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1 Abstract—This paper presents a novel fuzzy ontology 

reasoner for power transformer fault diagnosis under a multi-
agent framework. The developed ontology provides a 
comprehensive knowledge base as part of a multi-agent system 
to enable imprecision reasoning. It is the first time that a fuzzy 
ontology model is developed for accurate power transformer 
fault diagnosis. It aims to develop an improved ontology model 
for transformer fault diagnosis by applying the fuzzy ontology. 
The proposed technique deals with the imprecision situation 
using the fuzzy ontology, in order to build an ontology-based 
knowledge representation for accurate power transformer 
fault diagnosis. The proposed system is tested with actual 
transformer online data to demonstrate the functionality of the 
developed fuzzy ontology, which can identify the faults that are 
unidentifiable using a basic ontology model, and this can 
significantly improve the overall accuracy for transformer 
fault diagnosis under a multi-agent framework. 
 

Index Terms—Fault diagnosis, ontology, fuzzy sets, multi-
agent systems, power transformer. 

I. INTRODUCTION 

Power transformer is considered as one of the most 
important equipment in electric power systems, which 
converts voltage to higher or lower levels. All industries 
require a safe and reliable supply of power all the time and 
any failure in power transformers may cause losses to the 
industry supplied by these transformers. Therefore, its 
operation reliability is very important, which can be 
improved with online transformer condition monitoring and 
fault diagnosis using a dedicated knowledge-based system. 

Agent and Multi-Agent System (MAS) are useful 
techniques that have been applied in a variety of industrial 
applications [1,2]. Particularly in power engineering, the 
agent technology has been employed for condition 
monitoring, controlling, automation, etc [3,4]. Meanwhile, a 
knowledge-based system is capable of utilizing computer 
programming to simulate the human intelligence in a limited 
way.  The integration of MAS with a knowledge base can 
provide a robust decision making system for various 
practical applications, such as on-line fault diagnosis. 
However, the functionality of MAS applied in electric 
power systems is often limited due to its inability in dealing 
with the situations involving some uncertainty/imprecision. 

There are various techniques in the field of MAS and 
knowledge bases, which have been applied for monitoring 
and diagnosis of power transformers, but their structure is 
too complicated and there still exists limitation of such 

techniques. For example, a basic ontology embedded in 
MAS was employed for power system automation in [5]. 
This system can take users’ commands from a user interface 
console to perform certain actions. Real-time statuses of 
equipment can be collected by an ontology agent.  The 
system was designed to apply the basic ontology for the 
purpose of knowledge representation only, which was not 
directly used for power transformer fault diagnosis. 
Ontology-based fault diagnosis was applied for power 
transformers in [6,7]. The technique proposed in [6] was 
able to derive subclasses or individuals as defined in the 
stage of building ontology. However, this technique did not 
involve the use of agents. The developed ontologies in [6,7] 
did not consider any situations involving some degrees of 
uncertainty/imprecision. However in real world uncertainty 
or imprecision is a common problem for fault diagnosis. 

 
1This work was supported by National Natural Science Foundation of 

China (Grant 51477054) and National High Technology Research and 
Development Program of China, 863 Program (Grant 2015AA050201). 

This paper proposes a fuzzy ontology reasoning approach 
for the first time to intelligent transformer fault diagnosis 
under a multi-agent framework. Firstly, basic ontology-
based reasoning is introduced for power transformer fault 
diagnosis, and then improved further by developing a fuzzy 
ontology. The proposed system uses MAS to collect online 
data from power transformers distributed in different 
substations using relevant agents. The basic ontology and 
the fuzzy ontology provide a comprehensive knowledge 
base for fault diagnosis using online data sampled from on-
site power transformers. The proposed basic ontology 
reasoner is able to deduce undefined knowledge from 
explicitly defined knowledge. Furthermore, the improved 
fuzzy ontology is capable of tackling the imprecision of 
fault diagnosis boundaries, which leads to significant 
improvement of fault diagnosis accuracies compared with 
that derived from basic ontology reasoning. The proposed 
system is easily upgradable online for potential practical 
applications, and thus is able to adopt new features to 
improve the fault diagnosis accuracy for power 
transformers. 

II. MAIN TECHNIQUE USED IN THE PROPOSED APPROACH  

A. Power Transformer Fault Diagnosis 

Various diagnosis methods, e.g., chemical, electrical, 
thermal, have been applied on-line and/or off-line to detect 
faults for oil-immersed transformers. Dissolved Gas 
Analysis (DGA) is one of the most effective tools to 
diagnose conditions of oil-immersed power transformers. 
Oil samples are taken from a transformer and analyzed for 
fault diagnosis. Hydrocarbon fragments and hydrogen are 
formed as a result of the decomposition of mineral oil 
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hydrocarbon molecules under electrical and thermal stresses 
in operations. Gases, such as acetylene (C2H2), methane 
(CH4), hydrogen (H2), ethylene (C2H4), ethane (C2H6), 
carbon monoxide (CO), etc., may be formed by combination 
of hydrocarbon fragments. DGA fault diagnosis is based on 
mapping gas ratios (such as R1=CH4/H2, R2=C2H2/C2H4, 
R3=C2H2/CH4, R4=C2H6/C2H2, R5=C2H4/C2H6) to certain 
fault types and different classification methods can be 
applied for fault detection. Duval Triangle, Doernenburg, 
IEC ratio, Roger’s ratios etc. are currently utilized to 
diagnose transformer faults [8]. For instance, the Roger’s 
ratio method for fault classification uses three gas ratios, i.e., 
R1, R2 and R5, as given in Table I. Fault types can be 
identified by matching gas ratio ranges to particular fault 
types as listed in Table I. However, if a gas ratio does not 
match any fault type defined by the Roger’s method, it is 
treated as “Undefined fault”, and an expert needs to apply 
other relevant techniques to diagnose such a case. 

TABLE I. DIAGNOSIS RULES OF THE IEC RATIO METHOD 
Case Fault Type R2 R1 R5 

0 No Fault (NF) R2<0.1 0.1≤R1≤1 R5≤1 
1 Low Energy Partial 

Discharge (LEPD) 
0.1≤R2

≤3 
R1<0.1 R5≤1 

2 High Energy Partial 
Discharge (HEPD) 

0.1≤R2

≤3 
R1<0.1 R5≤1 

3 Low Energy Discharge 
(LED), Sparking, Arcing 

0.1≤R2 0.1≤R1≤1 1≤R5 

4 High Energy Discharge 
(HED), Arcing 

0.1≤R2

≤3 
0.1≤R1≤1 3<R5 

5 Thermal Fault (TF)<150 ºC R2<0.1 0.1≤R1≤1 1≤R5≤
3 

6 Thermal Fault 150−300 ºC R2<0.1 1≤R1 R5≤1 
7 T  

3 
hermal Fault 300−700 ºC R2<0.1 1≤R1 1≤R5≤

8 Thermal Fault>700 ºC R2<0.1 1≤R1 3≤R5 

B. Multi-Agent System 

An agent is a computer system situated in some 
environment, which is able to take information from this 
environment and perform autonomous actions according to 
its design objectives [9]. An agent-based system can be 
applied in power systems for the purpose of monitoring and 
controlling its components, e.g., power transformer, due to 
such properties of agent as being autonomous, reactiveness, 
pro-activeness, etc. 

The Gaia methodology [10], as a formally presented 
methodology for designing MAS, is anticipated to facilitate 
an analyst to gradually shift from an initial ambiguous state 
to a more concise and methodical design, which can be 
implemented directly. Therefore, the agent system 
developed in this research has been designed based on the 
Gaia methodology for monitoring and diagnosis of power 
transformer, which can clarify, simplify and standardize a 
design process. As shown in Fig. 1, the developed multi-
agent system comprises different types of agents, such as 
database, reporter, controller, user interface, collector and 
ontology agents. Under the developed agent framework, 
real-time data are sampled from a power transformer and 
stored into a database to be available to users on request. 
Generally in practice, a knowledge-based system or rule-
based reasoning enables diagnosis and automation actions. 

As known, it is important to share and reuse knowledge-
based systems in relevant domains. The knowledge-based 
system presented in [11] has a significant disadvantage as 
that both domain knowledge and rules are located in its 

knowledge base. As a result, a success in one domain could 
hardly be replicated to another one due to a high degree of 
interconnections between domain knowledge and rules. 
Furthermore, a knowledge-based system with the use of 
rule-based reasoning cannot be easily improved, as it is 
impossible to know all the conditions for comprehensive 
rule-based reasoning. 
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Figure 1. The hierarchy of the devel

 Description Logic (DL) 

Knowledge can be represented in the form of logic. 
Choosing a formal knowledge representation, such as DL 
[12], is a key issue of building a knowledge base. Many 
types of DL (such as ALC, SHIQ, ALCNIO, SHOIN, etc.) 
can describe operations with different attributes. A huge 
number of shared properties and logic-based knowledge 
representation formalisms can be used in DL to form its 
precise definition. In DL important notations of a domain 
are described by concepts and rules. Concepts (or classes) 
and rules (or properties) in DL are the building constructors, 
such as conjunction, disjunction, negat

 selected depending on DL types.  
The syntax language for describing concepts supported by 

the Ontology Web Language (OWL) [13] is defined as 
follows: concept names ( 0, C1, ...), property names (P0, 
P1, ...), concept constructo “  ” called unionOf, 
disjunction or or, concept constructor “  ” called 
intersectionOf, conjunction or and, conc  constructor “ept  ” 
called existential restriction constructor, “ ” called value 
restriction constructor and so on. For instance, the concept 
of fault diagnosis for power transformer is defined as: “A 
transformer has a thermal fault in its component, and the 
symptoms are either temperature or gas”. The DL 
description of this concept can be defined in (1). 

.  TransformerComponent Component Thermal Fault

 .( ).has symptom Temperature Gases




       (1) 

 

A DL structure consists of two parts, terminological box 
(TBox) and assertion box (ABox), representing a reasoner 
system. TBox contains intentional knowledge (schema of 
complex description), whereas ABox contains extensional 
knowledge (data of complex description). Various reasoners 
can be employed, such as Racer, FaCT, FaCT++ and Pellet; 

 108 

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 07:18:43 (UTC) by 3.238.135.30. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 15, Number 4, 2015 

and they differ in the types of algorithms used and the way 
they are implemented in reasoning tasks [12]. DL has been 
employed in many practical applications, such as software 
information and documentation, databases, query answering, 
ontology languages, etc. OWL is one of the most important 
applications of DL, using various tools and reasoning 

D.

ology editor also supports SHIQ(D) and 
SR

d by concept C, if 
all instances of D are also instances of C. 

ions between the developed ontology 

A.

isms, there exist various types of 
sy ptoms and faults [8]. 

techniques. 

 Ontology 

In the computer science domain, ontology is defined as: 
“A formal, explicit specification of a shared 
conceptualization” [14]. Ontology describes concepts and 
their relation in particular domains. Many programming 
languages have been developed for building an ontology. 
OWL and OWL2 are the standard ontology languages 
recommended by W3C [14]. The key feature of OWL is that 
it can be used not only to present information, but also to 
process it and to extract new information. Therefore, OWL 
has been applied in a wide range of applications, such as 
knowledge sharing and representation, question answering 
and automatic diagnosis, information system, ontology-
based reasoning, etc [15–17]. OWL-DL is one category of 
OWL, which corresponds to DL and supports the maximum 
expressiveness without losing computational completeness. 
In ontology implementation, Protégé [18] is one of popular 
tools to support OWL, which is based on a graphical editor. 
The Protégé ont

OIQ(D) [18]. 
Hierarchy classes in ontology are formed by superclasses 

and subclasses. Different types of properties, such as 
inverse, functional, transitive, symmetric, etc., help to 
restrict classes when building an ontology model. Inference 
problems could be performed by using various reasoning 
algorithms. A reasoner allows the inference to be made, 
based on the construction of compositional concepts and 
roles. For instance, concept D is subsume

III. ONTOLOGIES FOR TRANSFORMER FAULT DIAGNOSIS 

Seven essential steps have been recommended for the 
designing of hierarchy classes, properties, individuals, etc., 
to build an ontology model [14]. Based upon these 
recommendations, a basic ontology for power transformer 
fault diagnosis has been developed by the authors as 
reported in [19]. In this research an ontology agent has been 
developed to wrap the proposed basic ontology for enabling 
interactions between the developed basic ontology and the 
MAS system. Moreover, a fuzzy ontology is developed at 
the second stage of this work to deal with imprecision for 
improving the accuracy of fault diagnosis. Figure 2 shows 
the diagram of interact
and the MAS system. 

 Basic Ontology for Power Transformer Fault Diagnosis 

A fault diagnosis system embedded with ontology-based 
reasoning can provide a comprehensive knowledge base, 
which can be shared by other applications. For this purpose, 
an online fault diagnosis system adopting basic ontology 
reasoning has been developed firstly. A fault may appear in 
a power transformer during its daily operations, however, 
more likely, any type of faults could change the working 

status of a transformer, which is reflected in some symptoms 
related to a fault. In other words, any type of faults has some 
relevant symptoms. Knowing symptoms enables the 
identification of relevant fault types. For instance, a cooling 
system (fan) of a power transformer is normally used to 
dissipate heat to its external surrounding. A fault may affect 
the working status of a cooling system, which may lead to 
malfunction of its correct performance (e.g., fans stop 
working). This results in abnormal oil temperature rise, 
which is defined as a symptom. Thus, a temperature rise 
may indicate a problem of a cooling system, and later cause 
arcing faults. In practice, due to the complexity of 
transformer fault mechan

m
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Figure 2. Interactions between the developed ontology under a MAS 
mework 
To build an appropriate ontology for power transformer 

fault diagnosis, three different categories are defined, i.e., 
fault, symptom and component. The fault category contains 
various fault types, defined by some types of properties 
according to the symptom category. For instance, fault A has 
symptom B, thus fault A can be diagnosed by observing 
symptom B. The component category is also linked via 
some properties to the fault category, which reflects the 
relationship between faults and components. The three 
categories and their relations are employed as the basic 
concepts of ontology reasoning for transformer fault 
diagnosis. The basic elements of the developed ontology are 
illustrated in Fig. 3. The components of the developed basic 
ontology for power transformer fault diagnosis are defined 
as below

Concepts
(Classes)

Properties
(Rules)

Transformers

Symptoms Faults Components

has_symptom

is_symptom_of

has_fault

is_fault_of  

po

, a

Figure 3. Main classes and properties of the developed basic ontology for 
wer transformer fault diagnosis 

The developed basic ontology for transformer fault 
diagnosis consists of three main classes: Components, 
Symptoms and Faults, and consequently each of them is 
defined as a subclass of class Transformer s described in 
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the fo wing three axioms: Symptoms Transformers, 

Faults  Transformers and Components

llo

Transformers, 
which are expressed using OWL in Fig. 4. 




<owl:Class rdf:about="#Transformer">
</owl:Class>

<owl:Class rdf:about="#Symptoms">
<rdfs:subClassOf rdf:resource="#Transformer"/>

</owl:Class>
<owl:Class rdf:about="#Faults">

<rdfs:subClassOf rdf:resource="#Transformer"/>
</owl:Class>

<owl:Class rdf:about="#Components">
<rdfs:subClassOf rdf:resource="#Transformer"/>
</owl:Class>

 
Figure 4. Class definition using OWL 

Faults in a power transformer are normally classified into 
five types: Electrical, Thermal, Mechanical, Degradation 
and Ageing. These five types are defined as the subclasses of 

ass Faults, described as the following: Electrica _Faults 
 Faults, Thermal_ ults Faults, Ageing_Fault Fau , 

Degradation_Fault  Faults and Mechanical_Faults   
Faults. Each type of power transformer faults can be further 
subdivided into different types of related faults, as listed 
below in the case of th tion type of fault: 
Degradation_Of_Insula  Degradation_Faults, 

Degradation_Of_Iro  Degradation_Faults,

cl l
Fa lts

Degrada

  

 be extended using different methods of fault 
di

ubclasses, such as Winding, Cooling 
Sy

category 
pr

 h

cluding 
is

 in the 
s are used: 

ratio values). The statements 

Ex

ant fault types, with the help of the 

d)

ted using a 
st

d 
po

ed 

e 
tion

n and
Paper_Degradation Degradation_Of_Insulation. 

For illustration purposes, the Roger’s ratio method 
described in Table I, as an example of a widely used DGA 
diagnosis technique, is represented as a class called 
“Rogers_Method_Faults” with eight types of faults, defined 
as subclasses. It is worth to mentioning that an ontology 
model can

agnosis. 
Class Symptoms consists of various symptom types, 

which may appear in a power transformer. The subclasses of 
class Symptoms include acidity, temperature, electrical and 
physical symptoms. Class Symptoms contains a subclass 
Gas_Ratios, with five types of gas ratios Ratio1 (R1) to 
Ratio5 (R5) as listed in Section II, and three of them are 
used in the Roger’s ratio method. Similarly, the class 
Components includes s

stem, Taps, Oil, etc. 
Properties reflect the binary relations between classes or 

individuals. There are two main types of properties, i.e., 
object properties and datatype properties. They provide 
different attributes to classes. Two categories of properties, 
has_category and is_category_of with the inverse 
characteristics to each other, are normally defined. The 
inverse property represents that, if a property links 
individual x to individual y, then the inverse property links 
individual y to individual x. In this study, has_

operty is the inverse of is_category_of property. 
OWL is usually employed to define sub-properties of 

each property. In this work, each property has three sub-
properties. For instance, the property as_category has three 
sub-properties as has_fault, has_symptom and 
has_component, with different characteristics, such as 
functional, inverse, etc. An example for defining the 
functional property in ontology for transformer fault 

diagnosis is exemplified here. It is assumed that the 
functional property called is_symptom_of has only one 
symptom. If High_Temperature is a symptom of 
Overheating and also High_Temperature is a symptom of 
Thermal_Fault, it can be inferred that Thermal_Fault and 
Overheating must be the same, because is_symptom_of is a 
functional property. Similarly, for the property 
is_category_of, three sub-properties are defined, in

_fault_of, is_symptom_of and is_component_of. 
To apply these properties for the classes as defined

previous sections, the following statement
a) Faults has_symptom some Symptoms, 
b) Symptoms is_symptom_of some Faults, 
where Faults and Symptoms are classes. It means that all 
types of faults have some types of symptoms, defined in 
class Symptoms. The inverse statement indicates that 
symptoms correspond to some types of faults. The following 
examples of power transformer fault diagnosis are given to 
illustrate the above statement. For instance, a fault of partial 
discharge may lead to the presence of hydrogen in the oil 
symptom (identified from gas 
to describe this restriction are: 
Example of a) Partial_Discharge has_symptom Hydrogen; 

ample of b) Hydrogen is_symptom_of Partial_Discharge. 
Furthermore, the components of power transformer can 

be identified by relev
following statements: 
c) Components has_fault some Faults; 

 Faults is_fault_of some Components. 
A further example is shown below for fault diagnosis. 

Almost all types of transformers have a tank made of carbon 
steel. Acidity can be defined as the mass of potassium 
hydroxide in milligrams, which is required for neutralization 
of acid in one gram of transformer oil. Consequently, a high 
amount of acid in oil is represented as a high acid number. 
The acid number generally tends to increase with the ageing 
of power transformer due to oxidative processes in the acid 
and insulation formation. The acid attacks the metal inside 
of the tank and may lead to a tank corrosion fault. Therefore, 
the presence of corrosion faults can be illustra

atement as “Tank has_fault some Corrosion”. 
Therefore, a high acid number indicates the presence of 

Corrosion in tank. Figure 5 shows the developed basic 
ontology for power transformer fault diagnosis. The 
communication between the developed basic ontology an

wer transformer is handled by an agent in this research. 
The Roger’s ratio method for transformer fault diagnosis 

has been embedded in the design of the basic ontology. The 
developed ontology contains class Faults with eight 
subclasses, which represent the typical cases of fault types 
in the Roger’s ratio method. Three datatype properties are 
applied for restricting fault classes. The datatype property 
has_ratio contains three sub-properties, i.e., has_ratio_R1, 
has_ratio_R2 and has_ratio_R5, which are applied in this 
basic ontology. The first case, defined in the Roger’s ratio 
method as illustrated in Table I, corresponds to No_Fault, 
which can be defined in Protégé with the following 
statements: Faults and (has_ratio_R2 some float[<1.0]) and 
(has_ratio_R1 some float[≥0.1, ≤1.0]) and (has_ratio_R5 
some float[≤1.0]), (has_ratio_R2 some float[<1.0]), which 
means, if received gas ratios are within the defin
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boundaries, then there is no fault in a power transformer.  

Transformers

ComponentsFaultsSymptoms

Gases Acids Mechanical Degradation Electrical  Cooling Winding

Ethane



Hydrogen
Acid

Number
Deformation Insulation Fans Paper

      



 
Figure 5. The developed basic ontology for power transformer fault diagnosis 

 
Ontology can be formalized in a TBox definition with DL 

in SHIQ for the No_Fault statement [12] as described in (2), 
2

1

5

 ( . ) ( 0.1   .

(( 0.1   . ) ( 1.0   . ))

 ( 1.0   . ),  

No Fault Faults T has ratio R T

has ratio R T has ratio R T

has ratio R T

   

   

 

1

)

       (2)  

which expresses No_Fault with three conditions of gas 
ratios. The other cases can be defined similarly in TBox. 

One of the key features of applying ontology is to extract 
hidden information from explicit facts built in an ontology 
model. To consider this situation, an example based on the 
DL description is given in this paragraph. Degradation is a 
common type of faults in a power transformer due to 
transformer ageing. Moreover, degradation itself speeds up 
the ageing of the equipment. There are several factors other 
than equipment ageing that can also cause the degradation, 
such as water, temperature, byproducts, etc. A high 
temperature rise and the presence of water are the key 
factors (or symptoms) leading to degradation of transformer 
components, e.g., paper insulation. Degradation is an 
abbreviation for the concept description, which can be 
defined in TBOX as in (3), 

 (  .

(  .( ))

Degradation Faults has symptom Symptoms

has symptom water temperature

  

   ，

)
        (3) 

which means that the degradation is a type of faults and has 
some symptoms, e.g., water or temperature. Such a case can 
be described in ABox stating these properties of an 
individual, which is listed in (4), 

(  ),

 ( , ), (

Degradation Paper Degradation

has fault Paper Degradation water Paper ).
          (4) 

It means that the instance Paper_Degradation belongs to 
the concept Degradation; Paper has a fault Degradation, 
and there is no water in Paper (the paper is not wet). Users 
receive reasoning services from the specified DL, which can 
automatically deduce implicit knowledge from the explicitly 
represented knowledge, and it can yield a correct answer in 
finite time. For the case presented above, the instance 
algorithm determines instance relationships.  

For the given ABox and the definition of Degradation, 
Paper has_fault Degradation because Paper_Degradation is 
an instance of Degradation, so all its symptoms are either 
Water or Temperature, and the insulation paper is not wet 

(¬Water(Paper)), then concluding that the paper degradation 
is caused by temperature rise. 

B.  Fuzzy Ontology for Transformer Fault Diagnosis 

Human reasoning is based on approximation and 
imprecision, which can be handled by fuzzy systems. The 
fuzzy set theory was proposed by Lotfi Zadeh for dealing 
with the approximate reasoning [20]. It has found various 
applications in such fields as artificial intelligence, control 
theory, etc. An element of the fuzzy set belongs to a set to 
some degree, defined as a membership function “μA(x)”, 
whereas in the classical set, the element either belongs to a 
set or not. In this research, crisp boundaries used in the case 
of the basic ontology are replaced with fuzzy boundaries by 
developing a fuzzy ontology. A fuzzy system has been 
applied in power systems for DGA fault diagnosis in [21]. 
The idea of expressing imprecise or vague objects is taken 
from the fuzzy logic and applied in semantic web ontologies, 
to represent the fuzzy ontology. The fuzzy ontology has 
been introduced by Straccia, which has been applied for 
non-crisp data within the ontology definition [22]. 

FuzzyDL has been proposed as an extension to classical 
DLs to enable tackling fuzzy/vague/imprecise concepts [23]. 
A fuzzyDL reasoner supports fuzzy logic reasoning, which 
is based on the fuzzy DL SHIF(D) with various data types. 
For instance, the concept query “(max−subs?CD)” 
determines the maximal degree of concept C subsuming 
concept D. The feature “Show Expressions” can be used to 
show values in an optimal solution. 

Different components, such as fuzzy datatypes, modifier, 
concept and roles, are the essential elements for building a 
fuzzy ontology [24]. Trapezoidal, triangular, left-shoulder 
function (L-function), right-shoulder function (R-function) 
etc. are various functions used to specify a membership 
function in fuzzy modifiers, as shown in Fig. 6. Fuzzy 
modifiers have the capability of using some expressions, 
such as very, more or less, to express their membership 
function in fuzzy sets. Unlike the ontology described in [7], 
the fuzzy ontology is capable of dealing with the situations 
involving some uncertainty/imprecision. An example of 
representing Corrosion with some imprecision in terms of 
fuzzy ontology for power transformer fault diagnosis is 
given as: Faulthas_symptom.High_Acid_Number. 
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 Figure 6. (a) Trapezoidal function, (b) Triangular function, (c) Left-
shoulder function, (d) Right-shoulder function, (e) Crisp function, (f) 
Linear function. 

The concept High_Acid_Number can be easily defined 
with a fuzzy concept “Acid_Number” and a fuzzy modifier 
“High”. The fuzzy concept assertion “<Acid_Number: 
High≥0.9>” states that the acid number is high with at least 
a degree of 0.9. A fuzzy datatype “High” is annotated in Fig. 
7. 

<AnnotationAssertion>
<AnnotationProperty IRI = #fuzzyLabel/>
<IRI >#high </IRI >
<Literal datatypeIRI = &rdf;PlainLiteral>

<fuzzyOwl2 fuzzyType = "modifier">
<Modifier type = "High" c="0.9" />

</fuzzyOwl2 >
</Literal >

</AnnotationAssertion >
  

Figure 7. Fragment of a fuzzy datatype annotation 

Undefined fault cases usually appear when the value of 
gas ratios are close to crisp boundaries, given in the Roger’s 
ratio method [25,26]. In order to overcome such a problem 
existing in basic ontology reasoning, the employment of 
non-crisp threshold based on fuzzy membership functions 
has been adopted in this study. The fuzzy ontology 
developed in this work defined ten datatypes with different 
functionalities and boundaries. Therefore, each of the ratios 
reported in the Roger’s method can be presented as several 
ratios with fuzzy modifier characteristics. The summary of 
the ratios employed in this research is given in (5), 

2 1 5

51
21 11

52
22 , 12 , and   ,

53
23 13

54

R
R R

R
R R R R R

R
R R

R

  

         
     
          

 (5) 

where the values of membership functions for each gas ratio 
are illustrated in Fig. 8. 

Figure 8. Fuzzy datatypes for three gas ratios of the Roger’s method 

For instance, the datatype R21 is defined as a left shoulder 
function with “a=0.05” and “b=0.15” (as in Fig. 6), instead 
of using crisp values of “a=b=0.1”. This can be defined in 
fuzzy OWL2 [24] with the statements as listed in Fig. 9. 

$<fuzzyOwl2 fuzzyType = "datatype">$
$<Datatype type = "leftshoulder" a="0.05" b="0.15" />$

$</fuzzyOwl2>$
 

Figure 9. Fuzzy membership definition in fuzzy OWL2 
A Protégé plug-in can be employed to facilitate the syntax 

of the fuzzy ontology annotation [24]. Similar to the basic 
ontology described in the previous section, the proposed 
fuzzy ontology for power transformer fault diagnosis 
contains various classes. The Roger’s method can be revised 
using fuzzy membership functions, as shown in Table II. 
This can be illustrated for the first case of the Roger’s 
method in the form of fuzzy ontology as listed in Table II. 

 
TABLE II. REVISED ROGER'S METHOD FOR FAULT DIAGNOSIS 

USING FUZZY MEMBERSHIP FUNCTIONS 
Case Fault R2 R1 R5 

0 No fault R21 R12 R51 
1 Low energy partial 

discharge 
R22 R11 R51 

2 High energy partial 
discharge 

R22 R11 R51 

3 Low energy discharge R23 R12 R53 
4 Sparking, arcing R22 R12 R54 
5 High energy discharges, 

arcing 
R21 R12 R52 

6 Thermal fault 
temperature<150 ºC 

R21 R13 R51 

7 TF temperature range  
150 ºC-300 ºC 

R21 R13 R52 

8 TF temperature range  
300 ºC-700 ºC 

R21 R13 R54 

The other cases of the Roger’s ratio diagnosis method can 
be represented in a similar manner. 

According to Table II, the case 0 represents No_Fault, if 
R21, R12 and R51 satisfy relevant boundary conditions as 
defined in Fig. 8. This can be described in Protégé with the 
following statement: No_Faults EquivalentTo Faults and 
(has_ratio some R21) and (has_ratio some R12) and 
(has_ratio some R51), whereas in the fuzzy DL form, this 
statement is defined in (6): 

 
    .

 . 21

. 12  . 51

No Fault Faults has ratio R

has ratio R has ratio R

  

   
    (6)  

The cases 1 and 2 of the Roger’s method represent similar 
conditions for the Partial_Discharge fault (low and high 
energy); and they can be merged into one case. This case is 
formalized in TBox as represented in (7): 

 
   

 . 22

 . 11  . 51 .

Partial Discharge Faults has ratio R

has ratio R has ratio R

  

   
      (7) 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, experiment studies are carried out to 
evaluate the performance of the developed ontologies for 
fault diagnosis. For this purpose, real online DGA data and 
their actual faults are taken from [27-29] and investigated. 
The actual data contain one case of no fault, 2 cases of 
partial discharge, 14 cases of arcing, 25 cases of overheating 
and 28 cases of low energy discharge, giving a total of 70 
DGA samples. In this research, a basic ontology agent and a 
fuzzy ontology agent have been developed and the same 
data are used to compare the performance of the two 
ontology models. These data are analyzed by an ontology 
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agent that wraps the two ontology models for fault 
diagnosis.  

For this purpose, the values of membership functions of 
the gas ratios are calculated and investigated. In the case that 
a membership function value is equivalent to one, the 
developed method performs similarly to the basic ontology 
as described in the previous section. For the membership 
function value below one, the diagnosis on fault types is 
made by considering whether the gas ratio combination 
belongs to one (or more) of defined classes. This can be 
illustrated with an example using actual gas ratios (as 
provided in Table III). A fault type for the set of gas ratio 
values (R2=3.25, R1=0.08, R5=17.75) could not be correctly 
identified with the basic ontology, while the fuzzy ontology 
can solve this problem. With the help of fuzzy ontology, the 
following membership functions were obtained with 
μ(R2=3.25)=μ(R23)=1, μ(R1=0.08)=μ(R11)=0.7 and μ(R12) 
= 0.3, μ(R5=17.75)=μ(R53)=1 and μ(R54)=1. Therefore, the 
conclusions on several combinations of the participating 
datatypes are made by (R23 R11  R53), 
(R23 R11 R54) and (R23 R12 R54). There are no 
matching conditions in Table II, whereas the case 
(R23R12R53) matches the third condition of Table II. 
Verifying the combination of membership functions with the 
table of defined classes (Table II), the fault type is identified 
as “Low Energy Discharge (LED), Sparking, Arcing” (case 
3). 

   

Table III illustrates the results obtained by the basic 
ontology and the fuzzy ontology for the first 20 of the actual 
data (the full set of analyzed data could not be provided due 
to the space limitation). The overall accuracy has been 
increased from 72.86% using the basic ontology to 95.71% 
by applying the fuzzy ontology. As shown in Table III, more 
faults can be correctly diagnosed with the fuzzy ontology 
compared with the basic ontology, including two cases of 
partial discharge and two cases of arcing that could not be 
diagnosed with the basic ontology. 

The interaction between the developed agent and the 
developed ontology for transformer fault diagnosis enables 
an engineer to facilitate intended actions. The key advantage 
of the proposed system is its ability to update a knowledge-
based system with more advanced ontology models for 
improving system reasoning performance, which can be 
achieved by designing dedicated ontology agents. This is the 
first time that the fuzzy ontology is applied for power 
transformer fault diagnosis under a multi-agent framework. 
In this study, an example fuzzy ontology system has been 
developed, which can be modified by using more 
comprehensive threshold boundaries of a fuzzy system for 
DGA fault diagnosis. 

As a result, the ontology-based reasoning for power 
transformer fault diagnosis has been designed. The OWL-
DL language has been applied to develop the ontology. 
Various classes and subclasses have been asserted and 
restricted by different types of properties. The developed 
ontology based on OWL-DL with DL reasoner had an 
ability to infer the hierarchy classes, subclasses, 
inconsistency, etc. The way developed ontology could 
extract implicit information from the explicit facts built in, 
was also reviewed in this work. An agent was designed to 
wrap the ontology for the purpose of interaction. In the 
study conducted, an ontology agent was able to receive the 
DGA samples and pass them to the ontology for fault 

diagnosis. In this case study the Roger’s method was applied 
in form of OWL-DL ontology. Finally, the applied 70 DGA 
sample were investigated, and the accuracy of discussed 
fault diagnosis method was assessed. Following this, the 
present work describes the novel application of the fuzzy 
ontology in a power system, which was capable of dealing 
with the uncertainty. To investigate the improvement of the 
fuzzy ontology compared to the previously developed 
ontology, the fault diagnosis based on Roger’s method was 
applied. The accuracy of developed fuzzy ontology was 
evaluated using the same DGA samples as previously; then 
the overall accuracy was assessed. It is shown that the use of 
fuzzy ontology can improve fault diagnosis accuracy 
considerably, as compared to the other types of knowledge-
based systems discussed earlier. 

 
TABLE III. THE ACTUAL DGA SAMPLES ANALYZED WITH THE 

BASIC ONTOLOGY AND FUZZY ONTOLOGY 

N R2 R1 R5 
Actual 
Fault 

Basic 
Ontology 

Fuzzy 
Ontology 

1 1.16 0.46 5.2 Arcing 
HED, 
Arcing 

HED, 
Arcing 

2 0.07 5.43 5.26 OH 
TF> 

700 ºC 
TF> 

700 ºC 

3 1.65 0.17 3.13 Arcing 
HED, 
Arcing 

HED, 
Arcing 

4 1.06 1.74 9.26 Arcing 
Undefined 

Fault 
Undefined 

Fault 

5 0.04 3.86 6.94 OH 
TF> 

700 ºC 
TF> 

700 ºC 

6 0.97 1.79 7.06 Arcing 
Undefined 

Fault 
Undefined 

Fault 

7 0.01 40.9 5.07 OH 
TF> 

700 ºC 
TF> 

700 ºC 

8 3.25 0.08 17.75 PD 
Undefined 

Fault 

LED, 
Sparking, 

Arcing 

9 0.02 3.09 7.44 OH 
TF> 

700 ºC 
TF> 

700 ºC 

10 0.01 1.42 10.02 OH 
TF> 

700 ºC 
TF> 

700 ºC 

11 2.74 1.54 13.42 Arcing 
Undefined 

Fault 
Undefined 

Fault 

12 0.01 2.69 8.62 OH 
TF> 

700 ºC 
TF> 

700 ºC 

13 2.93 0.09 6.6 Arcing 
Undefined 

Fault 

LED, 
Sparking, 

Arcing 

14 2.26 0.29 10.82 Arcing 
LEPD, 
Arcing, 

Sparking 

LED, 
Sparking, 

Arcing 

15 3.42 0.08 5.6 PD 
Undefined 

Fault 
LEPD 

16 0.02 2.39 7.16 OH 
TF> 

700 ºC 
TF> 

700 ºC 

17 3.3 0.07 16.5 Arcing 
Undefined 

Fault 

LED, 
Sparking, 

Arcing 

18 0.02 2.4 6.7 OH 
TF> 

700 ºC 
TF> 

700 ºC 

19 0 4.85 1.85 OH 
300 ºC< 

TF< 
700 ºC 

300 ºC< 
TF< 

700 ºC 

20 1.45 0.84 14 Arcing 
LED, 

Sparking, 
Arcing 

LED, 
Sparking, 

Arcing 

In summary, a novel application of fuzzy ontology for 
power transformer fault diagnosis has been developed in this 
research and real DGA data are employed to verify the 
developed two ontology models embedded in a multi-agent 
system. Based on the results shown in real case studies, it 
can be deduced that the fuzzy ontology is a promising 
technique that can significantly improve the performance of 
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multi-agent based fault diagnosis and thus enhance the 
operation reliability of oil-immersed power transformers. 

V. CONCLUSION 

This work aims to develop a new framework for 
intelligent power transformer fault diagnosis using a basic 
ontology and a fuzzy ontology embedded in a multi-agent 
system. The use of agent-based ontology reasoning for 
power transformer fault diagnosis can improve the fault 
diagnosis performance compared with conventional server 
client-based systems using the basic ontology model. The 
proposed novel approach has been successfully 
implemented in order to increase the overall fault diagnosis 
accuracy for oil-immersed power transformers. The 
developed ontology reasoner provides a powerful and web 
accessible knowledge base, which is interoperable and 
scalable. It is applicable to various types of power 
transformers and can be easily upgraded online using 
advanced fault diagnosis features for accurate fault 
diagnosis. The application of the proposed technique could 
potentially benefit the operation reliability of power 
systems, as it could result in reduction of the number of 
engineering experts for data analysis, lower maintenance 
expenses and extended lifetime of power transformers. 
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