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Abstract—This paper describes a method of determining the
first two moments of the response for basic components of
electrical circuits, i.e. resistors, inductors and capacitors. The
paper goal was to obtain closed form formulae for the moments
describing voltage or current stochastic processes. It has been
assumed that the element parameters R (resistance), L
(inductance) and C (capacitance) could be random variables,
deterministic functions or stochastic processes and excitations
are second order stochastic processes. Moreover, two cases of
dependence between the random parameters and the excitation
stochastic processes have been considered. The obtained results
enable determination of exact solutions for the first two
moments without application of numerical algorithms.

Index Terms—circuit analysis, linear circuits, moment
methods, stochastic processes, stochastic systems.

I. INTRODUCTION

Many works, including monograph [1], have been
devoted to analysis of stochastic phenomena in electrical
and electronic circuits. Determination of probabilistic
characteristics for stochastic processes observed in systems
is very often of great importance. Works in the field of
stochastic system analysis can be divided into two main
topic groups. The first one concerns deterministic systems in
which some stochastic signal sources are present [2-4]. The
second one deals with systems in which sources as well as
basic elements require probabilistic description [5-11]. The
analysis of such systems is usually carried out by means of
stochastic differential or integral equations. However, their
models can be also built with the aid of stochastic
moments [12].

Analytic solutions of stochastic differential equations
describing RC, RL and RLC electrical circuits, in which a
noise term has been added to selected parameters and/or to
an input signal, have been presented in [2], [4-5], [7-8] and
[13]. In the case of more complex systems results have been
given rather in terms of moments, especially the second-
order statistics (SOS), than in a closed form. Such analysis
has been performed for cascade connections of linear two-
ports with randomly varied parameters [10-11]. The second-
order statistics are above all effective in the case of
probability density functions completely described by their
first two moments, e.g. Gaussian distributions, and their
transformations in linear systems. In the case of nonlinear
systems with uncertain circuit elements, the statistical
simulation using the polynomial chaos expansion could be
applied [14-15].
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This paper deals with determination of the first and the
second moments for the voltage stochastic process observed
in the case of random elements R, L and C assuming that the
current stochastic process moments are given. Moreover, it
has been assumed that lumped parameters R, L and C could
be described by random variables or by functions R(?), L(f)
and C(f), which are deterministic functions or stochastic
processes. This paper is a continuation of previous works
devoted to determination of stochastic process moments for
deterministic linear elements supplied by stochastic current
sources [3], [9] and for nonlinear inertialess elements
described by random polynomials [16].

Despite its theoretical character, the paper has also some
practical implications. Signal analysis, system identification
and signal estimation problems are very often solved using
directly or indirectly stochastic moments, especially the
second-order statistics. Although, the paper concentrates on
analysis of basic dynamical elements, nevertheless these
elements could be used to build more complex dynamical
models and enable determination of stochastic moments of
output signals in electric and electronic systems applicable
in practice. For example, the developed formulae could be
applied for fast estimation of statistical parameters of signals
at outputs of signal processing units performing such
operations as sampling, modulation, signal detection or
filtering. Such approach has been already applied for
analysis of output signals in transmission line models
consisting of cascade RLGC branches [11], mobile-to-
mobile communication channels [17], sampling mixers
working at radio frequency or intermediate frequency [18],
CMOS inverters at the low power supply voltage [19].

Results presented in this paper could also be applied in
stochastic dynamic analysis of mechanical, geophysical and
hydrological system models [20].

II. RESISTOR STOCHASTIC MODELS

If resistance is described by a random variable R, then
stochastic current and voltage processes for a resistor are
related by:

U(t)=RI(1), O]
where R - random variable with given distribution.

The following two cases can be considered:

— the current process I(f) and the random variable R are
statistically independent,

— the current process /(¢) and the random variable R are not
statistically independent.
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In the first case, assuming that the moments of the resistor
current are known and applying expected value operator to
(1) result in closed form formulae expressing the first and
the second moments of the voltage stochastic process across
the resistor:

my () = E[RIE[1()]= mpm, (&), )
o2 () =E[R?] & (t.y-m2 ). 3)

Ry (11.0) =BV ) = B[R] o 1.0) . @)
where:
my () = E[U (t)] — expected value of the process U(?),

m;(t) = E[I (t)] — expected value of the process I(?),

mp(t) = E[R] — expected value of the random variable R,
E[RZ] —second raw moment of the random variable R,

0'12] = E[U 2 (t)] - mf] (¢) — variance of the process U(?),
Ry (ty,t5) = E[U(t1 (e, )] — autocorrelation function of the

voltage process U(?),
Ry (ty,t,) = E[I )12, )] — autocorrelation function of the

current process I(%).

The analysis of (2), (3) and (4) leads to a conclusion that
if the given current process /(f) and the random variable R
representing the resistance are independent, then the
description of the resistor can be made with the aid of the
first and the second moments of the current process as well
as the random variable R.

In the second case, equation (2) is not valid and the
following relation should be used:

my (6)=E[U ()] = E[RI(®)]. ©)

There are few methods to expand formula (5) [21]. The
simplest one consists in application of the expected value
definition:

Elg(X,(t)),.... X, (t,))]=

©

= [ Gt fa, (it X ) d
(6)

o X, t,...t,) — joint probability density
function of the random variables X,(#,), X,(%,), ...,
X,(t,) defined by the stochastic processes X(f) for
moments #,,¢,,...,t,,
g(xls-“xn

Equation (6) can be applied to express moments of the
voltage stochastic process across the resistor in the case of
statistical dependence between the resistance R and the
current stochastic process:

respectively,

— deterministic function of n variables.

my ()= [ [rife(ribdrdi, (7)

20 [ .22 : .
O'U(I)—j Ir i fp (ri,t)drdi —my; (¢), (®)
RU(tlJz):_[ I jrziliszH(r,il,izytbtz)drdildiz,(9)

where:
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JSrs (r,i,t) — joint probability density function of the random

variable R and the stochastic processes /(f) for a moment ¢,
Sru (750,05, ,1,) — joint probability density function of the
random variable R and the stochastic processes I(f) for
moments ¢, and ¢,.

In this case, moments of the input current process /(¢) and
the random variable R describing the element parameter are
not sufficient to express moments of the output voltage
process. Joint probability density functions must be given.

Resistor could be also a time-varying element described
by the following equation:

U@)=R(®)I(2). (10)

Three special cases could be considered, i.e. the function
R(?) may be:

— a deterministic function,

— a stochastic process which is statistically independent of
the current processes (f),

— a stochastic process which is not
independent of the current processes (f).

In the first case, the first and the second moments of the
output voltage process are expressed by:

statistically

my (1) = R(tym, (1), (11)
oy () =R* (R (t,1) - m{ (D)., (12)
Ry (t,t5)=R(@E)R(,)R; (11,15) (13)

In the second case, the first and the second moments of
the output voltage process are expressed by:

iy (£) = mp (6)-m (0), (14)
o2 (0 =E[R*0)] % () -m 1), (15)
Ry (t1,1y) =R (1, 8) R (8,15) (16)

In the third case, the equations expressing the mean
function and the variance are identical with (7) and (8).
However, the interpretation of the function fz; (7, i, ?) is
different. The function fz; (v, i, {) is a joint probability
density function of the processes R(f) and /(¢) for a moment
t. The relation for the autocorrelation function takes the
form:

Gy (1,15) =
0 o0 0 o0
= '[ I I Irlrzili2fRR]I(rl’rz’il’i2>t1’t2)drldr2dildi25
—00 —00 —00 —00
17)
where:
Srrir (r1,75,11,05,;,,)— joint probability density function
of the random variable R(f) and the stochastic processes /(7)
for moments ¢, and f,.

III. EXAMPLE I

The case for which the random variable R and the input
process I(f) are independent has been considered in the
example. If:

1(t) = Asin(t) + W (¢), (18)
where:
A — random variable with given moments: m , = E[A] and

O'i :E[Az] —mi,

W(f) — Wiener process,



Advances in Electrical and Computer Engineering

then the voltage across the resistor described by the
resistance R is given by:
U(t) = RAsin(t) + RW (¢) . (19)
Expected values of the input and the output processes are
expressed by:
my () =m gsin(7) , (20)
@2
The variances of the input and the output processes are
given by:

my (t) =mgm ,sin(?) .

ol (t)=oc%(t)sin? (1) +t, (22)

ol (t) =0, sinz(t)+E[R2] t (23)
where GZRA stands for the variance of the product of
independent random variables R and 4:

G]%A = G,%Ui + Ufemi + oﬁm,ze . (24)

The autocorrelation functions of the input and the output

processes as well as the cross correlation function of these
processes can be written as:

Ry (t,ty) = E[A2 ] sin(¢;) sin(¢, )+ min(¢,,¢,), (25)

Ry (t1,15) = mRE[AZ] sin(#,) sin(?, ) +mp min(t;, 2, ),
(26)

Ry (t),15) = E[R2 ]E[AZ] sin(z, ) sin(z, ) + E[R2 ]min(tl,tz) .
(27

IV. INDUCTOR STOCHASTIC MODELS

Ilustrations and tables should be progressively numbered,
following the order cited in the text; they may be organized
Stochastic current and voltage processes in the case of an
inductor whose the inductance is a random variable are
related by:
d/ (t)

Uit)y=L——= m

(28)
where:

L — random variable with given distribution,

U(¢) — voltage stochastic process of the inductor,

1(¢) — current stochastic process of the inductor.

The following two cases can be considered (similar to the
cases analyzed for the resistor):

— the current process and the random variable L are
statistically independent,

— the current process and the random variable L are not
statistically independent.

In the first case, assuming that the moments of the
inductor current are known and applying expected value
operator to (28) results in closed form formulae expressing
the first and the second moments of the voltage across the
inductor:

d
my (6) = m, ”gt"), (29)
2 2 62 2
o2 (1) =E[?| o gq(rl,rz)t:t mE@. G
Ry (ty,15) = E[LZ] R0). G31)

In the second case, the deﬁmtlon of the expected value
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operator (6) must be applied. The first and the second
moments can be expressed by the equations:

d % % ) .
mU(t):E_[O _L lif,, (1,i,0)dldi , (32)
ol (1=
o 0 T T f.o. . o
- l lllszII(Z,ll,lz,tl,tz)dldlldlz
ot oty _~[0 _~[o e
172
- mg (1),
(33)
Ry (t1,t) =
08 0 T T T o L (34)
_Tﬁa_{o _jw _jwz iviy fry (Liyy iy sty )dldi diy

The model of a time-varying inductor is described by the
following equation:

d](t) dL(t)

U(t)=L{t)—=

+HI({)——— (35)

Three special cases have been considered - the function
L(?) has been assumed to be:
— adeterministic function,
— a stochastic process which is statistically independent of
the current processes (%),
— a stochastic process which is not
independent of the current processes /(f).
In the first case, the first and the second moments of the
output voltage process are expressed by:

statistically

iy () = L(r)d’"f(’) ,<r>d D, 36)
of (1) = (D)o (1) +
£2L(1) dzﬁ’){ ) —m) d’"’(’)]
dL@Y N
J{Tj ai(t),
(37)
82
Rty 15) = L(t,)L(ty) —— R, (£, 1,) +
(ZU 1242 1 2 61‘61‘2 T\ 1242
dL
+ dgt) 3 L(fz) o, Ry (t,8,) +
dL;t) 0 %)
+L() s . a_lgzl(tlatz)Jr
dL dL
+%H dit) 3 R (1, 1),

where:

o =elroP] ~Ero)y.
In the second case, the first and the second moments of
the output voltage process are expressed by:

L(t) ml(t) [(t) dmL(t)

my (1) = (39)
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2

0
oy (t) {% (1) = —

%2

gfl(tlstz)J

ti=ty=t

m(d’"’(’)j m[d””“)j

P 0
+ Z[a—tl(g& (tlatz))a(gzl (t,1 ))j

- (40)

h=t,=t

dm (?) +
dt

_ 2m1 (t) d’"dlt(t)

my (1)

2

0
+| Ry, t)) ——
( I(l 2)61‘61‘

1~°2

>

‘%L(tlvtz)J
ti=ty=t

62

=R, (t,t,) —
1 () 2)6t18t2

Gy (ty,15)

Ry (t),t,)+

oty 112) 2 (1 1 1)
ot ot
5 5 41)
(R (11,12)) = (R, (11, 1))+
2 o,
52
8 ot
In the third case, the equations expressing the mean
function and the variance are identical with (32) and (33).
However, the interpretation of the function f;; (I, i, f) is
different — it is a joint probability density function of the
processes L(f) and I(f) for a moment ¢. The relation for the
autocorrelation function takes the form:

‘%U (tlatz):

(QL (ZlatZ))gEI (t1,15)-

:__I j j jlllzlllszul(llJz,ll,lz,flatz)dl dl,di,di,

(42)
where:
Sron (I 150,05, 8,8)
of the random variable L(¢) and the stochastic processes (¢)
for moments ¢, and t,.

— joint probability density function

V. EXAMPLE II

Let us assume that the random variable L and the input
process /() are independent. Moreover, the input process is
defined like in the previous example:

1(¢) = Asin(t) + W (¢), (43)
where:
A — random variable with given moments: m, = E[A] and

O'j :E[Az] —mi,
W(t) — Wiener process,

The voltage stochastic process across the inductor is
equal:

U(t)=LAcos(t)+LN(¢),

where N(f) — white noise.

Expected values of the input and the output processes are
expressed by:

(44)

my(t) =m sin(t), (45)

my (H)=m,m , cos(t). (46)
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The variances of the input and the output processes are
given by:

ol ()=ci(t)sin*(t) +1, (47)

(48)

The autocorrelation functions of the input and the output
processes can be written as:

Ry (ty,1,) = E[AZ] sin(t,)sin(t,) + min(z,,1,) ,

ot(t)=w.

(49)

Ry (t,1y) = E[Lz] E[Az] cos(t,) cos(t,) + E[Lz] 5t —1,).
(50)

VI. CAPACITOR STOCHASTIC MODELS

Stochastic current and voltage processes in the case of a
capacitor, whose capacitance is a random variable, are
related by:
dU (t)

1)=C=_=

(51
where:

C — random variable with given distribution,

U(f) — voltage stochastic process of the capacitor,

1(f) — current stochastic process of the capacitor.

The following two cases can be considered (similar to the
cases analyzed for the resistor):

— the voltage process and the random variable C are
statistically independent,

— the voltage process and the random variable C are not
statistically independent.

In the first case, assuming that the capacitor voltage is
known and applying expected value operator to (51) results
in closed form formulae expressing the first and the second
moments of the voltage across the capacitor:

d
(1) =me (52)
o2 (1) = E[CZ]—%(n,tz) _m0),  (53)
2
%(rl,rz):E[cz]afat B (t1.13) (54)
2

In the second case, the definition of the expected value
operator (6) must be applied. The first and the second
moments can be expressed by the equations:

my (1) =% T TcquU (c,u,t)dcdu , (5%
ol ()=
_%%]; ]; ]:Cczul%fcw (catty 1y 11,15 )dedu, duy -
—m (1),
(56)
R, (tl,tz):
6t1 612 ] ]i ifoczuluszUU(c,ul,uz,tl,tz)dcdulduz.

(57)
The model of a time-varying capacitor can be described
by the following equation:
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dU(t) dC(t)

I(t)=C@) +U(@) (58)
Three special cases have been considered - the function
C(?) has been assumed to be:
— adeterministic function,
— a stochastic process which is statistically independent of
the voltage processes U(f),
— a stochastic process which is not
independent of the voltage processes U(%).
In the first case, the first and the second moments of the

output current process are expressed by:

statistically

my(6) = wﬁ@m U0“® (59)
ol ()=C* (Vo (t)+
+200) f)( Aoiz) U<)de(”]
2
dC
+[ (ﬁ”] o2 (1),
(60)
62
gzj(tlsfz)zc(ﬁ)c(tz)atlatz Ry (t,85) +
dC(t) Kl
+ s » C(l‘z)at2 Ry (ty,85) +
dC 0
%M}J%;Z%m@n
dC dC
+—d§t) ~ —dft) o Ry (t1,15),
61)

where:

o2 (0= E(U o) |- Elv @)
In the second case, the first and the second moments of
the output current process are expressed by:

() = my(6) S0 ) de ®) dmdct(t) ’

62
R (t,t
atlatz LC(l 2)

dmy (1) ’ +
det

+my (t) (62)

aﬁn:(%ann

t=t,=t

—méa{

( (e (1,12))5 (@Amx»ﬂ

t=ty=t

(63)

dm¢ (1) 4

—2my (1) T

d
m(;]t(t) me (1)

2

{%(llatz) QC(tlntz)J

ti=t,=t

dmc(f)J2

—mém( "
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2

Ql(tlat2)_[zc(tl’t2) Q{/(tlatz)Jr

(%ﬂhﬁﬁ) @@ap@»
(64)

([Zc(flatz)) (gZU(flatz))

6MJ%W@MM@)

In the third case, the equations expressing the mean
function and the variance are identical with (55) and (56).
However, the interpretation of the function foy (c, u, ?) is
different. The function fcy (¢, u, £) is a joint probability
density function of the processes C(f) and U(f) for a
moment ¢. The relation for the autocorrelation function takes
the form:

'(/E[(tl’tz) =

6tl 6t2 J;O J;O_J;OClCz“l“szCUU(Claczsulnuzatlatz)dcldczdulduz

(65)
where:
Jecuy (€1,62,u1,Uy,t,t,)— joint probability density function
of the random variable C(f) and the stochastic processes U(t)
for moments ¢, and ¢,.

VII. EXamPpLE II1

Let us assume that the random variable C and the input
process U(?) are independent. Moreover, the input process is
defined as:

U@) =sin(Qt) + W (¢), (66)
where:
Q — random variable with uniform distribution:
1
o) =——(H(x=aq) = H(x=bg)),  (67)

o ~dq
where H(x) — Heaviside step function.
The current stochastic process for the capacitor is equal:
1(t) = CQcos(Qt)+ CN() . (68)
Expected values of the input and the output processes are
expressed by:
1 cos(agt) —cos(bnt)

(=5~ t )
m(t)=mc be —ag : .
.(—ag sin(agt)+bg sin(bpt) B cos(aQt)—cos(th)) (70)

t t i

It can be proved using I’Hopital’s rule that my;(0)=0
and |m, (O)| <00,

The autocorrelation functions of the input and the output
processes for ¢, #t, can be written as:

Gy (ty,1,) =

—(( 1, —t,)sin(ag (t; —t,) +
2(;12 _12) 1 2 Q\l 2
+ (8 +1y)sin(bq (¢ —t,) + (t) —ty)sin(ag (4, —t) (71)
+ (=, —ty)sin(bg (£, —1,)))+min(t,,1,),
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1
o -6, +0,f

3 2.2 2 2.2 :
(=t +1y) (agty —2aght, +agty —2)sin(aq (¢ — 1))
(1, +1,)> (B5EE = 2b3 1,1, +b3t3 —2)sin(bg (t, —1,))
—(t —1))2ag(t, +1, )3 cos(aq () —1,))
—2bo (1, +1,)’ cos(bo (t, —1,))
+(t, —1y)* ((adt} +2adtty +adt; —2)sin(ag (t, +1,))
—(b3tf +2b3tt, +b5ts —2)sin(bg (1, +1,))

+2(8 +1,)(=bg cos(bg (1) +1,)) + ag cos(aq (4 +1,)))))).
(72)

YV Ry (t,1,) =

H#t,

VIII. COMPLEMENTARY EQUATIONS

As in the previous sections, equations expressing the first
and the second moments can be also found after the current
and the voltage process role reversal (the input quantity
becomes the output one and vice versa), i.e. for the
complementary equations of basic electrical elements.

For example, in the case of an inductor described by:

t
1() =% [umdi+ 1), fr0=0, (74)
to
where f; () — probability density function of the variable L,
the determination of the response process moments can be
based on probability density functions. If the random
variable L is independent of the input process U(f), then
assuming zero initial conditions the moments of the current
response process /(f) are given by:

my = [ 1O [my 01, (75)

o10= [ 5 L0 [ .00, - m 0. (76)

ot

'] 1 t, 4
R (t,t)= | = fr (DAl | Ry (t,t,)dtde, .
B

lhy L

(77)

IX. CONCLUSION

Methods which enable calculation of expected values,
variances and correlation functions for processes observed
in the case of random elements R, L and C as well as R(?),
L(?) and C(¢) have been described in the paper. If the random
variable or stochastic process describing the element
parameter and the input stochastic process are independent,
then the output stochastic process moments can be
determined only on the base of the moments of the input
process and the moments of the parameter random variable
(for stationary elements) or the moments of the parameter
stochastic process (for time-varying elements). Otherwise,
the joint probability density functions must be used.
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