) classifier. The classic binary SVM 
training algorithm builds a linear margin that maximizes the 
distance between two classes. SVMs can efficiently perform 
a non-linear classification by using what is called the kernel 

trick, implicitly mapping their inputs into high-dimensional 
feature spaces. The SVM approach is remarkably tolerant on 
the relative sizes of the number of training examples of the 
two classes. In our algorithm, the SVM model is trained on 
the n + k frames, according to the user’s feedback. After a 
training step, all the documents are ranked according to the 
SVMs confidence level. At the end, a final ranking is 
obtained, by ordering the classifier’s output confidence 
levels [28]. 

The SVM algorithm usually depends on several 
parameters. One of them, denoted C, controls the tradeoff 
between margin maximization and error minimization. Also, 
additional parameters may appear for non-linear mapping 
into feature space, namely the kernel parameters. In most of 
the experiments these parameters are globally tuned for the 
dataset [29]. However, a better strategy is to approximate 
the optimal value of these parameters at query level. In line 
with this, we divide the feedback samples in two parts: one 
for training, and one for the evaluation of the SVM 
parameters performance. We change the values of these 
parameters until the optimal parameters are obtained. This 
approach is not computational expensive mainly because the 
training and evaluation steps are done on a reduced set of 
results. We use two types of SVM kernels: a fast linear 
kernel and the RBF nonlinear kernel. While linear SVMs are 
very fast in both training and testing, SVMs with an RBF 
kernel are more accurate in many classification tasks. 

IV. EXPERIMENTAL RESULTS 

A. Datasets 

The validation of the proposed approach was carried out 
on two standard video datasets, namely: Scouter [2] and 
PEVID-HD [3] (see Figure 2).  

Scouter: represents an indexed video collection that 
contains several complex automated surveillance scenarios. 
It is composed by videos documents, acquired with several 
video surveillance cameras installed in the convention hall 
of UTI Grup company. The dataset consists of 30 video 
documents (3 different days x 10 cameras). The videos are 
recorded at 6 to 10 fps, with a resolution of 704 x 675 
pixels. In total, the collection contains (3 days) x (10 
cameras) x (average 120 seconds clip) x (10 frames per 
second) = approximately 36,000 annotated frames; 

PEVID-HD: consists of 21 video clips (16 seconds each, 
full HD 1,920 x 1,080 pixels, 25 fps). Video clips show 
people performing various actions in indoor and outdoor 
environments during day and night times. The people shown 
in the videos are of different gender and ethnicity. 

These datasets are in particular challenging due to the 
diversity of video footage, and specifically the variability of 
videos within the same categories.  Also, the video footage 
contains variable lighting conditions as well as different 
levels of difficulty and includes several challenges such as 
noise, low quality image or blurring, increasing the 
difficulty of its analysis. Figure 2 illustrates some image 
examples in this respect. 

 

 46 

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 05:39:47 (UTC) by 23.20.220.59. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 15, Number 4, 2015 

B. Evaluation 

To assess retrieval performance, we use a global measure 
of performance, the Mean Average Precision (MAP), which 
is computed as the mean of the average precision scores for 
each query: 



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q Q
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                           (4) 

where Q represents the number of queries, and AP() is: 
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where n is the number of frames, m is the number of frames 

of category c, and  is the k-th frame in the ranked list 

. Finally,  is a function which returns the 

number of frames of category c in the first k frames if is 

of category c and 0 otherwise (we used the trec_eval scoring 
tool available at http://trec.nist.gov/trec_eval/).  
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Also, we compute the classic precision and recall metrics. 
Precision represents the proportion of the true positives from 
all true and false positive results and recall is the proportion 
of the true positives from the total number of relevant 
records in the database. We also compute the F-Score [42] 
which is the combination of the precision and the recall: 

recallprecision

recallprecision
F





2

2 )1(


  

where β represent the parameter that allows to control the 
contribution of each of the two to the overall metric. This is 
an important property of the F-Score, and is the primary 
reason why this measure was chosen. In an automated video 
surveillance system, recall is more important than precision, 
i.e., we prefer to retrieve all instances. To account for this, 
in our experiments we set β = 2 (F2-Score). 

To validate our approach we conducted several 
experiments which are presented in the following. The first 

experiment (Section C) provide an experiment that studies 
the influence of motion detector on the algorithm’s 
performance. The second experiment (Section D) motivates 
the choice of the best feature keypoints for the retrieval and 
we study the influence of Fisher Kernel parameters on 
systems accuracy. The third experiment (Section E) deals 
with comparing our method with other relevant algorithms 
from the literature. Finally, we provide a computational 
efficiency discussion on the proposed framework (see 
Section F). 

Figure 2. Sample frames from the Scouter [2] (first line) and PEVID-HD (second line) [3] datasets. 

C. The evaluation of motion detectors 

In this experiment we study the influence of motion 
detection algorithms on the system's performance. We tested 
three types of motion detectors: a background subtraction 
motion detector [25], an accumulative optical flow approach 
[40] and the Kalman filter motion detector in [41] (see 
Section III-B). In this experiment we tested only the 
performance of the motion detection with the objective of 
successfully retrieving the moving persons. Evaluation is 
performed by comparing the results to the actual ground 
truth. The performance of each motion detector is presented 
in Table I. Good accuracy is obtained with the Kalman filter 
motion detector, namely 81%. On the other hand, 
background subtraction motion detector obtains better 
performance, accuracy is equal to 87%. The lowest 
performance is obtained with the accumulative optical flow, 
which has been shown to be very sensitive to the parameter 
tuning. 

 
TABLE I. COMPARISON OF MOTION DETECTORS ALGORITHMS. 

Motion detection algorithm Accuracy 
Background subtraction motion 87% 
Kalman filter motion detector 81% 
Accumulative optical flow method 72% 

 

D. Parameter tuning 

In this experiment we study the influence of Fisher Kernel 
parameters on the system’s performance. First of all, to 
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make the Fisher Kernel computationally feasible, we apply 
Principal Component Analysis (PCA) on these features and 
reduce the dimensions by around 40%. This step represents 
a common practice for many object recognition algorithms 

[17, 26, 30, 31]. We also applied the  and power 

normalization, that was demonstrated to improve the 
performance of Fisher kernel [17]. 

2L

 The first parameter used in our approach is represented 
by the local descriptor algorithms, used for the description 
of the keypoints. We tested three different algorithms: SIFT, 
SURF and PHOW (which represent common features for 
image retrieval tasks and gives good results on Pascal VOC 
datasets [31]).  

The results are presented in Table II. For both datasets, 
the PHOW local descriptors have the highest stability and 
robustness: 55.69% MAP for the Scouter dataset and 
43.21% MAP for the PEVID-HD dataset. SIFT also proves 
high stability in many situations, but it provide high 
sensitivity at illumination changes.  

Overall, the performance of SIFT is with 2-4% lower than 
the PHOW features. SURF provides faster speed but also it 
has many drawbacks, e.g., it is not stable to rotation and 
illumination changes. Therefore, it provides the lowest 
percentage of MAP values: 52.12% for the Scouter dataset 
and 38.22% for the PEVID-HD dataset.  

 
TABLE II. COMPARISON BETWEEN SYSTEM ACCURACY (MAP, PRECISION, 

RECALL, F2SCORE VALUES) USING DIFFERENT KEYPOINTS ALGORITHMS. 
Dataset Evaluation 

parameter 
SURF SIFT PHOW 

MAP 52.12% 53.67% 55.69% 

Precision 47.49% 48.56% 50.21% 
Recall 71.18% 72.21% 74.11% 

Scouter 
Dataset 

F2Score 64.72% 65.80% 67.66% 
MAP 38.22% 39.57% 43.21% 
Precision 33.73% 34.21% 37.47% 
Recall 61.74% 62.19% 67.83% 

PEVID-
HD 

F2Score 52.94% 53.44% 58.37% 

 
In the second experiment we analyze the influence of the 

number of centroids. The results are presented in Figure 3. 
One can observe that the performance increases with 

increasing the number of centroids. The best performance is 
obtained with 250 centroids. After this value, the 
performance decreases with 1 percent. A big improvement 
can be noticed compared to version with only one centroid: 
for the Scouter dataset the MAP parameter goes from 42% 
to 51% and from 45% to 55.69% for the SVM with RBF and 
Linear kernels. Also, for the PEVID-HD dataset the increase 
of number of centroids significantly improves the results: 
from 29% to 38% and from 31% to 43.21% for the SVM 
with RBF and Linear kernels.  

Figure 3. Mean Average Precision (MAP) while varying the number of cluster centers. 

The last parameter that has to be taken into consideration 
is the SVM kernel. The second experiment shows that we 
obtain better results with linear kernel. 

E. Comparison with state-of-the-art 

In order to compare our algorithm with other approaches, 
we have selected the settings that provide the greatest 
improvement in performance: 250 GMM centroids, PHOW 
features and SVM classifier with a linear kernel. The final 
experiment consists of comparing our approach with several 
state-of-the-art descriptors and classifiers pairs. Given the 
specificity of the task, i.e., automated video surveillance, we 
tested several visual descriptors which are known to perform 
well on image retrieval tasks, namely: Histograms of 
Oriented Gradients (HoG) features [15], Color Naming 
histograms (CN) [16], color moments (CM) [17], Local 
Binary Pattern (LBP) [18] and Bag of Words (BoW) [19] 
(with SIFT and PHOW features). Also, we train these 
features using a broad category of classifiers: nearest 
neighbor (KNN) [20], Random Forests (RF) [20], linear 
SVM and SVM with RBF and Chi-Square kernel classifier 
[14]. Figure 4 presents the values of MAP scores for other 
state-of-the-art algorithms.  On the Scouter dataset, the best 
results from state-of-the-art is obtained by BoW (with 
PHOW features) using SVM with Chi-Square kernel, 
namely 49.26%. Similar performances are performed with 
HoG features with KNN classifier and Color Naming 
histograms with SVM Chi-Square (46.03% and 45.08%). 
On the other hand, the color moment features obtain lower 
MAP rates with 9 to 10 percents. Similar results are 
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obtained for the PEVID-HD dataset: the BoW (on PHOW 
features) with SVM classifier obtain 32.41%, while color 
naming feature has a MAP value of 33.93%.  

We present our results compared with the best state-of-
the-art results in Table III. The proposed approach has the 
highest values for both datasets. We obtain 55.69% for the 
Scouter dataset and 43.21% for the PEVID-HD dataset. This 
represents an improvement of more than 6 percents for the 
Scouter dataset and more than 11 percents for the PEVID-
HD dataset.  
 
TABLE III. COMPARISON OF SYSTEM PERFORMANCE USING THE PROPOSED 

APPROACH AND THE BEST STATE-OF-THE-ART APPROACHES (MAP VALUES). 
 

Descriptor Classifier MAP 
Scouter dataset 
Fisher kernel with 
PHOW features 

Linear SVM 55.69% 

BOW with PHOW 
features  

SVM with Chi-Square kernel 49.26% 

HOG KNN 46.03% 
Color naming SVM with Chi-Square kernel 45.08% 
Baseline Random decision 10.18% 
PeVID-HD dataset 
Fisher kernel with 
PHOW features 

Linear SVM 43.21% 

Color naming SVM with Chi-Square kernel 33.93% 
BOW with PHOW 
features 

SVM with Chi-Square kernel 32.41% 

Baseline Random decision 8.37% 
 

We conclude that the proposed approach improves the 
retrieval performance, outperforming some other existing 
approaches, e.g., BoW, HoG, color naming, etc. 

Figure 6 presents several system responses, when we use 
the best system configuration (Fisher Kernel with PHOW 
features and Linear SVM). The first query provide five 
examples of true positives (TP) examples in which the 
object found by the system are correctly identified according 
to the ground truth (note the scenario difficulty, different 
fields of view, object dimension, different object color, 
illumination, camera noise and other objects around the 
object of interest). Anyway there are also two false 

negatives situations (NT) in which the system is unable to 
classify correctly (according to ground truth) the object 
detected due to the signal noise, illumination conditions 
(insufficient, over exposed), partial object view (out of 
frame, junction with another object) or dimension too low. 
A similar example is also provided for the PEViD-HD 
dataset. Five of them represents frames that contains objects 
correctly identified according the ground truth. On the other 
side, we also provide several examples where the system is 
not able to provide correct response. 

Figure 4. Mean average precision values using various descriptor - classifier combinations (1 - HoG, 2 - LBP, 3 - CM, 4 - CN3x3, 5 - CSD,  
6 - BoW-SIFT, 7 - BoW-PHOW). 

 

F. Computational complexity 

In this section we discuss the computational complexity 
of the proposed description framework. We analyze the time 
for computing each processing step, from feature extraction 
to video classification. We perform this experiment on the 
Scouter dataset which contains more than 36,000 of video 
frames. The run-time is evaluated on a regular PC machine 
using a 2.9 GHz Intel Xeon CPU and 24GB of RAM. We do 
not use parallelization. Experiments were run with SIFT 
features and Linear SVM classifier. The computational cost 
per frame is presented in Figure 5. Descriptor extraction 
takes 150 milliseconds (ms) per image. The input/output 
operation lasts 30 ms per frame. The Fisher computation is 
very fast, namely 32 ms per frame. Finally, classification 
takes 8 ms for all classes.  

 
Figure 5. Total computational time (ms) per frame for the proposed video 
surveillance framework (Scouter [2] dataset). 

       49

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 05:39:47 (UTC) by 23.20.220.59. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 15, Number 4, 2015 

 50 

  

Figure 6: First two images represents the query. The retrieved results are marked with the red rectangles - ranking order from left (highest) to right. 
Correct detections are denoted by green (ok) whereas false detections are depicted with a red x.
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A processing chain would take 450 ms per frame (12 
seconds for 1 second of video, i.e., 25 frames). However, the 
most time-consuming components (i.e., motion detection 
and SIFT computation) can be computed only once, when 
the video footage is recorded. Therefore, we can take into 
consideration only the last two components which would 
take 40 ms per frame. 

We conclude that this represents a reasonable, near real-
time, cost considering the achieved performance. This is 
achieved without any algorithm optimization nor adequate 
hardware acceleration or parallel implementation. Using 
parallel processing will allow to easily achieve even better 
real-time performance. 

V. CONCLUSIONS 

In this paper we addressed the problem of content-based 
search for video surveillance. We formulated and analyzed a 
new approach that uses the Fisher Kernels theory. Our 
method consists of two steps: (1) altering the feature space 
by training a Gaussian Mixture Model on the reduced 
number of relevant frames and re-representing those features 
using Fisher Kernels; (2) a classification layer that uses a 
Support Vector Machine algorithm. We have tested several 
normalization techniques, keypoints features and discuss the 
influence of parameters on system’s performance. Our 
experiments showed that our method always performs 
equally or better than other methods: Compared to the next 
best method, Bag of Words, we get an improvement on 
Scouter 6%, while for PEVID-HD we also get a higher 
improvement of 11% MAP. Also, we showed that we do not 
need large number of frames to train the FK framework, we 
achieve the best performance with only few examples. This 
makes the proposed approach implementable for a real time 
automated surveillance system.  

Regarding the further continuation paths, future work will 
mainly consist in improving the computational speed of the 
proposed method. Also, we will adapt the method to address 
a higher diversity of video categories (use of the Internet) 
and we want to extend the Fisher kernel to other modalities, 
namely to use elaborated spatio-temporal features.  
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