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Abstract—This paper describes a method of determining the 

first two moments of the response for basic components of 
electrical circuits, i.e. resistors, inductors and capacitors. The 
paper goal was to obtain closed form formulae for the moments 
describing voltage or current stochastic processes. It has been 
assumed that the element parameters R (resistance), L 
(inductance) and C (capacitance) could be random variables, 
deterministic functions or stochastic processes and excitations 
are second order stochastic processes. Moreover, two cases of 
dependence between the random parameters and the excitation 
stochastic processes have been considered. The obtained results 
enable determination of exact solutions for the first two 
moments without application of numerical algorithms. 
 

Index Terms—circuit analysis, linear circuits, moment 
methods, stochastic processes, stochastic systems. 

I. INTRODUCTION 

Many works, including monograph [1], have been 
devoted to analysis of stochastic phenomena in electrical 
and electronic circuits. Determination of probabilistic 
characteristics for stochastic processes observed in systems 
is very often of great importance. Works in the field of 
stochastic system analysis can be divided into two main 
topic groups. The first one concerns deterministic systems in 
which some stochastic signal sources are present [2-4]. The 
second one deals with systems in which sources as well as 
basic elements require probabilistic description [5-11]. The 
analysis of such systems is usually carried out by means of 
stochastic differential or integral equations. However, their 
models can be also built with the aid of stochastic 
moments [12].  

Analytic solutions of stochastic differential equations 
describing RC, RL and RLC electrical circuits, in which a 
noise term has been added to selected parameters and/or to 
an input signal, have been presented in [2], [4-5], [7-8] and 
[13]. In the case of more complex systems results have been 
given rather in terms of moments, especially the second-
order statistics (SOS), than in a closed form. Such analysis 
has been performed for cascade connections of linear two-
ports with randomly varied parameters [10-11]. The second-
order statistics are above all effective in the case of 
probability density functions completely described by their 
first two moments, e.g. Gaussian distributions, and their 
transformations in linear systems. In the case of nonlinear 
systems with uncertain circuit elements, the statistical 
simulation using the polynomial chaos expansion could be 
applied [14-15].  

This paper deals with determination of the first and the 
second moments for the voltage stochastic process observed 
in the case of random elements R, L and C assuming that the 
current stochastic process moments are given. Moreover, it 
has been assumed that lumped parameters R, L and C could 
be described by random variables  or by functions R(t), L(t) 
and C(t), which are deterministic functions or stochastic 
processes. This paper is a continuation of previous works 
devoted to determination of stochastic process moments for 
deterministic linear elements supplied by stochastic current 
sources [3], [9] and for nonlinear inertialess elements 
described by random polynomials [16]. 

Despite its theoretical character, the paper has also some 
practical implications. Signal analysis, system identification 
and signal estimation problems are very often solved using 
directly or indirectly stochastic moments, especially the 
second-order statistics. Although, the paper concentrates on 
analysis of basic dynamical elements, nevertheless these 
elements could be used to build more complex dynamical 
models and enable determination of stochastic moments of 
output signals in electric and electronic systems applicable 
in practice. For example, the developed formulae could be 
applied for fast estimation of statistical parameters of signals 
at outputs of signal processing units performing such 
operations as sampling, modulation, signal detection or 
filtering. Such approach has been already applied for 
analysis of output signals in transmission line models 
consisting of cascade RLGC branches [11], mobile-to-
mobile communication channels [17], sampling mixers 
working at radio frequency or intermediate frequency [18], 
CMOS inverters at the low power supply voltage [19]. 

Results presented in this paper could also be applied in 
stochastic dynamic analysis of mechanical, geophysical and 
hydrological system models [20]. 

II. RESISTOR STOCHASTIC MODELS 

If resistance is described by a random variable R, then 
stochastic current and voltage processes for a resistor are 
related by: 
 )()( tIRtU  , (1) 

where R - random variable with given distribution. 
The following two cases can be considered: 

 the current process I(t) and the random variable R are 
statistically independent, 

 the current process I(t) and the random variable R are not 
statistically independent. 
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In the first case, assuming that the moments of the resistor 
current are known and applying expected value operator to 
(1) result in closed form formulae expressing the first and 
the second moments of the voltage stochastic process across 
the resistor: 
 , (2)     )()(EE)( tmmtIRtm IRU 

 , (3)   )(),(E)( 222 tmttRt UIU  R

 , (4)     ),(E)()(E),( 21
2

2121 ttRtUtUtt IU RR 
where:  

 )(E)( tUtmU  








 – expected value of the process U(t), 

 )(E)( tItmI   – expected value of the process I(t), 

 RtmR E)(   – expected value of the random variable R, 

 2E R  – second raw moment of the random variable R, 

  )()(E 222 tmtU UU   – variance of the process U(t), 

 )()(E),( 2121 tUtUttU R  – autocorrelation function of the 

voltage process U(t), 
 )()(E),( 2121 tItIttI R  – autocorrelation function of the 

current process I(t). 
The analysis of (2), (3) and (4) leads to a conclusion that 

if the given current process I(t) and the random variable R 
representing the resistance are independent, then the 
description of the resistor can be made with the aid of the 
first and the second moments of the current process as well 
as the random variable R. 

In the second case, equation (2) is not valid and the 
following relation should be used: 
    )(E)(E)( tIRtUtmU  . (5) 

There are few methods to expand formula (5) [21]. The 
simplest one consists in application of the expected value 
definition: 
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where: 

),,,,,( 111 nn,X,X ttxxf
n



)( nn tX

nttt ,,, 21 

 – joint probability density 

function of the random variables , , …, 

 defined by the stochastic processes X(t) for 

moments ,  respectively, 

)( 11 tX )( 22 tX

),( 1 nxxg   – deterministic function of n variables. 

Equation (6) can be applied to express moments of the 
voltage stochastic process across the resistor in the case of 
statistical dependence between the resistance R and the 
current stochastic process: 
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where: 

),,( tirf RI – joint probability density function of the random 

variable R and the stochastic processes I(t) for a moment t, 
),,,,( 2121 ttiirf RII – joint probability density function of the 

random variable R and the stochastic processes I(t) for 
moments t1 and t2. 

In this case, moments of the input current process I(t) and 
the random variable R describing the element parameter are 
not sufficient to express moments of the output voltage 
process. Joint probability density functions must be given. 

Resistor could be also a time-varying element described 
by the following equation: 
 )()()( tItRtU  . (10) 

Three special cases could be considered, i.e. the function 
R(t) may be: 
 a deterministic function, 
 a stochastic process which is statistically independent of 

the current processes I(t), 
 a stochastic process which is not statistically 

independent of the current processes I(t). 
In the first case, the first and the second moments of the 

output voltage process are expressed by: 
 )()()( tmtRtm IU  , (11) 

 , (12) )(),()()( 222 tmtttRt UIU  R
 ),()()(),( 212121 tttRtRtt IU RR  . (13) 

In the second case, the first and the second moments of 
the output voltage process are expressed by: 
 )()()( tmtmtm IRU  , (14) 

   )(),()(E)( 222 tmtttRt UIU  R , (15) 

 ),(),(),( 212121 tttttt IRU RRR  . (16) 

In the third case, the equations expressing the mean 
function and the variance are identical with (7) and (8). 
However, the interpretation of the function fRI (r, i, t) is 
different. The function  fRI (r, i, t) is a joint probability 
density function of the processes R(t) and I(t) for a moment 
t. The relation for the autocorrelation function takes the 
form: 
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  (17) 
where: 

),,,,,( 212121 ttiirrf RRII – joint probability density function 

of the random variable R(t) and the stochastic processes I(t) 
for moments t1 and t2. 

III. EXAMPLE I 

The case for which the random variable R and the input 
process I(t) are independent has been considered in the 
example. If: 
 )()sin()( tWtAtI  , (18) 

where: 
A – random variable with given moments:  AmA E  and 

  222 E AA mA  , 

W(t) – Wiener process, 
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then the voltage across the resistor described by the 
resistance R is given by: 
 )()sin()( tRWtRAtU  . (19) 

Expected values of the input and the output processes are 
expressed by: 
 , (20) )sin()( tmtm AI 

 . (21) )sin()( tmmtm ARU 
The variances of the input and the output processes are 

given by: 

 , (22) tttt AI  )(sin)()( 222 

 , (23)   tRtt RAU
2222 E)(sin)( 

where σ2
RA stands for the variance of the product of 

independent random variables R and A: 

 . (24) 2222222
RAARARRA mm  

The autocorrelation functions of the input and the output 
processes as well as the cross correlation function of these 
processes can be written as: 

 , (25)   ),min()sin()sin(E),( 2121
2

21 ttttAttI R

 ,    ),min()sin()sin(E),( 2121
2

21 ttmttAmtt RRIU R
  (26) 

 .        ),min(E)sin()sin(EE),( 21
2

21
22

21 ttRttARttU R
  (27) 

IV. INDUCTOR STOCHASTIC MODELS 

Illustrations and tables should be progressively numbered, 
following the order cited in the text; they may be organized 

Stochastic current and voltage processes in the case of an 
inductor whose the inductance is a random variable are 
related by: 

 
t

tI
LtU

d

)(d
)(  , (28) 

where: 
L – random variable with given distribution, 
U(t) – voltage stochastic process of the inductor, 
I(t) – current stochastic process of the inductor. 

The following two cases can be considered (similar to the 
cases analyzed for the resistor): 
 the current process and the random variable L are 

statistically independent, 
 the current process and the random variable L are not 

statistically independent. 
In the first case, assuming that the moments of the 

inductor current are known and applying expected value 
operator to (28) results in closed form formulae expressing 
the first and the second moments of the voltage across the 
inductor: 
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In the second case, the definition of the expected value 

operator (6) must be applied. The first and the second 
moments can be expressed by the equations: 

 








 iltilfil
t

tm LIU dd),,(
d

d
)( , (32) 

 

,)(

ddd),,,,(

)(

2

21212121
2

21

2

21

tm

iilttiilfiil
tt

t

U

ttt

LII

U






























 

  (33) 

.ddd),,,,(

),(

21212121
2

21

21























iilttiilfiil
tt

tt

LII

UR

 (34) 

The model of a time-varying inductor is described by the 
following equation: 

 
t
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t
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d
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d
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)()(  . (35) 

Three special cases have been considered - the function 
L(t) has been assumed to be: 
 a deterministic function, 
 a stochastic process which is statistically independent of 

the current processes I(t), 
 a stochastic process which is not statistically 

independent of the current processes I(t). 
In the first case, the first and the second moments of the 

output voltage process are expressed by: 
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where: 

     222 )(E)(E)( tItItI  . 

In the second case, the first and the second moments of 
the output voltage process are expressed by: 
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In the third case, the equations expressing the mean 
function and the variance are identical with (32) and (33). 
However, the interpretation of the function fLI (l, i, t) is 
different – it is a joint probability density function of the 
processes L(t) and I(t) for a moment t. The relation for the 
autocorrelation function takes the form: 
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  (42) 
where: 

),,,,,( 212121 ttiillf LLII  – joint probability density function 

of the random variable L(t) and the stochastic processes I(t) 
for moments t1 and t2. 

V. EXAMPLE II 

Let us assume that the random variable L and the input 
process I(t) are independent. Moreover, the input process is 
defined like in the previous example: 
 )()sin()( tWtAtI  , (43) 

where: 
A – random variable with given moments:  AmA E  and 

,   222 E AA mA 
W(t) – Wiener process, 

The voltage stochastic process across the inductor is 
equal: 
 )()cos()( tNLtALtU  , (44) 

where N(t) – white noise. 
Expected values of the input and the output processes are 

expressed by: 
 , (45) )sin()( tmtm AI 

 . (46) )cos()( tmmtm ALU 

The variances of the input and the output processes are 
given by: 

 , (47) tttt AI  )(sin)()( 222 

 . (48) )(2 tU
The autocorrelation functions of the input and the output 

processes can be written as: 
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  (50) 

VI. CAPACITOR STOCHASTIC MODELS  

Stochastic current and voltage processes in the case of a 
capacitor, whose capacitance is a random variable, are 
related by: 
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where: 
C – random variable with given distribution, 
U(t) – voltage stochastic process of the capacitor, 
I(t) – current stochastic process of the capacitor. 

The following two cases can be considered (similar to the 
cases analyzed for the resistor): 
 the voltage process and the random variable C are 

statistically independent, 
 the voltage process and the random variable C are not 

statistically independent. 
In the first case, assuming that the capacitor voltage is 

known and applying expected value operator to (51) results 
in closed form formulae expressing the first and the second 
moments of the voltage across the capacitor: 
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In the second case, the definition of the expected value 
operator (6) must be applied. The first and the second 
moments can be expressed by the equations: 
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The model of a time-varying capacitor can be described 

by the following equation: 
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Three special cases have been considered - the function 
C(t) has been assumed to be: 
 a deterministic function, 
 a stochastic process which is statistically independent of 

the voltage processes U(t), 
 a stochastic process which is not statistically 

independent of the voltage processes U(t). 
In the first case, the first and the second moments of the 

output current process are expressed by: 
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where: 

     222 )(E)(E)( tUtUtU  . 

In the second case, the first and the second moments of 
the output current process are expressed by: 
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In the third case, the equations expressing the mean 
function and the variance are identical with (55) and (56). 
However, the interpretation of the function fCU (c, u, t) is 
different. The function  fCU (c, u, t) is a joint probability 
density function of the processes C(t) and U(t) for a 
moment t. The relation for the autocorrelation function takes 
the form: 
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where: 

),,,,,( 212121 ttuuccfCCUU – joint probability density function 

of the random variable C(t) and the stochastic processes U(t) 
for moments t1 and t2. 

VII. EXAMPLE III 

Let us assume that the random variable C and the input 
process U(t) are independent. Moreover, the input process is 
defined as: 
 )()sin()( tWttU  , (66) 

where: 
Ω – random variable with uniform distribution: 
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where H(x) – Heaviside step function. 
The current stochastic process for the capacitor is equal: 

 )()cos()( tCNtCtI  . (68) 

Expected values of the input and the output processes are 
expressed by: 
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It can be proved using l’Hopital’s rule that 0)0( Um  

and )0(Im . 

The autocorrelation functions of the input and the output 
processes for t1t2 can be written as: 
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VIII. COMPLEMENTARY EQUATIONS 

As in the previous sections, equations expressing the first 
and the second moments can be also found after the current 
and the voltage process role reversal (the input quantity 
becomes the output one and vice versa), i.e. for the 
complementary equations of basic electrical elements.  

For example, in the case of an inductor described by: 
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where fL(l) – probability density function of the variable L, 
the determination of the response process moments can be 
based on probability density functions. If the random 
variable L is independent of the input process U(t), then 
assuming zero initial conditions the moments of the current 
response process I(t) are given by: 
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IX. CONCLUSION 

Methods which enable calculation of expected values, 
variances and correlation functions for processes observed 
in the case of random elements R, L and C as well as R(t), 
L(t) and C(t) have been described in the paper. If the random 
variable or stochastic process describing the element 
parameter and the input stochastic process are independent, 
then the output stochastic process moments can be 
determined only on the base of the moments of the input 
process and the moments of the parameter random variable 
(for stationary elements) or the moments of the parameter 
stochastic process (for time-varying elements). Otherwise, 
the joint probability density functions must be used. 

REFERENCES 
[1] K. Skowronek, Stochastic Approach to Electrical Circuits. 

Monograph, Poznan: Publishing House of Poznan University of 
Technology, pp. 34-76, 2011. 

[2] E. Kadlecova, R. Kubasek, E. Kolarova, “RL circuits modeling with 
noisy parameters,” in Proc. of the Int. Conf. on Applied Electronics, 

Pilsen, 2006, pp. 79-81. [Online]. Available: 
http://dx.doi.org/10.1109/AE.2006.4382969 

[3] D. Grabowski, “Moments of stochastic power processes for basic 
linear elements,” in Proc. of the Int. Conf. on Fundamentals of 
Electrotechnics and Circuit Theory, Ustron, 2009, pp. 83-84. 

[4] N. Patil, B. Gawalwad, S. Sharma, “A random input-driven resistor-
capacitor series circuit,” in Proc. of the Int. Conf. on Recent 
Advancements in Electrical, Electronics and Control Engineering, 
Sivakasi, 2011, pp. 100–103. [Online]. Available: 
http://dx.doi.org/10.1109/iconraeece.2011.6129733 

[5] E. Kolarova, “Modeling RL electrical circuits by stochastic 
differential equations,” in Proc. of the Int. Conf. Computer as a Tool, 
Belgrade, 2005, pp. 1236-1238. [Online]. Available: 
http://dx.doi.org/10.1109/EURCON.2005.1630179 

[6] R. Banchuin, R. Chaisricharoen, “Stochastic inductance model of on 
chip active inductor,” in Proc. of the Int. Conf. Education Technology 
and Computer, vol. 5, Shanghai, 2010, pp. V5-1 - V5-5. [Online]. 
Available: http://dx.doi.org/10.1109/icetc.2010.5529957 

[7] R. Farnoosh, P. Nabati, R. Rezaeyan, M. Ebrahimi, “A stochastic 
perspective of RL electrical circuit using different noise terms,”  
COMPEL - The International Journal for Computation and 
Mathematics in Electrical and Electronic Engineering, vol. 30, no. 2, 
pp. 812-822, 2011. [Online]. Available: 
http://dx.doi.org/10.1108/03321641111101221 

[8] E. Kolarova, L. Brancik, “Vector linear stochastic differential 
equations and their applications to electrical networks,” in Proc. of the 
35th Int. Conf. on Telecommunications and Signal Processing, 
Prague, 2012, pp. 311-315. [Online]. Available: 
http://dx.doi.org/10.1109/tsp.2012.6256305 

[9] J. Walczak, S. Mazurkiewicz, D. Grabowski, “Stochastic models of 
lumped elements,” in Proc. of the Int. Symp. Theoretical Electrical 
Engineering, Pilsen, 2013, pp.  II-19 – II-20. 

[10] L. Brancik, E. Kolarova, “Simulation of higher-order electrical 
circuits with stochastic parameters via SDEs,” Advances in Electrical 
and Computer Engineering, vol. 13, no. 1, pp. 17-22, 2013. [Online]. 
Available: http://dx.doi.org/10.4316/AECE.2013.01003 

[11] L. Brancik, E. Kolarova, “Time-domain simulation of transmission 
line models with multiple stochastic excitations,” in Proc. of the 24th 
Int. Conf. Radioelektronika, Bratislava, 2014, pp. 1–4. [Online]. 
Available: http://dx.doi.org/10.1109/radioelek.2014.6828407 

[12] L. Socha, Linearization Methods for Stochastic Dynamic Systems. 
Berlin Heidelberg: Springer, Lecture Notes in Physics, pp. 59-84, 
2008. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-
72997-6 

[13] T. K. Rawat, H. Parthasarathy, “On stochastic modelling of linear 
circuits,” International Journal of Circuit Theory and Applications, 
vol. 38, no. 3, pp. 259–274, 2010. 

[14] P. Manfredi, D. Vande Ginste, D. De Zutter, F. G. Canavero, 
“Stochastic modeling of nonlinear circuits via SPICE-compatible 
spectral equivalents,” IEEE Trans. on Circuits and Systems I: Regular 
Papers, vol. 61, no. 7, pp. 2057-2065, 2014. [Online]. Available: 
http://dx.doi.org/10.1109/TCSI.2014.2304667 

[15] P. Manfredi, I. S. Stievano, F. G. Canavero, “Stochastic simulation of 
integrated circuits with nonlinear black-box components via 
augmented deterministic equivalents,” Advances in Electrical and 
Computer Engineering, vol. 14, no. 4, pp. 3-8, 2014. [Online]. 
Available: http://dx.doi.org/10.4316/AECE.2014.04001  

[16] D. Grabowski, “Stochastic power process for nonlinear inertialess 
elements,” Przeglad Elektrotechniczny, vol. 86, no. 4, pp. 147-150, 
2010. 

[17] M. M. Olama, S. M. Djouadi, C. D. Charalambous, “Stochastic 
differential equations for modeling, estimation and identification of 
mobile-to-mobile communication channels,” IEEE Trans. on Wireless 
Communications, vol. 8, no. 4, pp. 1754-1763, 2009. [Online]. 
Available: http://dx.doi.org/10.1109/TWC.2009.071068 

[18] Wei Yu; B. H. Leung, “Noise analysis for sampling mixers using 
stochastic differential equations,” IEEE Trans. on Circuits and 
Systems II: Analog and Digital Signal Proc., vol. 46, no. 6, pp. 699-
704, 1999. [Online]. Available: http://dx.doi.org/10.1109/82.769778 

[19] B. G. Gawalwad, S. N. Sharma, “Noise analysis of a CMOS inverter 
using the Itô stochastic differential equation,” in Proc. of the IEEE Int. 
Conf. on Control Applications, Dubrovnik, 2012, pp. 344-349. 
[Online]. Available: http://dx.doi.org/10.1109/CCA.2012.6402336 

[20] K. Sobczyk, Stochastic Differential Equations with Applications to 
Physics and Engineering. Kluwer Academic Publishers, pp. 339-364, 
2001. [Online]. Available: http://dx.doi.org/10.1007/978-94-011-
3712-6 

[21] T. T. Soong, Random Differential Equations in Science and 
Engineering. New York: Academic Press, pp. 6-32, 1973. 

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 07:25:14 (UTC) by 18.208.203.36. Redistribution subject to AECE license or copyright.]


