
Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

Hardware Accelerators for Data Sort in All
Programmable Systems-on-Chip

Valery SKLYAROV, Iouliia SKLIAROVA
University of Aveiro/IEETA, 3810-193 Aveiro, Portugal

skl@ua.pt, iouliia@ua.pt

1Abstract—The paper analyzes and evaluates architectures

of the most efficient hardware accelerators for data sort in
FPGA and all programmable systems-on-chip (such as devices
from the Xilinx Zynq-7000 family). The following novel
methods are proposed and discussed: 1) data sorting in
hardware that is executed concurrently with getting inputs
through single or multiple ports; 2) a technique allowing
rational compromise between the cost and the latency of the
circuit to be achieved. Both methods are targeted to
hardware/software co-design and permit the best solution to be
found for different requirements within pre-defined
constraints. The results of experiments, implementations, and
rigorous comparisons demonstrate high efficiency and broad
applicability of the proposed methods for wide range of
practical applications.

Index Terms—FPGA, System-on-chip, Sorting, Parallel
processing, Performance and resources evaluation.

I. INTRODUCTION

All Programmable Systems-on-Chip (APSoC) from the
Zynq-7000 family [1,2] combine on the same microchip the
dual-core ARM CortexTM MPCoreTM-based high-
performance processing system (PS) with advanced
programmable logic (PL) from the Xilinx 7th family and
may be used effectively for the design of hardware
accelerators in such areas as hard real-time systems [3],
image [4] and data [5] processing, satellite on-board
processing [6], programmable logic controllers [7], driver
assistance applications [8], wireless networks [9], and many
others [2]. Interactions between the PS and PL are supported
by different interfaces and other signals through over 3,000
connections [1]. The available four 32/64-bit high-
performance (HP) Advanced eXtensible Interfaces (AXI)
and 64-bit AXI Accelerator Coherency Port (ACP) enable
fast data exchange with theoretical bandwidths reported in
[1] and practical results shown in [10].

The design flow for Zynq APSoC includes development
of hardware in the PL [11] (supported by available Xilinx IP
cores) and software in the PS [12] for different types of
applications such as standalone (bare metal) [13], running
under an operating system (e.g. Linux) [13], and combined
[14]. Hardware implemented in the PL can be the same for
standalone and Linux applications but software programs
use different functions and interaction mechanisms [13].

Sorting is a procedure that is needed in numerous
computing systems [15]. For many practical applications,
sorting throughput is very important. To better satisfy
performance requirements, fast accelerators based on field-

programmable gate arrays (FPGA) (e.g. [16-19]), graphics
processing units (e.g. [20-21]) and multi-core central
processing units (e.g. [22-23]) have been proposed. APSoC
devices may combine the mentioned above accelerators
taking advantage of the built-in high-performance PS and
optimized circuits implemented in the PL.

This research was supported by Portuguese National Funds through FCT

- Foundation for Science and Technology, in the context of the projects
UID/CEC/00127/2013 and Incentivo/EEI/UI0127/2014.

The majority of known hardware accelerators for data sort
use Batcher even–odd and bitonic mergers [24,25] which are
the fastest because of the lowest latency L(N) measured by
the number of levels of basic network elements through
which signals propagate from the inputs to the outputs. Such
elements are comparators/swappers for data items. Let p =
log2N, where N is the number of K-bit data items that have
to be sorted. It is known that L(N) for both referenced above
mergers [24,25] is equal to p×(p+1)/2. The cost C(N) (the
number of comparators/swappers) for the even-odd merger
is smaller than for the bitonic merger and it is equal to (p2-
p+4)×2p-2-1.

A review of recent results in hardware accelerators for
data sort can be found in [26] which demonstrate that the
resources available even in modern reconfigurable
microchips only allow circuits to be constructed that can
handle a very limited number N of items because of large
values of C(N). It should be also noted that although
methods [24,25] offer the best theoretical throughput, the
actual performance is limited by the interfacing circuits that
supply initial data and return the results. Indeed, even for the
most recent and advanced on-chip interaction methods, such
as that are used in APSoC [1], the communication overheads
do not allow the theoretical throughput [24,25] to be
achieved in practical designs [26]. It is shown in [10] that
data exchange between the PS and PL involves delays and
the bottleneck is in communications. Thus, executing sorting
operations as soon as a new data item arrives might be
useful and promising. Indeed, although even-odd and bitonic
merges do not involve sequential operations, additional time
and components are needed such as those to prepare long
size input vectors and to transmit long size output vectors
through interfaces with a limited number of lines (such as
that are available for interactions between the PS and PL in
APSoC [1]).

We describe below highly parallel networks that enable
sorting to be done either entirely within the time required for
data transfers to and from the circuit or with a minimal
addition time. We will call such circuits either
communication-time or real-time. It will be also shown that
although minimizing the latency L(N) and the cost C(N)
cannot be done simultaneously, some compromises between
L(N) and C(N) may be found allowing either the fastest or
the less resource consuming circuits to be designed which

 9
1582-7445 © 2015 AECE

Digital Object Identifier 10.4316/AECE.2015.04002

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 09:12:36 (UTC) by 44.213.99.37. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

depends on the requirements and constraints.
The remainder of the paper is organized in 5 sections.

Section II briefly discusses methods and related work.
Section III suggests hardware accelerators that enable
sorting to be done in real time with data exchange for
supplying inputs and outputs. Section IV suggests circuits
that permit the maximum number of data items to be
processed within the given constraints for hardware
resources. Section V describes experiments in FPGA and
APSoC and reports the results of comparisons, clearly
explaining why the proposed circuits are better than the
known alternatives. Conclusion is given in section VI.

II. METHODS AND RELATED WORK

The following two methods are the most commonly
applied for sorting large data sets in software/hardware
systems: a) large data sets are sorted in host computers/
processors through merging sorted subsets produced by an
FPGA (see, for example, [16]); b) sorting networks for large
sets are segmented in such a way that any segment can be
processed easily and the results from the processing are
handled sequentially to form the sorted set (see, for
example, [17,21]). Both methods involve intensive
communications, either between an FPGA and host
computing system/external memory (the size of memory
embedded to FPGA is limited), or between a processing
system (such as [21]) and memory.

Fig. 1 outlines the basic architecture of hardware/software
data sorters from [26] that will be used in this paper.

PL

Merge Merge

Merge Merge

Merge PS
Sorted set

Zynq APSoC

Sorted sub‐
sets (blocks)

Sorting subsets of data items
in highly‐parallel networks

M
em

o
ry
:
ex
te
rn
al
 D
D
R
, o

n
‐c
h
ip
‐

m
em

o
ry
 (
O
C
M
)
o
r
ca
ch
e

Figure 1. The basic architecture of the hardware/software data sorter

Large sets of data items are decomposed in subsets that

can be sorted in the PL. We found that merging in software
is significantly slower than sorting subsets in hardware with
the aid of the methods [26]. Thus, on the one hand, to
increase throughput of hardware/software data sorters we
need to handle bigger subsets in the PL because the PL,
executing many parallel operations, is expected to be faster.
On the other hand, processing larger subsets in the PL may
lead to performance degradation because it is usually done
at the expense of decreasing the number of parallel
operations and consequently the PL may become slower
than the PS. Indeed, clock frequency of the PS is notably
higher than clock frequency of the PL [1] and high-level
parallelism in the PL must be provided to execute operations
faster than in the PS. Another problem is communication
overhead [10]. Copying data items from/to memories may
be combined with solving other tasks in software in parallel.
However, such combination is very questionable for the PL.

Indeed, we would like to use as much hardware as possible
to increase the size of sorted subsets. Thus, as a rule, no
additional hardware is available in the PL for solving other
problems in parallel. It is rather more efficient to find a way
that enables sorting to be combined with data transfer.
Section III below demonstrates that such a way is
achievable.

III. COMMUNICATION-TIME HARDWARE ACCELERATORS

There are five HP AXI ports between the PS (memories)
and PL each of which can be configured for 32 or 64-bit
data transfers. The theoretical bandwidth for read/write
operations through one HP AXI port is 1,200 MB/s [1].
Dependently on requirements, data may be transferred
through either a single or multiple ports.

III.1 TRANSFERRING DATA THROUGH A SINGLE PORT

The proposed network, which is based on the circuit for
discovering the minimum and maximum values from [27], is
shown in Fig. 2. It is composed of N K-bit registers
R0,…,RN-1, and N-1 comparators/swappers. For the sake of
simplicity, N is assigned to be 16. Clearly, other values may
be chosen.

m

N
 K

-b
it

re
gi

st
er

s
(N

 =
 1

6)

K-bit
input

K-bit
outputM

Communicates either a K‐bit input vector or m

clock
s

R0

RN‐1=R15

a

b

c

i

m

‐ comparator/swapper

e

f

g

d

k

h

n

j

l

o

Figure 2. Real-time accumulator/sorter for N = 16

At the initialization step, all the registers R0,…,RN-1 are

set to the minimum possible value for data items. For the
examples below we assume that this value is 0. Data items
are received sequentially from interfacing circuits through
the multiplexer M. Since all the registers are set to the
minimum values, all input items with non-minimum values
will be moved up and accommodated somehow in the
registers R0,…,RN-1. Fig. 3 demonstrates how N=16 K-bit
items are accommodated using an example with data
arriving in the following sequence: 1) 28; 2) 14; 3) 37; 4)
65; 5) 11; 6) 14; 7) 19; 8) 71; 9) 0; 10) 69; 11) 14; 12) 41;
13) 71; 14) 22; 15) 70; 16) 7. The circuit in Fig. 2 composed

 10

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 09:12:36 (UTC) by 44.213.99.37. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

of comparators/swappers is combinational and all the
comparators/swappers a,…,o operate in parallel handling
input data from the registers R0,…,RN-1. Outputs of the
circuit composed of comparators/swappers are written to the
registers R0,…,RN-1 through feedback connections and only
the bottom output (marked as K-bit output) does not have a
feedback. Note that data may be received from the PS (from
memory) and accommodated in the registers R0,…,RN-1 in
N clock cycles indicated in Fig. 3 by symbols c1,…,c16
(N=16). As soon as N unsorted data are received, the sorted
result can be transferred immediately to the PS as shown in
Fig. 4.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
28
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

R0,…,R15
770227141146907119141165371428

In
p
u
t
(u
n
so
rt
ed

)
d
at
a

clock
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 ………………..c16

0
0
0
0
0
0
0
0
0
0
0
0
0
14
28
0

0
0
0
0
0
0
0
0
0
0
0
0
14
28
37
0

0
0
0
0
0
0
0
0
0
0
0
14
28
37
65
0

0
0
0
0
0
0
0
0
0
0
14
11
37
28
65
0

0
0
0
0
0
0
0
0
0
11
14
14
37
28
65
0

0
0
0
0
0
0
0
0
11
14
14
19
37
28
65
0

0
0
0
0
0
0
0
11
14
14
19
28
37
65
71
0

0
0
0
0
0
0
11
0
14
19
28
14
65
37
71
0

0
0
0
0
0
0
11
14
19
14
28
37
65
69
71
0

0
0
0
0
0
11
14
14
19
28
37
14
69
65
71
0

0
0
0
0
11
14
14
14
28
19
37
41
69
65
71
0

0
0
0
11
14
14
14
19
28
37
41
65
69
71
71
0

0
0
11
14
14
14
19
22
37
41
65
28
71
69
71
0

0
11
14
14
14
19
22
28
41
37
65
69
71
70
71
0

11
14
14
14
19
22
28
7
41
65
69
37
71
70
71
0

Figure 3. Iterations for acquisition of data items

m

M

Communicates the maximum value m

s

14
14
14
11
22
19
28
37
65
41
69
70
71
71
m
7

11
14
14
14
19
22
28
7
41
65
69
37
71
70
71
0

R0,…,R15

clock
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 ………………..c16

14
14
14
19
22
28
37
41
65
69
70
71
71
m
m
11

14
14
19
22
28
37
41
65
69
70
71
71
m
m
m
14

14
19
22
28
37
41
65
69
70
71
71
m
m
m
m
14

19
22
28
37
41
65
69
70
71
71
m
m
m
m
m
14

22
28
37
41
65
69
70
71
71
m
m
m
m
m
m
19

28
37
41
65
69
70
71
71
m
m
m
m
m
m
m
22

37
41
65
69
70
71
71
m
m
m
m
m
m
m
m
28

41
65
69
70
71
71
m
m
m
m
m
m
m
m
m
37

65
69
70
71
71
m
m
m
m
m
m
m
m
m
m
41

69
70
71
71
m
m
m
m
m
m
m
m
m
m
m
65

70
71
71
m
m
m
m
m
m
m
m
m
m
m
m
69

71
71
m
m
m
m
m
m
m
m
m
m
m
m
m
70

71
m
m
m
m
m
m
m
m
m
m
m
m
m
m
71

m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
71

Data are sorted

71717069654137282219141414 1170
Figure 4. Transmitting the sorted data items

Let us look at Fig. 3. At each step, when a new item is

received, the previously accommodated in the registers
R0,…,RN-1 items become partially sorted. This is because
the network [27] provides for necessary data exchanges in
the registers with the aid of comparators/swappers. Almost
from the beginning of transmitting sorted data (see Fig. 4)
all other data items in the registers become completely
sorted (see the column shown in italic font and pointed by
an "up arrow" with the message "Data are sorted"). It is
done after the clock cycle c2 (the upper value 14 is the
smallest and the bottom value 71 is the largest). This is
because the proposed network always moves the maximum

value m to upper positions. Thus, sorting is completed
almost immediately after all input data have been transferred
from a single port to the proposed circuit. Hence, outputs
can be delivered to the PS (to memory) either through a
single port as shown in Fig. 4 or through Q>1 ports using
additional multiplexers selecting segments from the sorted
items sequentially (see section V for additional details). For
example, for Q=5, beginning from the clock cycle c3 the
following three segments can be transmitted in cycles c3, c4,
and c5: 1) 11, 14, 14, 14, 19; 2) 22, 28, 37, 41, 65; 3) 69, 70,
71, 71. Since in the first two cycles c1 and c2 the values 0
and 7 have already been transmitted, the total number of
clock cycles is just 5. Note, that this method requires
reconfiguration of input/output (I/O) ports in the PS which
might involve more time than transferring data items
through a single port. Analysis of software and hardware
capabilities permits the best solution to be chosen.

III.2 TRANSFERRING DATA THROUGH MULTIPLE PORTS

Fig. 5 depicts the proposed network for Q ports. The
circuit is decomposed into Q autonomous sub-circuits
(segments) of equal size (i.e. up to items can be acquired
by each sub-circuit). The network in Fig. 5 assumes Q=4.
Clearly, other values may be chosen. Each segment can
handle an arbitrary number of data items (provided sizes
of all segments are equal). The only requirement is that any
segment finds an item with the minimum value.

Segment 1

Q = 4

Input from port 1

Input from port 2

Input from port 3

Input from port 4

Segment 2

Segment 3

Segment 4
Sorted
data

Figure 5. Transferring data items through multiple ports

Data items are received in parallel from Q ports in such a

way that port i supplies inputs for the segment i (i = 1,…,Q).
Any segment is a circuit shown in Fig. 2. Different segments
are linked by comparators/swappers. Swapping of data items
between different segments cannot occur at any parallel data
transfer (of up to sequential items) through Q input ports
except the last one for which such swapping is indeed
needed to deliver the smallest item. As soon as all input data
are saved in the registers R0,…,RN-1 exactly the same
functionality as in Fig. 4 is provided. Note that more clock
cycles than in Fig. 4 will be needed to sort all the items.
Completion of sorting may be recognized by additional
comparators verifying that any upper item is smaller than or
equal to a neighboring lower item.

Fig. 6 presents an example of the circuit in Fig. 2 divided
in 4 segments (Q = 4). A segment may have a different
number of lines (i.e. not obligatory a power of 2), but we
have already mentioned that the bottom line of any segment
has to always contain the smallest value. Note that only lines
with the smallest values participate in potential data
swapping between the segments. Clearly, for all data
transactions 0,1,…,-2 the bottom lines in all segments
contain the same smallest value (that is the predefined

 11

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 09:12:36 (UTC) by 44.213.99.37. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

minimum such as 0). Thus, although comparators/swappers
(such as n, m, o in Fig. 6) connect different segments there is
no need for swapping of data. For the last (-1) data transfer
the smallest values in bottom lines of the segments will be
replaced with other values. Now, swapping between
segments may occur and it permits to deliver the smallest
value to the bottom line of the network composed of 4
segments. Hence, transfer of the sorted items can be done
immediately.

m
K-bit
input

(port 4)

K-bit
outputM

clock
s

R0

RN‐1=R15

a

b

c

i

m

e

f

g

d

k

h n

j

l

o

K-bit
input

(port 1)

M

s

K-bit
input

(port 2)

M

s

K-bit
input

(port 3)

M

s

Figure 6. Using 4 ports for input data and 1 port for output data

Fig. 7 gives the same example as in Fig. 3, 4 but uses Q=4

input ports instead of just one. Data are acquired in 4 clock
cycles, i.e. 4 times faster than in Fig. 3 (where data are
received in 16 clock cycles). Data get sorted in 11 clock
cycles (from c5 to c15). So, the total throughput is higher
than for Fig. 4.

0
0
65
0
0
0
37
0
0
0
14
0
0
0
28
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

R0,…,R15
770227141146907119141165371428

In
p
u
t
(u
n
so
rt
ed

)
d
at
a

clock
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 ……………………………….. c19

0
65
71
0
0
19
37
0
0
14
14
0
0
11
28
0

65
41
71
0
19
14
37
0
14
14
69
0
11
0
28
0

65
41
71
14
19
37
70
7
14
22
69
14
11
28
71
0

65
41
71
14
37
19
70
11
22
14
69
14
28
71
m
7

65
41
71
14
37
19
70
14
22
14
69
28
71
m
m
11

65
41
71
14
37
19
70
14
22
28
69
71
m
m
m
14

65
41
71
14
37
19
70
22
28
69
71
m
m
m
m
14

65
41
71
19
37
22
70
28
69
71
m
m
m
m
m
14

65
41
71
22
37
28
70
69
71
m
m
m
m
m
m
19

65
41
71
28
37
69
70
71
m
m
m
m
m
m
m
22

65
41
71
37
69
70
71
m
m
m
m
m
m
m
m
28

65
41
71
69
70
71
m
m
m
m
m
m
m
m
m
37

65
69
71
70
71
m
m
m
m
m
m
m
m
m
m
41

69
70
71
71
m
m
m
m
m
m
m
m
m
m
m
65

70
71
71
m
m
m
m
m
m
m
m
m
m
m
m
69

71
71
m
m
m
m
m
m
m
m
m
m
m
m
m
70

Data are sorted

717170696541372822191414141170
Data acquisition Transmitting sorted data

71
m
m
m
m
m
m
m
m
m
m
m
m
m
m
71

m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
71

Sorting is completed in 11 clock cycles (from c5 to c15)

The sorted data can be read

Figure 7. An example of data acquisition and sort for Fig. 6

If input ports will further be used as output ports, the PS

has to reconfigure them from reading data (i.e. PSPL) to

writing data (i.e. PLPS) and this involves additional time.
Our experience has shown that such additional time is not
less than the extra delay for data sort. Therefore, we can
again consider the proposed sorting as communication-time.
Alternatively, data items may be acquired through 4 ports
and delivered through the fifth port without reconfiguration.

IV. PROCESSING LARGER SETS OF DATA IN THE PL

Thorough experiments with data sorters from previous
sections (the results will be reported in section V) have
demonstrated that although the proposed networks are very
fast they do not permit larger circuits than in [26] to be built
within resource constraints of the given PL. We found that
data sorters for larger sets have to be as regular as possible.

Let us look at the circuit in Fig. 8 that is composed of N
K-bit registers R0,…,RN-1 with comparators/swappers
between them. Any comparator/swapper compares items in
upper and bottom registers and transfers the item with larger
value to the upper register (let us call it A) and the item with
smaller value to the bottom register (let us call it B). Thus, if
A < B then data in the registers are swapped, otherwise they
are unchanged. Such operations are applied simultaneously
to all the registers connected to even comparators/swappers
(0, 2, 4,…) in one clock cycle (let us call it even clock
cycle) and to all the registers R0,…,RN-1 connected to odd
comparators/swappers (1, 3, 5,…) in a subsequent clock
cycle (let us call it odd clock cycle).

Data item

Data item

Comparator
/swapper

Data item

Comparator
/swapper

Even

Si
gn
al
s
fr
o
m
 a
ll
o
d
d
 a
n
d
 e
ve
n

co
m
p
ar
at
o
rs
/s
w
ap
p
e
rs
 p
ar
ti
ci
p
at
e
 i
n

fo
rm

in
g
th
e
 s
o
rt
in
g
_
co
m
p
le
te
d
si
gn
al

Data item

Odd

37
22
11
38
24
9
0
24
11
11
17

37
22
38
11
24
9
24
0
11
11
17

37
38
22
24
11
24
9
11
0
17
11

38
37
24
22
24
11
11
9
17
0
11

38
37
24
24
22
11
11
17
9
11
0

38
37
24
24
22
11
17
11
11
9
0

38
37
24
24
22
17
11
11
11
9
0 "n

o
 s
w
ap
p
in
g"
 in
d
ic
at
es
 t
h
at
 s
o
rt
in
g

h
as
 c
o
m
p
le
te
d

unsorted data sorted data

clock cycles (iterations)
R0

R1

RN‐2

RN‐1

ev
en

ev
en

ev
en

o
d
d

o
d
d

o
d
d

Figure 8. Sorting circuit with an example

Clearly, this implementation can be unrolled to the

combinational even-odd transition network [20], but such a
network requires significantly larger number of
comparators/swappers that is equal to N×(N-1)/2. Since we
execute not only combinational but also sequential
operations with the comparators/swappers we will call our
circuit iterative even-odd transition network. Note that this
network is not the same as in [26] because any
comparator/swapper is dedicated to the relevant pair of
registers and all the required interconnections are very
simple and easily implementable. Evidently, the maximum
number of iterations is equal to N but it may be reduced
much similarly to [26]. Indeed, if beginning from the second
iteration there is no data exchange in all either even or odd
comparators/swappers then the data items are sorted. At the
first iteration if there is no data swapping, data swaps for the

 12

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 09:12:36 (UTC) by 44.213.99.37. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

next iteration still may occur. We assume that the first
iteration always involves even comparators/swappers.

Let us look at the example shown in Fig. 8 (N=11). At the
beginning, unsorted data are copied to the registers
R0,…,RN-1. Each iteration (6 iterations totally) is forced by
clock edge. Rounded dotted and solid rectangles in Fig. 8
indicate elements that are compared in iterations 1-6.
Rounded solid rectangles enclose data items that are actually
swapped. Data are sorted in 6 clock cycles and 6 < N=11.

The main disadvantage of the circuits from this section
comparing to section III is the necessity to copy long size
sets to/from the registers R0,…,RN-1 (before the sorting
starts). However, the ideas from section III may also be
applied to the circuit in Fig. 8. As can be seen from Fig. 9
data items can be copied from a port in even clock cycles
and subsequent sorting is done in smaller number of clock
cycles after data acquisition than in Fig. 8. Besides, the
circuit does not require additional components to fill in a
long size input register (needed for R0,…,RN-1). Our
experiments have shown that although the circuit in Fig. 9 is
not as fast as the circuits in section III, it occupies less PL
resources than the circuits from section III due to higher
regularity.

A similar communication-time technique may also be
used for known iterative even-odd transition networks from
[5,26]. Indeed, a K-bit input vector can be delivered to the
bottom line of the circuit from [5,26] much like it is done in
Fig. 9. We think that the number of additional clock cycles
(that are needed beyond data transfers) is smaller in circuits
[5,26] but due to the higher regularity of the circuit in Fig. 9,
a larger sorter might be implemented within the same
available resources. Experiments will be done in section V.

0
0
0
0
0
0
0
0
0
0
37

0
0
0
0
0
0
0
0
0
37
0

0
0
0
0
0
0
0
0
37
0
22

0
0
0
0
0
0
0
37
0
22
0

0
0
0
0
0
0
37
0
22
0
11

0
0
0
0
0
37
0
22
0
11
0

0
0
0
0
37
0
22
0
11
0
38

0
0
0
37
0
22
0
11
0
38
0

0
0
37
0
22
0
11
0
38
0
24

0
37
0
22
0
11
0
38
0
24
0

37
0
22
0
11
0
38
0
24
0
9

37
22
0
11
0
38
0
24
0
9
0

37
22
11
0
38
0
24
0
9
0
0

37
22
11
38
0
24
0
9
0
0
0

37
22
38
11
24
0
9
0
0
0
24

37
38
22
24
11
9
0
0
0
24
0

38
37
24
22
11
9
0
0
24
0
11

38
37
24
22
11
9
0
24
0
11
0

38
37
24
22
11
9
24
0
11
0
11

38
37
24
22
11
24
9
11
0
11
0

38
37
24
22
24
11
11
9
11
0
17

38
37
24
24
22
11
11
11
9
17
0

38
37
24
24
22
11
11
11
17
9
0

38
37
24
24
22
11
11
17
11
9
0

38
37
24
24
22
11
17
11
11
9
0

38
37
24
24
22
17
11
11
11
9
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26

C
lo
ck
 c
yc
le
s
1
‐2
6

Data item

Data item

Comparator
/swapper

Data item

Comparator
/swapper

Even

Data item

Odd

R0

R1

RN‐2

RN‐1

K-bit input
delivered
in even
clock
cycles

from a port

Figure 9. Communication-time data acquisition and sorting for Fig. 8

V. IMPLEMENTATIONS, EXPERIMENTS, AND COMPARISONS

Different data sorters can be characterized by the
following parameters:

 The number L(N) of combinational levels;
 The number (N) of iterations required for sorting the

given set from N items in iterative circuits;
 The cost C(N) that is the number of comparators/

swappers;
 The maximum attainable clock frequency Fmax for

iterative circuits;
 Throughput that is the number of items sorted in time

unit (such as a second).
Table I gives the values L(N), (N), and C(N) for the

known and the proposed circuits that can be found from
theoretical expressions presented above in the paper and in
[5,16,20,26]. The values of (N) are given only for iterative
circuits (because they are not needed for pure combinational
circuits). Indices 2, 8, and 9 in Table I indicate the values for
Fig. 2, 8, and 9. Other indices refer to the following sorters:
 eom – even-odd merge [24,25];
 b – bitonic merge [24,25];
 eot – even-odd transition [20];
 eoti – even-odd transition iterative [26];
 eotirt – even-odd transition iterative [26] to which the

real-time data acquisition (see Fig. 8) was applied.

TABLE I. THE VALUES L(N), (N), AND C(N) FOR DIFFERENT

DATA SORTERS
 N=64 N=128 N=256 N=512 N=1,024

L2(N) 6 7 8 9 10

2(N) Combined with data transfers through I/O ports

L8(N) 1 1 1 1 1

8(N) ≤64 ≤128 ≤256 ≤512 ≤1,024

L9(N) 1 1 1 1 1

9(N) Combined with data transfers through I/O ports

Leom(N) 21 28 36 45 55
Lb(N) 21 28 36 45 55
Leot(N) 64 128 256 512 1,024
Leoti(N) 2 2 2 2 2

eoti(N) ≤32 ≤64 ≤128 ≤256 ≤512

Leotirt(N) 2 2 2 2 2

eotirt(N) Combined with data transfers through I/O ports

C2(N) 63 127 255 511 1,023
C8(N) 63 127 255 511 1,023
C9(N) 63 127 255 511 1,023

Ceom(N) 543 1,471 3,839 9,727 24,063
Cb(N) 672 1,792 4,608 11,520 28,160
Ceot(N) 2,016 8,128 32,640 130,816 523,776
Ceoti(N) 63 127 255 511 1,023
Ceotirt(N) 63 127 255 511 1,023

Analysis of Table I permits the following conclusions to

be drawn:
 The number of combinational levels in the proposed

sorters is the smallest enabling higher clock frequency
to be attained comparing to the best known alternatives;

 Combining sorting with data transfers permits the
sorting time to be either entirely avoided or
significantly reduced;

 Resources occupied by the proposed sorters are
considerably smaller than those for the best known
circuits. This permits larger networks to be built within
the same hardware resources.

Note that the values Fmax and can be found only
experimentally because it is difficult to take into account

 13

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 09:12:36 (UTC) by 44.213.99.37. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

 14

delays in physically implemented circuits which also include
signal propagations in connections.

Fig. 10 demonstrates the organization of experiments for
which the following two prototyping boards were chosen:
1. Digilent Nexys-4 [28] with Xilinx Artix-7 FPGA

xc7a100. This board permits autonomous data sorters to
be evaluated easily.

2. Avnet ZedBoard [29] with Xilinx Zynq APSoC
xc7z020. This board permits data sorters partially
implemented in software (in the PS) and partially in
hardware (in the PL) to be verified and evaluated.

K=32
Random
Number
Generator
(RND)

R0: 32 bit

RN‐1: 32 bit

K=32

1 Acquisition of data
from RND

Sorting
circuits from
sections III
and IV

Verifying the sorted data

Reading sorted data

Memory
(block RAM)

Displaying the sorted
set on a monitor for

visual tests

2
Sorting and counting the
number of clock cycles

3 Verifying the
sorted set

Figure 10. Experimental setup

Initial (unsorted) data are generated randomly and

supplied to the proposed circuits (in all experiments the

value K=32 was chosen). Sorting is done in networks
described in sections III and IV. The results (the sorted set)
are verified in FPGA/PL and displayed on a monitor screen
for possible visual tests. All the projects were described in
VHDL. Synthesis and implementation were done in Xilinx
Vivado 2015.2 design suite. The FPGA/PL clock frequency
was set to 100 MHz (because this frequency is defined for
on-board oscillators [28-29]).

Fig. 11 shows the occupied hardware resources for
Nexys-4 board [28] (the number of flip-flops – FF and look-
up tables – LUT) taken from Vivado 2015.2 post-
implementation reports. The resources are indicated for
different circuits namely for Fig. 2, 8, 9 and iterative even-
odd transition networks from [26] operating in real-time
mode - eotirt. We found that the resources of
communication-time circuits are smaller than in [26]. The
number N was chosen to be 256, 512, and 1,024 for
analyzing the largest circuits than can be implemented in the
FPGA [28]. Note that for two designs (in Fig. 2 and eotirt
from [26]) the number of LUTs exceeds the available in
FPGA resources and the results for such designs were taken
from Vivado synthesis reports.

It is easily visible from Fig. 11 that the circuit in Fig. 9
requires the smallest hardware resources. However, it is
clearly seen from section III that the circuits in Fig. 2 and 6
are the fastest.

Fig. 12 shows the resources of the fastest circuits in Fig. 2
and 6 and the less resource consuming circuit in Fig. 9 for
ZedBoard [29]. Once again the sorter in Fig. 9 for N=1,024
occupies 86% of APSoC resources while the other sorters
(Fig. 2, 6) cannot be implemented.

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

256 512 1.024

FF (Fig. 8)

FF (eotirt)

FF (Fig. 9)

FF (Fig. 2)

LUT (Fig. 8)

LUT (eotirt)

LUT (Fig. 9)

LUT (Fig. 2)

Available number of FPGA LUTs: 63,400
Available number of FPGA flip‐flops: 126,800

Number of 32‐bit data items

Exceeds the available resources

FPGA resources (flip‐flops – FF and look‐up tables – LUT)

The smallest occupied resources

FF

LUT FF

LUT

FF

LUT

Figure 11. The occupied FPGA resources in Nexys-4 for circuits in Fig. 2, 8, 9 and [26]

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 09:12:36 (UTC) by 44.213.99.37. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

64 128 256 512 1.024

FF (Fig. 2, 6)

FF (Fig. 9)

LUT (Fig. 2, 6)

LUT (Fig. 9)

Available number of FPGA LUTs: 53,200
Available number of FPGA flip‐flops: 106,400

Number of 32‐bit data items

Exceeds the available resources

53,120

FPGA resources (flip‐flops – FF and look‐up tables – LUT)

FF LUT

FF LUT

FF LUT

FF LUT

FF LUT

Figure 12. The occupied FPGA resources in ZedBoard for real-time data sorters in Fig. 2, 6, and 9

Table II indicates average number of additional clock

cycles (from 100 runs over randomly generated unsorted
data items) to produce the sorted set after data acquisition
(receiving items from ports) has completed.

TABLE II. AVERAGE NUMBER OF ADDITIONAL CLOCK CYCLES

FROM 100 RUNS OVER RANDOMLY GENERATED DATA (N/A –

DATA ARE NOT AVAILABLE, BECAUSE THE CIRCUIT CANNOT BE

IMPLEMENTED DUE TO INSUFFICIENT FPGA/PL RESOURCES)
 N=64 N=128 N=256 N=512 N=1,024

2(N) 5 6 7 8 n/a
6(N) 19.9 26.3 36 46.8 n/a
9(N) 51 104 238 454 992
eotirt(N) 25 57 107 209 n/a

Let us analyze Table II. For the circuits in Fig. 2 and 6

sorted data items can be transferred immediately through
one port. After 2(N)/6(N) clock cycles, the sorted data
can be transmitted through multiple ports but for such
purposes additional multiplexers are needed to select
segments of the registers R0,…,RN-1 from which data have
to be transferred through the ports (see an example in Fig.
13 for 4 output ports).

We tested also the networks from [24-25] and found that:
 Even-odd merge networks can be implemented in

Nexys-4 [28] only for up to N=64 (K=32);
 Bitonic merge networks can be implemented in

Nexys-4 [28] only for up to N=56 (K=32);
 Even-odd merge networks can be implemented in

ZedBoard [29] only for up to N=50 (K=32);
 Bitonic merge networks can be implemented in

ZedBoard [29] only for up to N=44 (K=32);

R0,…,R3

R4,…,R7

R8,…,R11

RN‐4,…,RN‐1

K×4

K×4

K×4

K×4

K×4

K

K

K

K D
at
a
tr
an
sf
er

th
ro
u
gh

 4
 p
o
rt
s

M
u
x

Select groups of registers:
R0,…,R3; R4,…,R7; …

Figure 13. Multiplexing groups of the registers to output ports

 Let us compare now the throughput of the proposed

circuits with the best known alternatives. Since the known
methods [24-25] permit significantly smaller number of data
items to be processed in FPGA, more frequent data
exchange would be needed which undoubtedly increases
communication overhead [10,13]. Besides, merging smaller
subsets of data in software requires significantly longer time
than merging large subsets. Our experiments with Zynq
xc7z020 device have demonstrated significant speed-up of
sorting when larger data sets can be processed in
programmable logic [13]. Besides, from Table I we can
clearly see that the latency of the proposed circuits is
significantly smaller than for the best known alternatives
(compare values L2(N)/L8(N)/L9(N) and
Leom(N)/Lb(N)/Leot(N) in Table I). Thus, the maximum
combinational delay in the proposed circuits is smaller and
they operate at higher clock frequency than the known
circuits. We found that for ZedBoard sorting throughput in

 15

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 09:12:36 (UTC) by 44.213.99.37. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

the proposed circuits is much close to the maximum
theoretical bandwidth for data transfer through HP AXI and
ACP AXI [1]. Non real-time sorting with the aid of the
known methods [24-25] is slower because of the following:
 Sorted in hardware blocks have significantly smaller

number of items.
 Sorting cannot be done during data transfers and

requires additional time.
 Combinational path delays are significantly larger

which does not permit high clock frequency to be used.
 Relative communication overheads for transferring

smaller blocks are higher than for transferring larger
blocks [10,13]. Besides, the fastest burst mode becomes
more difficult to be applied for full burst speed.

 Since merging in software is slower than network-based
parallel sorting in hardware, beginning the merging
with smaller blocks requires significantly more time
than beginning the merging with larger blocks.

Experiments were done with hardware/software sorters
for Zynq devices from [13] replacing hardware data sorters
from [26] by the proposed sorters. Large sets (up to 38
million of 32-bit items) were sorted.

VI. CONCLUSION

Several architectures of hardware accelerators for data
sort are proposed and analyzed. They differ from the known
alternatives in two aspects: 1) sorting is done in real-time
with transferring input/output data enabling throughput in
hardware to be increased; 2) the circuits are very regular and
many of them do not require supplementary components
such as that are often needed in known designs to form long
size vectors from inputs received through limited size ports.
The results of experiments and comparisons demonstrated
that the proposed circuits are faster and less resource
consuming. The results can be used in hardware software
co-design and for autonomous high-speed low-cost data
sorters.

REFERENCES
[1] Xilinx, Inc., Zynq-7000 All Programmable SoC Technical Reference

Manual, 2014. [Online]. Available: http://www.xilinx.com/support/
documentation/user_guides/ug585-Zynq-7000-TRM.pdf

[2] L.H. Crockett, R.A. Elliot, M.A. Enderwitz, and R.W. Stewart, The
Zynq Book, University of Strathclyde, 2014.

[3] L. Hao and G. Stitt, “Bandwidth-Sensitivity-Aware Arbitration for
FPGAs,” IEEE Embedded Systems Letters, vol. 4, no. 3, 2012, pp.
73-76. doi: 10.1109/LES.2012.2209397

[4] D.G. Bailey, Design for Embedded Image Processing on FPGAs,
John Wiley and Sons, 2011. doi: 10.1002/9780470828519

[5] V. Sklyarov, I. Skliarova, A. Barkalov, and L. Titarenko, Synthesis
and Optimization of FPGA-based Systems, Springer, 2014. doi:
10.1007/978-3-319-04708-9

[6] A. Cristo, K. Fisher, A.J. Gualtieri, R.M. Pérez, and P. Martínez,
“Optimization of Processor-to-Hardware Module Communications on
Spaceborne Hybrid FPGA-based Architectures,” IEEE Embedded
Systems Letters, vol. 5, no. 4, 2013, pp. 77-80. doi:
10.1109/LES.2013.2286812

[7] A. Canedo, H. Ludwig, and M.A. Al Faruque, “High Communication
Throughput and Low Scan Cycle Time with Multi/Many-Core
Programmable Logic Controllers,” IEEE Embedded Systems Letters,
vol. 6, no. 2, 2014, pp. 21-24. doi: 10.1109/LES.2014.2299731

[8] M. Santarini, “All Eyes on Zynq SoC for Smart Vision,” XCell
Journal, issue 83, 2013, pp. 8-15. [Online]. Available:
http://www.xilinx.com/publications/archives/xcell/Xcell83.pdf

[9] C. Dick, “Xilinx All Programmable Devices Enable Smarter Wireless
Networks,” XCell Journal, issue 83, 2013, pp. 16-23. [Online].
Available: http://www.xilinx.com/publications/archives/xcell/
Xcell83.pdf

[10] J. Silva, V. Sklyarov, and I. Skliarova, “Comparison of On-chip
Communications in Zynq-7000 All Programmable Systems-on-Chip,”
IEEE Embedded Systems Letters, vol. 7, no. 1, 2015, pp. 31-34. doi:
10.1109/LES.2015.2399656

[11] Xilinx, Inc., Vivado Design Suite Guides, 2015. [Online]. Available:
www.xilinx.com

[12] Xilinx, Inc., Zynq-7000 All Programmable SoC Software Developers
Guide, 2015. [Online]. Available:
http://www.xilinx.com/support/documentation/user_guides/ug821-
zynq-7000-swdev.pdf

[13] V. Sklyarov, I. Skliarova, J. Silva, A. Rjabov, A. Sudnitson, and C.
Cardoso, Hardware/Software Co-design for Programmable Systems-
on-Chip, TUT Press, 2014.

[14] Xilinx, Inc., Simple AMP Running Linux and Bare-Metal System on
Both Zynq SoC Processors, 2013. [Online]. Available:
http://www.xilinx.com/support/documentation/application_notes/xapp
1078-amp-linux-bare-metal.pdf

[15] D.E. Knuth, The Art of Computer Programming. Sorting and
Searching, vol. III, Addison-Wesley, New York 2011.

[16] R. Mueller, J. Teubner, and G. Alonso, “Sorting Networks on
FPGAs,” The International Journal on Very Large Data Bases, vol.
21, no. 1, 2012, pp. 1-23. doi: 10.1007%2Fs00778-011-0232-z

[17] M. Zuluada, P. Milder, and M. Puschel, “Computer Generation of
Streaming Sorting Networks,” in Proc. 49th Design Automation
Conference, San Francisco, USA, 2012, pp. 1245-1253. doi:
10.1145/2228360.2228588

[18] R.D. Chamberlain and N. Ganesan, “Sorting on Architecturally
Diverse Computer Systems,” in Proc. 3rd Int. Workshop on High-
Performance Reconfigurable Computing Technology and
Applications, USA, 2009, pp. 39-46. doi: 10.1145/1646461.1646466

[19] D. Koch and J. Torresen, “FPGASort: a high performance sorting
architecture exploiting run-time reconfiguration on FPGAs for large
problem sorting”, in Proc. 19th ACM/SIGDA Int. Symposium on
Field Programmable Gate Arrays, USA, 2011, pp. 45-54. doi:
10.1145/1950413.1950427

[20] P. Kipfer, and R. Westermann, “Improved GPU Sorting,” in GPU
Gems 2: programming techniques for high-performance graphics and
general-purpose computation, M. Pharr (ed.), 2005. [Online].
Available: http://http.developer.nvidia.com/GPUGems2/
gpugems2_chapter46.html

[21] G. Gapannini, F. Silvestri, and R. Baraglia, “Sorting on GPU for large
scale datasets: A thorough comparison,” Information Processing and
Management, vol. 48, no. 5, 2012, pp. 903–917. doi:
10.1016/j.ipm.2010.11.010

[22] C. Grozea, Z. Bankovic, and P. Laskov, “FPGA vs. Multi-Core CPUs
vs. GPUs: Hands-On Experience with a Sorting Application,” in
Facing the Multicore-Challenge, R. Keller, D. Kramer, and J.P. Weiss
(eds.), Springer-Verlag, 2010, pp. 105-117. doi: 10.1007/978-3-642-
16233-6

[23] M. Edahiro, “Parallelizing fundamental algorithms such as sorting on
multi-core processors for EDA acceleration,” in Proc. 18th Asia and
South Pacific Design Automation Conf., Japan, 2009, pp. 230-233.
doi: 10.1109/ASPDAC.2009.4796485

[24] K.E. Batcher, “Sorting networks and their applications,” in Proc.
American Federation of Information Processing Societies (AFIPS)
Spring Joint Computer Conf., USA, 1968, pp. 307-314. doi:
10.1145/1468075.1468121

[25] S.W. Al-Haj Baddar and K.E. Batcher, Designing Sorting Networks.
A New Paradigm, Springer, 2011. doi: 10.1007/978-1-4614-1851-1

[26] V. Sklyarov and I. Skliarova, “High-performance implementation of
regular and easily scalable sorting networks on an FPGA,”
Microprocessors and Microsystems, vol. 38, no. 5, 2014, pp. 470-484.
doi: 10.1016/j.micpro.2014.03.003

[27] V. Sklyarov and I. Skliarova, “Fast regular circuits for network-based
parallel data processing,” Advances in Electrical and Computer
Engineering, vol. 13, no. 4, 2013, pp. 47–50. doi:
10.4316/AECE.2013.04008

[28] Digilent Inc., Nexys4™ FPGA board reference manual, 2013.
[Online]. Available: http://www.digilentinc.com/Data/
Products/NEXYS4/Nexys4_RM_VB1_Final_3.pdf

[29] Avnet, Inc., ZedBoard Hardware User’s Guide, 2014. [Online].
Available: http://zedboard.org/sites/default/files/documentations/
ZedBoard_HW_UG_v2_2.pdf

 16

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 09:12:36 (UTC) by 44.213.99.37. Redistribution subject to AECE license or copyright.]

