
Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

A Service-oriented FPGA-based
3D Model Acquisition System

Octavian Mihai MACHIDON1, George OLARU2
1Transilvania University of Brasov, 500036, Romania

2Tremend Software Consulting, Bucharest, 011253, Romania
octavian.machidon@unitbv.ro, golaru@tremend.ro

Abstract—This paper proposes a non-contact, low cost 3D

scanning solution using laser striping. The solution is composed
of two main parts: the hardware setup - used for acquiring the
object's 3D surface information, and the software part - that
processes the information and obtains the 3D model
representation of the object. We propose two major
improvements over the traditional scanning solutions: the 3D
information acquisition is based on a reconfigurable hardware
platform – a Xilinx Spartan 6 FPGA – which adds flexibility
and scalability to the scanning process, while the 3D model
reconstruction is remotely available “as a Service”, by the
means of a web interface that abstracts away the complexity of
the underlying processes and improves the performance, while
granting easy sharing between users. By separating data
capture process from the 3D model reconstruction tasks the
system gains in portability - a feature that is absent for most
existing solutions. The service-oriented approach brings on a
performance gain, since the computational intensive tasks are
handled by dedicated servers and ease of use of the system,
because the user does not have to bother managing and using
the software tools locally.

Index Terms—Computer vision, Reconfigurable
architectures, Virtual prototyping, Virtual reality, Web
services.

I. INTRODUCTION

A 3D scanner is a device that, by analyzing an object or a
scene, collects 3D information about it. This is
accomplished by creating a point cloud of geometric
samples on the surface, which is further processed and used
for reconstructing the shape of the particular object. The
finality of the 3D scanning process is thus obtaining a 3D
digital model to be used in a variety of applications [1].
There are a growing number of fields where 3D scanning is
applied today: entertainment and consumer applications,
historical preservation, medical imaging and surgical
planning, robotics and even terrestrial scanners for acquiring
3D data of complex outdoor objects [2], etc.

Several technologies for building 3D scanners are
available, each having its own particularities, strengths and
weaknesses [2]. Such scanners have been the subject of
significant prior work: in [4], the authors have developed a
simple 2-camera system but with a manually held and
moved laser pointer; [5] presents a cost-effective solution
(using a camera, six lights and a projector) yet with no
portability support. Another low-cost 3D scanner is
presented in [6]; the system, being composed of a network
of Raspberry Pi units, yields good performances however it
has a higher complexity and no portability. Finally, the
authors in [7] proposed the use of magnetic angular rate
gravity (MARG) sensors for developing a moving 3D

scanner.
This paper proposes a non-contact, low cost 3D scanning

solution using laser striping. Laser striping is a principle
used by most commercial scanners [8]. The solution
proposed can be divided into two components: the hardware
setup - used for acquiring the object's 3D surface
information, and the software part - that processes the
information and obtains the 3D model representation of the
object.

The system has the following modus operandi (illustrated
in Figure 1): the object to be scanned is placed on a
turntable which is controlled by a stepper motor. A line laser
projects a beam on the rotating object and a VGA camera
captures images of this process. The laser, camera, and
stepper motor are being controlled by the FPGA system,
which is responsible also for capturing and storing the
images taken and also transferring them via the Ethernet
interface to a PC. The images containing the 3D information
gathered are then processed online by a Web service via a
web page and the 3D model reconstruction is afterwards
available for download.

 We propose two major improvements over the traditional
scanning solutions, one for each of the two components: the
3D information acquisition is based on a reconfigurable
hardware platform – a Xilinx Spartan 6 FPGA – which adds
flexibility and scalability to the scanning process, while the
3D model reconstruction is remotely available “as a
Service”, by the means of a web interface that abstracts
away the complexity of the underlying processes and
improves the performance, while granting easy sharing
between users.

Figure 1. Service-oriented FPGA-based 3D model acquisition system
overview

This paper is organized as follows: section II describes

our solution’s design and implementation. Section III
presents the testing and validation of the entire system and
3D scanning results, and finally section IV concludes the
paper and proposes future extensions on this subject.

 101
1582-7445 © 2015 AECE

Digital Object Identifier 10.4316/AECE.2015.04014

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 07:40:58 (UTC) by 44.221.43.208. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

II. DESIGN AND IMPLEMENTATION

The core of the hardware implementation is the Digilent
Atlys development board based on the Xilinx Spartan 6
LX45 FPGA chip. This board contains several high
performance peripherals, Gigabit Ethernet and the on board
128 MB DDR2 memory being used for this particular
implementation. The images are being captured using the
MagnaChip HV7131GP CMOS image sensor [9], having a
640x480 VGA resolution. This sensor has been connected to
the FPGA board using a dedicated PCB and connectors.
Another component of the image acquisition system is a
rotating turntable (on which the object is placed) which is
controlled by the FPGA using a NMB stepper motor
connected using a specialized driver circuit.

The system is using a laser striping principle. Thus, we
have used a line laser (a red laser equipped with a
cylindrical lens) that projects a beam on the object to be
scanned. The laser and stepper motor are both connected to
and controlled by the FPGA platform.

A. Hardware implementation

The MicroBlaze embedded software processing system
(having a 32 bit RISC architecture) is controlling the
functionality of the FPGA platform [10]. Being a soft
processor core it is implemented during logic synthesis in
the FPGA's programmable logic, being platform-
independent. The instruction and program memories are
implemented in the FPGA's BRAMs (block-RAMs).

Figure 2. FPGA embedded system internal architecture

For interconnecting the processor and various IP cores

and other integrated components, a PLB (Processor Local
Bus) has been used.

The MPMC (Multi-Port Memory Controller) is an
integrated controller generated by the Xilinx EDK software
tool for an easy interfacing with the on-board memories [11]
(in our case, the DDR memory used for storing captured
frames). This peripheral is thus responsible for accessing the
memory with read/write instructions via the PL.

We have implemented three IP Cores integrated into the
embedded systems as peripherals (two of them master and
one slave) responsible with controlling the camera, the
stepper motor and for communicating via the network
(sending captured images). The functionality of these
peripherals is controlled by the embedded application
running on the MicroBlaze processing core [12].
1) CMOS_Camera peripheral

The video camera, a CMOS image sensor, is interfaced
using the CMOS_Camera master peripheral which is acting
as controller for this device. It generates, using the cmosCtrl

module, the signals needed for the initialization and correct
operation of the image sensor (master pixel clock, reset and
enable) and receives pixel data and synchronizing signals
(Hsync and Vsync) from the camera.

Pixel data is received in YCbCr 4:2:2 format and then
converted to RGB 8:8:8 using the colorConversion module.

Figure 3. CMOS_Camera peripheral internal architecture.

During the conversion process, column and row

information for each pixel is extracted from the two
synchronization signals (Hsync and Vsync) [13].

This peripheral is controlled from MicroBlaze processor
using software registers. The peripheral waits for a
captureImage command from the MicroBlaze processing
core in order for a new image to be acquired from the
sensor. After receiving this instruction – written by
MicroBlaze into a register -, it polls the synchronization
signals in order to determine when a new frame can be
received. Image data is being converted and written into the
DDR memory via the PLB bus. The corresponding address
for each write operation is computed based on the pixel row
and column information.

After the image frame has been completely received and
written into DDR, the peripheral enters the idle state and
waits for a new capture command.
2) EthController peripheral

The network communication over the Ethernet interface
for sending images is managed by the EthController master
peripheral. This master peripheral is also DMA enabled so
that it can read the frames from the DDR memory directly,
keeping the processor free from unnecessary tasks. The
internal architecture of this peripheral is illustrated in Figure
4. The two internal modules, EthSend and EthReceive, are
responsible with sending/receiving data frames over the
Ethernet to and from the PC.

Figure 4. EthController peripheral internal architecture.

A proprietary protocol has been implemented, complying

with the 802.3 standard [14], and a basic acknowledgement
mechanism confirms the receival of each individual packet
by the software application. The peripheral waits a certain

 102

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 07:40:58 (UTC) by 44.221.43.208. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

interval for the confirmation and at the end of that period, if
the acknowledgement has still not been received, the packet
is re-sent.

The protocol’s packet structure is shown in Figure 5. This
structure complies with the IEEE 802.3 protocol standard; it
starts with the mandatory Preamble and SFD fields and the
data field has been portioned according to the application’s
needs. The first byte indicates the type of packet
(acknowledgement or containing image data), followed by
either the confirmed packet's number, or the length and
actual image data. Having to send quite large images, it is to
expect that the majority of packets will have the maximum
length of 1500 bytes. However, the module’s
implementation ensures that in the case of shorter lengths,
an extra padding (byes having a zero value) is appended
after the actual data in order to guarantee a minimum packet
length of 64 bytes [15].

Figure 5. Diagram showing the structure of an Ethernet frame complying
with the implemented proprietary protocol.

The transfer of a new image is initialized by the software

application that sends a specific packet interpreted by the
peripheral as a frame request. Upon receiving this signal,
image data is being read from the DDR memory and
encapsulated in Ethernet frames sent “on-the-fly”. This is
possible by using a synchronization FIFO in between the
two clock domains – the Ethernet 25MHz transmit clock
used for writing data on the interface, and the internal,
100MHz PLB bus clock used for accessing the DDR
memory. This feature contributed to an important speed-up
of the overall process.
3) AcquisitionCtrl peripheral

The mechanical rotation of the turntable is achieved by
using a very fast and exact stepper motor. The
TurntableCntrl slave peripheral is in charge of this
functionality and also controls the triggering of the laser
line. The C embedded application running on the
MicroBlaze core sets up the software registers responsible
with controlling the functionality of the stepper motor.

In order to synchronize the output signal driving the
motor, a specific register - configTimers - was used for
setting up the initial value of the internal timers.

The action register contains data for setting up both the
motor and the laser's parameters (direction, number of steps,
and the actual state of the laser - on/off). A status register
plays the important role of signaling the fact that the rotation
and the laser triggering events have finished successfully. At
this point, the C application executes a delay before
acquiring a new image to ensure that the new frame is
captured without mechanical interference from the moving
platform.
4) MicroBlaze C application

The embedded C program running on the MicroBlaze soft
processing core "coordinates" the entire FPGA application.
When executed, it first enters a initialization routine that sets
up the software registers used by each peripheral (e.g. the

DDR base address, the starting value for the timers inside
the stepper controller module, etc.).

After initialization, a short demo of the entire system
follows: an image is captured, the stepper motor rotates the
platform a certain angle and the laser is activated. This is
done to confirm that all devices are working properly and to
make debug attempts easier. Following this demo the
application enters its main loop that consists of six actions.

Figure 6. Schematic of the embedded C application's main loop

Two images are taken – one with just the object and one

with the laser line projection – each of them being
afterwards sent to the PC via the Ethernet. In between the
two captures, the laser is toggled on/off and the platform is
rotated a certain number of steps (according to the
configuration registers). The difference between the two
images taken produces the same result regardless of the
order – which image is first – allowing for the loop to be
configured as above; the order of the two images captured
(with/without laser) alternating each time the loop is
executed.

In order to improve the performance and speed up the
image capture and transfer processes, we used a double-
buffering approach, in other words while the first image is
being sent, the second one is being captured, and so on. So
as to enable such a procedure, each of the two images is
being read in its own memory space, thus avoiding
concurrent access to the same memory locations. This
approach was being considered in the design stage of the
system, and is one of the reasons for having two distinct IP
cores (CMOS_Camera and EthController) implementing the
two functionalities (image capture and transfer). Thus, the
two peripherals operate simultaneously and are being
arbitrated by the PLB Core Central Bus Arbiter.

B. Software implementation

1) C raw socket network application
This application implements the communication between

the PC and the Atlys FPGA board over the Ethernet
interface, using RAW sockets. This type of sockets is
mandatory to be used since we have implemented our own
proprietary protocol that requires communicating on the
data-link layer (level 2 of the OSI stack) [16]. Thus, by
working with raw sockets, the entire Ethernet frame
(including headers) is being received by the application.

The application opens two RAW sockets, one for
transmitting and one for receiving data. These sockets are

 103

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 07:40:58 (UTC) by 44.221.43.208. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

configured with the communication domain set to
PF_PACKET (allowing working with RAW packets at the
data-link layer), the sockets' type is SOCK_RAW and in
order to enable packet traffic regardless of protocol, the
ETH_P_ALL protocol is specified.

The application receives the packets sent by the FPGA
system (containing the image data) and sends back to the
board two types of packets: acknowledgement - for
confirming each received packet, and request - sent after a
complete image has been received in order to request a new
one.
2) Image processing application

The image processing software has been developed in C
using OpenCv 2.1 libraries [17]. In order for this application
to provide the best results, two synchronization mechanisms
have been implemented: calibration and angle adjustment.

Calibration is mandatory in the process of setting up the
coordinates of the axis of rotation. The lack of proper
calibration would lead to an erroneous perspective of the
object (shifted towards the interior). At the beginning of
each scanning session the first images are taken using a
standard cube placed on the rotating platform. The laser
projection lines, given the cube's particularities, are then
used by the image processing software to calibrate the
parameters [18].

Another important aspect is adjusting the angle between
the camera and the laser. For best results it should be in the
range 15-20 degrees. Again, not properly adjusting it would
lead to a vertical distortion of the object's perspective.

After applying the two synchronization mechanisms
described above, a correct translation from cylindrical to
Cartesian coordinates can be performed.

The next process is extracting the laser line from the
scanned images. This has been accomplished by
implementing an algorithm that performs the difference
between two image frames (the object in the same position,
with and without the laser line projection). The resulting
image contains only the extracted laser line. In order to
reduce the unwanted “salt and pepper” noise from the image
an extra median filter is applied. Further on the process of
edge thresholding if performed that leads to a clearer outline
of the projected laser line in the image [19].

After completing these operations, the midmost pixel
located on the laser projection outline is selected from each
line and, using its coordinates, the distance to the axis of
rotation is computed. Thus the cylindrical coordinates of the
specific point are obtained. The conversion to the Cartesian
coordinates is done using the mathematical equation below
(1):

sin

cos

y

x
 (1)

Where:
- ρ is the Euclidean distance from the axis of rotation

to the point P
- φ (the azimuth) is the angle between the reference

position of the object and the current position at the
specific moment during scanning

The image processing application uses these Cartesian
coordinates to create two databases used for 3D model
reconstruction [20]:

- One containing only the enumeration of the Cartesian
coordinates - this is used for 3D modeling based on point
clouds algorithms using MeshLab (an open source, portable,
and extensible system for the processing and editing of
unstructured 3D triangular meshes) [21].

- The second is a VRML (Virtual Reality Modeling
Language) file.
3) Service-oriented integration

Since the software implementation deals with low-level
protocols and complex operations involving several
processes that need to be executed sequentially in order to
obtain the 3D model of the scanned object, we have
considered abstracting away the complexity of this flow by
applying a service-oriented approach that offers the user a
basic, easy-to-use web interface for controlling the entire
scan process.

Service-oriented architectures are the ideal approach for
developing flexible middleware solutions, solving the
problem of inter-operability and thus being able to integrate
"seamless" a variety of software and hardware technologies.
These assets are enabled by the standards behind SOA (like
XML, SOAP, WSDL, and UDDI) that allow a unified,
service-based approach to different resources, thus
abstracting away their specific functionality [22].

We have considered this approach not only useful, but
mandatory in the sense that it can improve usability of the
system and also enhance portability since the image
acquisition and processing services are now remotely-
available "in the cloud", and can be accessed from any
location. This is important since it separates the hardware
setup from the image processing software, which also gains
in speed since it is performed on a dedicated powerful
server.

Figure 7. Web service-based work flow.

Our web-based implementation (described in Figure 7)

provides a basic JSP (Java Server Pages) web interface that
provides support for the I/O data flow between the user and
the web service that runs the actual image processing tasks.
The communication between the JSP page and the web
service is intermediated by a Java servlet that translates the
data flow to/from the JSP page into SOAP (Simple Object
Access Protocol) - the key component of SOA [23].

The web service was implemented in Java and runs on a
Glassfish 4.0 Server instance. It includes a method that
creates and configures a local working environment on the
server and implements the actual image processing tasks.
The Java Servlet is responsible for encapsulating the

 104

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 07:40:58 (UTC) by 44.221.43.208. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

received image files as an archive into SOAP messages and
forwarding them to the web service.

We have considered an optimization technique that, by
processing the images “on-the-fly” (i.e. as they are being
received), improves the image processing speed: after each
pair of images is received, they are processed as shown
above and the point coordinates are extracted into the
database. After all the images are received, the method
proceeds to execute the specific software tasks that result in
the two files described above: a VRML 3D model of the
scanned object, and a PLY file (Polygon File Format) - the
3D model obtained from point clouds. The Java servlet
therefor acts like an extension to the server, improving its
functionality.

III. VALIDATION AND RESULTS

The system has been tested and validated both using
specific simulation scenarios (regarding the HDL IP Cores –
the integrated peripherals) and also by performing several
scanning processes and analyzing the resulting 3D models.

In TABLE IError! Reference source not found. a
summary of the FPGA utilization is displayed, showing that
the embedded system occupies around 20-30% of the
resources available in terms of Slices (the Xilinx technology
basic unit composed of LUTs and FFs) and 45% of the IOBs
(Input/Output Buffers – the effective number of FPGA pins
used). These results show that the design can be easily
accommodated by the Spartan 6 FPGA, allowing future
developments to be implemented in the programmable logic
(like JPEG encoding and other image processing tasks) and
also adding extra I/O connectivity.

TABLE I. SPARTAN 6 FPGA DEVICE UTILIZATION
Utilization Slice Logic

Nr. %
Number of Slice Registers 4312 7

Number of Slice LUTs 4777 17
Number of occupied Slices 6822 28
Number of bonded IOBs 99 45

Number of RAMB16BWERs 20 17
Number of DSP48A1s 13 22

Also, the data transfer between the FPGA board and the

PC has been the subject of extensive testing, since it was
implemented using our own proprietary protocol.

Fault insertion was implemented in order to test the
communication and data transfer thoroughly. Thus, using
on-board switches and buttons, several scenarios were
implemented that allowed observing the behavior of the
entire system in critical cases:

- turning off receiving of acknowledgement packets by
the FPGA board for testing if the re-sending mechanism is
working properly

- sending malformed packets that do not comply with the
proprietary protocol to see how the software application
deals with this issue

Furthermore, a benchmarking of the communication
interface has been performed for both evaluating its
performance and stressing the interface by emulating high
traffic loads. This was implemented by sending a continuous
data stream and monitoring the communication using IPTraf
Linux utility. The results are shown in TABLE II below.

TABLE II. STATISTICS OF A DATA TRANSFER FROM PC TO FPGA
Metric Value

Incoming packets 328655
Incoming bytes 248463 K
Outgoing packets 328655
Outgoing bytes 331256 K
Total packets 657310
Total bytes 579719 K

2935.6 packets/s Incoming rates
17754.5 Kbits/s
2935.4 packets/s Outgoing rates
23670.0 Kbits/s
5871.0 packets/s Total rates
41424.5 Kbits/s

The figures show that the transfer speed between PC and

FPGA using the implemented proprietary protocol varied
between 2.2 and 2.9 MB/s which is a good range for this
application. This rate is however limited by the
acknowledgement mechanism, which confirms individually
each data packet, and can thus be improved. We are
considering as a future development to implement a sliding-
window type mechanism that would result in a potential
speed-up of the data transfer.

In order to test the accuracy of the scanning process,
different types of object were scanned, at different scanning
distances in order to see the ability of the system to record
surface details. Figure 8 below shows the scanning process
and the resulting 3D model of an electrical connector block,
showing that the scanner was able to correctly capture
miniature details of the object (as small as a few
millimeters).

Figure 8. Scan results of an electrical connector block.

The detailed steps involved in the scanning process can be

seen in Figure 9. The first image is the “clean” image taken
of the object, while the second is a shot of the object in the
same position, but with the laser line projection and
containing the axis of rotation (with blue) reconstructed by
the software application in order to compute the distance
between it and the laser line. Finally, the bottommost image
is the difference between the two above, showing the laser
outline which will be further on used for computing the
coordinates and distances.

Figure 9. 3D modeling process of a clay figure. Simple image (a), laser
projection and reference axis (b), image difference showing the laser
outline (c).

As mentioned above, the scanning process generates two

files, both containing a 3D models of the scanned object. In
Figure 10 below it can be seen the VRML representation of
the scanned object from Figure 9.

 105

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 07:40:58 (UTC) by 44.221.43.208. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 4, 2015

 106

[3] Z. Lv, Z. Zhang. "Build 3D laser scanner based on binocular stereo
vision." In 2011 Fourth International Conference on Intelligent
Computation Technology and Automation, vol. 1, pp. 600-603. 2011.
Available: http://dx.doi.org/10.1109/ICICTA.2011.158.

[4] N.A. Borghese, G. Ferrigno, G. Baroni, A. Pedotti, S. Ferrari, R.
Savare. “Autoscan: A flexible and portable 3D scanner” IEEE
Comput. Graph. Appl. No.18 (1998), pp. 38-41. Available:
http://dx.doi.org/10.1109/38.674970.

[5] C. Rocchini, P. Cignoni, C. Montani, P. Pingi, R. Scopigno. "A low
cost 3D scanner based on structured light." In Computer Graphics
Forum, vol. 20, no. 3, pp. 299-308. Blackwell Publishers Ltd, 2001.
Available: http://dx.doi.org/10.1111/1467-8659.00522

Figure 10. VRML 3D representation of a scanned object

[6] J. Straub, S. Kerlin. “Development of a large, low-cost, instant 3D
scanner”. Technologies No. 2 (2014), pp. 75-95. Available:
http://dx.doi.org/10.3390/technologies2020076

IV. CONCLUSION

We proposed in this paper a novel approach based on a
reconfigurable hardware platform and web services, thus
gaining in flexibility and scalability over the traditional 3D
scanning solutions. By separating data capture - based on
the FPGA hardware setup - from the image processing and
3D model reconstruction tasks - available as services, "in the
cloud" -, the system gains in portability - a feature that is
absent for most existing solutions [24].

There is also a considerable performance gain since the
intensive computational tasks - image processing and 3D
model elaboration - are "outsourced" to powerful online
computing servers.

Ease of use is another asset of our proposed
implementation - the user does not have to bother managing
and using a variety of complex software tools for obtaining
the desired 3D representation of the scanned object, he
benefits from the standard, friendly web interface that
abstracts away the complexity of these tasks.

This solution has, compared to other commercial 3D
scanners, a low design and implementation cost, especially
since it is based on a reconfigurable hardware device
(FPGA), which can be re-used for other designs, thus
eliminating the costs of dedicated hardware. The Software-
as-a-Service component also contributes to lowering overall
costs since it supports multi-user access; therefor these users
are exempted from having to manage software tools locally,
on dedicated PCs.

Last but not least, the service oriented approach opens up
new possibilities and applications since it can be used to
obtain 3D models using data captured by other scanners that
comply with the same principle; this makes it an important
functionality that can be used both together and separately
with the scanner setup.

We are considering as future developments transcending
some of the image processing tasks from software to
hardware, in order to benefit from the FPGA hardware
acceleration given the fact that, as shown above, the
utilization of the device allows such an approach. Also, we
are focusing on improving the performance and overall
speed of the system by improving the communication
solution between FPGA and PC.

[7] D. Grivon, E. Vezzetii, M.G. Violante. “Development of an
innovative low-cost MARG sensors alignment and distortion
compensation methodology for 3D scanning application”.
Robot.Auton.Syst. No. 61 (2013), pp. 1710-1716. Available:
http://dx.doi.org/10.1016/j.robot.2013.06.003

[8] O. Wulf, B. Wagner, “Fast 3D scanning methods for laser
measurement systems,” in International Conference on Control
Systems and Computer Science (CSCS14), 2003.

[9] CMOS Image Sensor with Image Signal Processing - HV7131GP
datasheet. Hynix, 2003. Available at:
http://www.globaltec.com.hk/databook/hynix/Hyca3_V20.pdf

[10] MicroBlaze Processor Reference Guide Embedded Development Kit -
EDK 14.1. Xilinx UG081, 2012. Available at:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_
1/mb_ref_guide.pdf

[11] LogiCORE IP Multi-Port Memory Controller (MPMC) (v6.03.a)
Product Specification - Xilinx 2011. Available at:
http://www.xilinx.com/support/documentation/ip_documentation/mp
mc.pdf

[12] B. Muralikrishna, G.L. Madhumati, H. Khan, K.G. Deepika,
"Reconfigurable System-on-Chip design using FPGA," 2nd
International Conference on Devices, Circuits and Systems (ICDCS),
2014. Available: http://dx.doi.org/10.1109/ICDCSyst.2014.6926215.

[13] M.K. Birla, "FPGA Based Reconfigurable Platform for Complex
Image Processing," IEEE International Conference on
Electro/information Technology, pp.204,209, 2006. Available:
http://dx.doi.org/10.1109/EIT.2006.252111

[14] IEEE 802.3™-2012 – IEEE Standard for Ethernet (accessed
10.08.2014), http://standards.ieee.org/about/get/802/802.3.html

[15] N. Alachiotis, S.A. Berger, A. Stamatakis. "Efficient PC-FPGA
communication over Gigabit Ethernet." IEEE 10th International
Conference on Computer and Information Technology, (CIT), pp.
1727-1734, 2010. Available: http://dx.doi.org/10.1109/CIT.2010.302.

[16] B.B. Hall. "Beej’s guide to network programming: using Internet
Sockets." (2012). Available online:
http://beej.us/guide/bgnet/output/print/bgnet_A4.pdf

[17] G. Bradski, A. Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. " O'Reilly Media, Inc.", 2008.

[18] F.A. Van Den Heuvel, "Object reconstruction from a single
architectural image taken with an uncalibrated camera."
Photogrammetrie Fernerkundung Geoinformation (2001): 247-260.

[19] Z. Wang, D. Zhang. "Progressive switching median filter for the
removal of impulse noise from highly corrupted images." IEEE
Transactions on Circuits and Systems II, 46, no. 1 (1999): 78-80.
Available: http://dx.doi.org/10.1109/82.749102.

[20] R.T. Whitaker. "A level-set approach to 3D reconstruction from range
data." International Journal of Computer Vision 29.3 (1998): 203-231.
Available: http://dx.doi.org/10.1023/A:1008036829907

[21] T.P. Kersten, M. Lindstaedt. "Image-based low-cost systems for
automatic 3D recording and modelling of archaeological finds and
objects." In Progress in cultural heritage preservation, pp. 1-10.
Springer Berlin Heidelberg, 2012. Available:
http://dx.doi.org/10.1007/978-3-642-34234-9_1

[22] M.D. Hansen. SOA Using Java Web Services. Pearson Education,
2007. REFERENCES

[23] B. Perry. Java Servlet & JSP Cookbook." O'Reilly Media, Inc.", 2004.
[1] R. B. Catalan, E.I. Perez, B.Z. Perez. "Evaluation of 3D scanners to

develop virtual reality applications." In Electronics, Robotics and
Automotive Mechanics Conference, CERMA 2007, pp. 551-556,
IEEE. Available: http://dx.doi.org/10.1109/CERMA.2007.4367744.

[24] W. Böhler, A. Marbs. "3D scanning instruments." In Proceedings of
the CIPA WG 6 International Workshop on Scanning for Cultural
Heritage Recording, Ziti, Thessaloniki, pp. 9-18. 2002.

[2] X. Ning, Y. Wang, "Object Extraction from Architecture Scenes
through 3D Local Scanned Data Analysis," Advances in Electrical
and Computer Engineering, vol.12, no.3, pp.73-78, 2012,
doi:10.4316/AECE.2012.03011

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 07:40:58 (UTC) by 44.221.43.208. Redistribution subject to AECE license or copyright.]

