
Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

HiGIS: An Open Framework for High
Performance Geographic Information System

Wei XIONG*, Luo CHEN
College of Electronic Science and Engineering, National University of Defense Technology,

410073, Changsha, China
{xiongwei, luochen}@nudt.edu.cn

1 Abstract—Big data era expose many challenges to

geospatial data management, geocomputation and
cartography. There is no exception in geographic information
systems (GIS) community. Technologies and facilities of high
performance computing (HPC) become more and more feasible
to researchers, while mobile computing, ubiquitous computing,
and cloud computing are emerging. But traditional GIS need to
be improved to take advantages of all these evolutions. We
proposed and implemented a GIS married with high
performance computing, which is called HiGIS. The goal of
HiGIS is to promote the performance of geocomputation by
leveraging the power of HPC, and to build an open framework
for geospatial data storing, processing, displaying and sharing.
In this paper the architecture, data model and modules of the
HiGIS system are introduced. A geocomputation scheduling
engine based on communicating sequential process was
designed to exploit spatial analysis and processing. Parallel I/O
strategy using file view was proposed to improve the
performance of geospatial raster data access. In order to
support web-based online mapping, an interactive
cartographic script was provided to represent a map. A
demostration of locating house was used to manifest the
characteristics of HiGIS. Parallel and concurrency
performance experiments show the feasibility of this system.

Index Terms—high performance computing, geographic
information system, geocomputation, communicating
sequential process.

I. INTRODUCTION

It has become common sense that the geospatial data is
fairly "big" in terms of volume, increasing velocity and
variety. Therefore, analyses, simulation, mining tasks on
geospatial data sets captured with ubiquitous location-aware
sensors require massive computing power, storage space and
communicating bandwidth. High Performance Computing
(HPC) cluster with large amount of CPUs, memory, hard
disks and high-speed networks provides a suitable parallel
processing environment to solve complex geospatial data
processing problems. In traditional desktop-based
Geographic Information System (GIS), the processing
paradigm of a complex geospatial procedure is in sequence
on account of the personal computer hardware architecture.
However, such paradigm is too low-efficiency to be applied
on HPC.

Traditional GIS e.g. ESRI ArcGIS, Quantum GIS running
as a standalone desktop program takes good advantage of
the computing power of personal computers. The

performance of such kind of GIS with regards to the
geospatial data throughput, visualization as well as spatial
analysis is restricted by the capability (number of cores,
CPU frequency, memory speed, Input/Output latency and
bandwidth) of the local computer. Although there are some
server-based systems e.g. ArcGIS Server, Geoserver,
Mapserver etc, can provide web services conformed to Open
Geospatial Consortium (OGC) standards, which support
interoperable solutions that "geo-enable" the Web, wireless
and location-based services and mainstream IT
(http://www.opengeospatial.org/). These systems put their
main focus on providing mapping (WMS) or geospatial data
service (WFS and WCS) via HTTP. However, to do a
complicated geospatial computing mission is still a tough
nut to crack. In recent years, some online GIS-like system
emerged as the rapid rise of cloud computing. Typical
representatives include GISCloud, CartoDB, ArcGIS Online,
etc [1-2]. The current systems did a good job in mapping or
data sharing, while rarely touched the area of
geocomputation which sometimes is both compute- and
data-intensive.

This work was supported in part by the National Natural Science

Foundation of China under Grants 41271403 and Grant 41471321, and the
Natural Science Foundation of Hunan Province, China under Grant.
12jj4033.

What happens when GIS meets HPC? Grid computing
and cloud computing are two promising computational
frameworks [3-5]. These researches have done explorative
and solid work in this area, and tested on CyberGIS,
XSEDE, Hadoop and Amazon EC2. The test results
demonstrate that these platforms can provide high
performance parallel computing capability. Parallel
framework for processing massive spatial data is an active
research topic recently. Researchers have proposed some
parallel frameworks for point cloud algorithms [6] and
remote sensing image processing web services [7]. However,
these works pay little attention to combining geocompution
with cartography. To promote the performance of
computation in spatial analysis and visualization, we have
been making great efforts in the past three years to build a
GIS with full functions in terms of geospatial data
management, visualization and especially, high-performance
geospatial computing tool set. The name of the system is
HiGIS which stands for high performance GIS. The backend
of HiGIS is running on a HPC environment, while the
frontend includes a desktop and a web client which is fairly
thin and cross-platform. There are hundreds of parallel
geospatial computing tools provided in HiGIS. Geospatial
data, tools and geocomputation models are treated as the
basic elements in the ecosystem around HiGIS.

In this paper, we depict a framework based on
communicating sequential process (CSP) to support high
performance computing for geographic information

 123
1582-7445 © 2015 AECE

Digital Object Identifier 10.4316/AECE.2015.03018

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 09:19:33 (UTC) by 3.92.96.247. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

applications on the web. Parallel I/O strategy using file view
was proposed to improve the performance of geospatial
raster data service. In order to support web-based online
mapping, an interactive cartographic script was designed to
represent a map. This script acts as a map style specification
sent to render service of HiGIS. All of these works have
already been implemented as core services in this HPC-
based GIS.

II. HIGIS: A HIGH PERFORMANCE GIS

The main goal of HiGIS is to improve the performance of
time-consuming GIS operations by utilizing parallel
computing in an HPC environment, as well as to provide
such enhanced GIS ability to as many users as possible via
personalized, light-weighted and cross-platform client
programs [8].

A. Architecture

The server-side software stack of HiGIS includes system
services supporting the three GIS core functions - spatial
analysis, visualization and data management. Basic
components of HiGIS contain a heavy server and a light
client. Geospatial data storage and geocomputation toolbox
are implemented on high-performance computing cluster.
Fig. 1 shows three core GIS services, which are computing
service (higine), cartography service (hiart) and repository
service (hipo) forms full range of GIS services. The request
of these services can be invoked via HTTP protocol by
either desktop client or web client.

C
lie
n
t

Se
rv
e
r

Computing Service
(higine)

Repository Service
(hipo)

Cartography Service
(hiart)

High‐Performance Computing Cluster

Desktop application Web application

Geoprocessing toolboxGeospatial data storage

http

Figure 1. Core services of HiGIS

Higine is responsible for processing geospatial computing
requests sent from client programs. In HiGIS, such kind of
computing requests are normalized as workflows even the
flow contains only one step of some fundamental analysis.
higine can interpret and execute the submitted scripts. To
ease the submission of geospatial computing requests from
clients, higine defines a group of public data structures and
service interfaces including submit, cancel, get_status, etc.
Rather than directly forward the computing requests to the
operating system, higine has to take care of the executing
sequence of the submitted jobs, as well as how many
computing resources should be assigned to each job because
the underlying HPC environment is so different from a
commodity personal computer running local operating
system. Consequently, higine communicates with a batch
job scheduler commonly used in HPC environments to
schedule the computing resources and keep the load
balanced.

Hiart provides interfaces for registering and styling
geospatial data for cartographic visualization. Visualized

geospatial data in HiGIS is served by Tile Map Service
(TMS) standard. When a piece of geospatial data is
visualized, its spatial reference system is normalized to Web
Mercator system. The reason for this normalization is to
avoid on-the-fly map re-projection.

Hipo encapsulates the access to the geospatial data
repository and provides a unified interface to both the other
server-side components and client programs. In the server-
side, parallel I/O for raw raster data is used to improve I/O
efficiency. When users import their own data to HiGIS, or
export a piece of geospatial data to their local device, the
data access interface will be invoked. The public service
interfaces defined in hipo are mainly creation, retrieval,
update and deletion (CRUD) operations of the data stored in
the repository.

Fig. 2 describes how these core services serve together for
applications. When a user submits a geocomputation job to
higine, higine decides how to dispatch the computing
resources for the job according to the load of compute nodes.
Once the geoprocessing tool is started to do the job, it sends
a request to hipo to get geospatial data. If the job is finished,
the result can be either saved by hipo or visualized by hiart.

Figure 2. How to serve for applications with core services of HiGIS.

So far, the 1.0 version of HiGIS has already been released
but is deployed in an internal HPC cluster with 32 compute
nodes in National University of Defense Technology. The
running system provides strong support to solve some large-
scale geocomputation problems. For example, the job of
watershed modeling for an area in the south of Fujian
Province in China (about 60000 km2) is finished within 5
minutes with 24 processes [9].

B. Object model

The concept of geoapp is proposed to serve as an abstract
object model for the geospatial computing-related resources
in HiGIS (Fig. 3). A geoapp object acts as a “producer”,
with some appoptions to determine what and how to
produce. A map is a symbolic depiction highlighting
relationships between elements of spatial entities, such as
objects, regions, and themes. A geodata object represents a
geospatial dataset with options like querying geographic
extent to produce part of the dataset. A tool object represents
an executable algorithm or a utility program, which
produces the output or side effect of the execution. A model
object is composed of simple geoapps, e.g. geodata and
tools. A model can produce composite results according to
its definition and internal logics.

The usage of HiGIS is a little bit different from the
traditional GIS. geoapp object model plays an important role

 124

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 09:19:33 (UTC) by 3.92.96.247. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

in the HiGIS user mode. First of all, an account for each
user is necessary for the purpose of personalizing the
geoapp resources owned by the user, as well as the working
perspective of the system. HiGIS users may import their
own geodata datasets to the system while taking full control
of the access level of the data. Besides the user-imported
data, HiGIS provides a large amount of free geospatial
datasets acquired from other public data sources for high-
performance geocomputation processing and research.

Figure 3. geoapp object model in HiGIS.

Then users may search and select the tools that fit for
their processing requirements in the HiGIS tool repository.
There is a group of research teams in China jointly doing
research and development work for the HiGIS tool
repository. The group has contributed to the initial high-
performance spatial analysis tools taking great use of
parallel computing powered by HPC. The toolbox contains
from fundamental analysis tools like buffer and overlay
analysis, digital terrain analysis, spatial data transformation,
to advanced geocomputation tools like intelligent algorithms,
geostatistics and even complicated watershed modelling, etc.

To launch a geospatial computing task, users can either
directly submit their jobs by providing necessary parameters
via the GUI of a tool, or construct a complicated HPC
workflow with an embedded model designer. higine
working at the server-side will take care of the processing of
jobs and job flows. Users can monitor the detailed running
information of their jobs in a dashboard. When the
submitted geospatial computing task is completed, the result
dataset can be visualized immediately if necessary.

If users want to browse the data stored in the system or
the results generated by geocomputation tasks, they can add
them to the map. HiGIS provides essential map operations
such as pan, zoom and recenter. Moreover, users can adjust
the order and visibility of map layers in HiGIS. These
functions look as same as traditional GIS. The most
attractive feature of HiGIS is that users can edit map styles
on-the-fly based on the powerfully parallel rendering
capability of hiart server. For example, to enhance the
visual effect, users can finish the job of calculating relief
amplitude of a raw SRTM dataset with cartographic styles.

C. Functional components

There are four basic functional components in HiGIS as
shown in Fig. 4-6.

The first is Geospatial data manager, which implements:
large-scale dataset storing, retrieving and previewing on-the-
fly with the support of HPC, It provides feature identifying,
selecting and measurement for vector data, and raster data
attributes extracting, e.g. max/min/average value, histogram.

The second component is Cartographic editor, which
make maps with comprehensive styles on the web, and
support for massive layers corresponding to large-scale

dataset.
The third component is Tool repository, which have

parallel algorithms for registration, retrieval, execution,
scheduling and monitoring.

Figure 4.Geospatial data manager

Figure 5. Cartographic editor

The fourth component is Model editor, which builds
geocomputation workflow for high-flexibility. Even the
map-making can be finished by building a workflow with a
template cartography tool. All the tasks involved in the
workflow will be scheduled properly in HPC environment.

Figure 6. Model editor and Tool repository

III. CSP BASED GEOCOMPUTATION WORKFLOW

CSP is an algebraic theory proposed by Hoare [10] for
solving complex problems caused by concurrency. There are
several challenges when building a geocomputation
workflow system over HPC clusters. The first and foremost,
it should be easy to combine simple spatial analysis
algorithms into complex solutions. Furthermore, parallel
efficiency should be optimized at the workflow level, to
fully exploit the potential of hardware and algorithms. The
last but not the least, since HPC is costly, the system should
offer some control abilities, like workflow cancelling and
pausing/resuming, as well as a proper failure handling

 125

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 09:19:33 (UTC) by 3.92.96.247. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

mechanism. In this paper, a workflow system based on CSP
is designed and developed targeted at these challenges.

A. Geocomputation workflow

There have been some researches explore the
geocomputation framework based on cloud environment or
MapReduce cluster. OpenRS-Cloud is a platform remote
sensing image processing based on cloud computing
technology [11]. MRGIS is a workflow system for GIS
based on MapReduce clusters to ease geographic problems
solving and achieved significant performance advantages
compared to non HPC solution [12]. However,
implementation details of MPI-based geocomputation
workflow systems built on HPC clusters have not been
investigated in depth [13]. As for fast visualizing the results
of geocomputation, existing platforms and technology paid
little attention.

 The JSON structure of a workflow submitted to higine

1. {
2. user: <string>, //The user submitting workflow
3. jobflow:{
4. name: <string>, //Name of workflow
5. jobs_count: <int>, //Number of jobs in the workflow
6. jobs: [//List of the jobs
7. {
8. appid: <int> //Id of job
9. app_options: { //Parameters of job
10. input: <data>,
11. output: <data>
12. }
13. runtime_context: { //Runtime environment
14. parallel: <int>,
15. mem: <int>
16. }
17. //Dependency betweent the jobs
18. precursor_jobs_count: <int>,
19. subsequent_jobs_count: <int>,
20. precursor_jobs: <list>,
21. subsequent_jobs: <list>
22. }, …
23.]
24. }
25. }

Figure 7. DAG and its JSON specification of geocomputation workflow

As a complex processing procedure, a geocomputation
workflow can be split into a bunch of steps. Each step in the
workflow refers to a spatial analysis operation (action),
mainly as a single algorithm with input and output
geospatial dataset. The interfaces of operation are defined by
a description specification along with the algorithm. The
inputs of each step can be given either by users or former
steps. States transition between actions represents the
processing state of workflow. Directed acyclic graph (DAG)
is used to model the workflow. DAG uses nodes and edges
to illustrate the workflow corresponding to actions and data
transfer between actions. Recursions or loops are not
allowed in the graph to avoid validating complexity. A
typical DAG of geocomputation workflow is shown in left
part of Fig. 7. In this workflow, Jobstart and Jobstop are
virtual nodes which denote the start and stop of workflow.
Each directed edge denotes that the processed geospatial
dataset transfer from one job to another. Precursor job and
subsequent job represent the job executed before and after a
job respectively. As an example, Job4 and Job5 are
precursor jobs of Job6, and Job1 is subsequent job of Job2.
A workflow can be created and submitted to higine using
model editor of HiGIS. Model editor translates the DAG
into JSON (JavaScript Object Notation) format, which is a
commonly used data-interchange format in the web. The
JSON specification designed in HiGIS is illustrated in the
right part of Fig. 7.

To establish a flexible web geocomputation framework,

some basic utility operations should be integrated. A bunch
of workflow utility programs are developed in order to build
reasonable geospatial applications, including metadata
extracting, data publishing, web map service (WMS)
publishing and other more. These tools can be easily and
often used as actions in workflow.

Geospatial analysis and processing algorithms tend to be
both computing intensive and communicating intensive,
which restricts their scalability. Within the same workflow,
computing resources could be balanced among steps
considering the scalability of corresponding algorithms to
raise both the resources utilization and the overall execution
efficiency. Suppose there are two algorithms to run on a
256-cores cluster. Executing them one by one both with
given 256 cores may cause low parallel efficiency. For most
algorithms, the parallel efficiency of a 256-cores execution
may be much lower than 128-cores execution in practice.
Consequently, the workflow engine may optimize the
resource assignment and execute the two algorithms
simultaneously with both given 128 cores, which may bring
better performance gains.

Stable workflow control facilities are rather difficult to
implement since many real-world workflows are fairly
complex and have many states, especially in a web
environment. Concurrency must be carefully handled to
avoid inconsistent states or deadlocks if synchronizations
are heavily taken. Concurrent entities interact with each
other all through explicit interfaces driven by an event-
callback metaphor, in order to reduce uncertainty introduced
by implicit interactions. When implementing web
geocompution framework, some flexibility should be
offered to handle failures in various ways. When a step fails,
one may choose to either cancel all the unfinished steps in
the workflow, or only cancel the steps dependent on the
failed step. Both of the choices can avoid processing on the
corrupted data.

B. CSP model for geocomputation workflow

In Fig. 8 there is a demonstration for two actions
(rectangle) and six states (ellipse). The directed edges
describe the state transitions of action changing between
start, submit, suspended, awaked, canceled and finished.
Even some states such as failed and revoked are omitted
here. It can be easily observed that a composition explosion
problem will be resulted in the case of multi-user concurrent
environment. So DAG is suitable for describing workflow,
but not proper for handling the concurrency problem in
execution.

Figure 8. State transitions in geocomputation workflow

CSP uses message passing as the core concept, and

defines a formal language to describe the interactions
between different parts of a system. In CSP, a process
represents the behavior pattern of an object we are interested
in, associated with a finite set of possible events as its

 126

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 09:19:33 (UTC) by 3.92.96.247. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

alphabet. Communication channels are defined upon these
concepts using trace semantics. CSP uses uppercase letters
P, Q, R to represent processes. Fundamental operators on
processes are shown in Table I.

TABLE I. FUNDAMENTAL OPERATORS FOR GEOCOMPUTATION FLOW

Operator Notation
Prefix e -> P (e is an event)

Sequential composition P ; Q
Parallel P || Q

In our application framework, each task, or equally, a
running instance of an algorithm, is defined as a process.
The workflow of an application which composed algorithms
together will then be mapped to a CSP model, which could
be reasoned to ensure correctness in certain tools. In the case
of housing location calculation use as an example, the
workflow can be described as: First, buffer areas are
calculated on several kinds of interesting data. Second, these
areas are overlaid using different operators. Finally the
source data and result data will be visualized on a single
map following a predefined style.

The sample geocomputation workflow is shown in left
part of Fig. 9, and the CSP expression is listed in the right
part. In HiGIS, this expression will be parsed by higine, and
submit to the HPC cluster. With CSP expression, some tools
can be used to verify accuracy of workflow and guarantee
robustness of higine [14]. By analyzing workflow models
specified using CSP, these tools support automated model
checking to keep executive away from deadlock or
divergence.

input1

Buffer

Overlay

Visualize

input2

Buffer
input3

Buffer

output1

Overlay

output2

output3

Figure 9. Example of geocomputation flow

When dealing with more complex real world problem, we
can elaborate the model to fully describe the interactive
pattern between processes. Based on the model, the parallel
scheduling module will direct the data flow passing through
every task, using multiple scheduling techniques to achieve
high efficiency and robust concurrent control. Algorithms
called by the jobs can be parallel ones using MPI, which can
fully exploit the power of high performance clusters, and
also can be sequential ones to be compatible with traditional
spatial analysis libraries.

The core system of higine that parses and executes
workflows is written in C++. The algorithms are mainly
written in C++ based on MPI, while workflow utilities are
written in various scripting languages like python, ruby, or
bash. The system is open to non-MPI algorithms which,
however, may not take advantages of special optimizations
for MPI programs. The TORQUE resource manager and the
MAUI scheduler are used for efficiently submit and execute
MPI program [15-16]. OpenMPI is chosen as the MPI
implementation while in most cases it is not a heavy work to
switch to other implementations, e.g. MPICH2 or Intel MPI.

Several geocomputation workflows are built for
experiments. The experimental results showed the feasibility
and efficiency of the workflow engine. It provides varies
functions including executing algorithms in parallel, taking
several previous outputs to produce new output, registration
to metadata storage then published as Tile Map Service
(TMS) automatically, and works well in HPC. Fig. 10
demonstrates the scheduling framework of higine. The
system consists of three components: higine, TORQUE and
MAUI. These components collaborate closely to serve for
high performance execution and robust concurrent control of
geocomputation.

Figure 10. Scheduling framework of higine

For a specific workflow, the execution pattern is designed

by model editor in client side. Then the workflow described
using JSON specification send to server from the front end.
In backend, job parser translated the JSON into CSP
expressions. Job executor generates job scripts according to
CSP expressions and starts multi threads to submit job
scripts to TORQUE. The policy for choosing the best
candidate execution nodes is provided by MAUI. MAUI is
an extensible scheduler integrated some policies of
“Backfill”, “Job priority”, “Fairness and fairshare” and
“Policy exemption”. The estimated completion time of each
action in workflow is the most important factor for efficient
scheduling. We have proposed a method for estimating
completion time [17]. But so far, it can only apply to some
specific algorithms. The running status and other
information about the job such as log, exceptions and
results, are recorded by job executor. Job monitor collects
and reports these messages to users.

IV. PARALLEL DATA ACCESS IN HIGIS

High spatial resolution satellites collect petabytes of
geospatial data from space every day, while citizen sensing
activities are accumulating high temporal resolution data at
a comparable or faster pace. These data are collected and
archived every minute at various locations and record
multiple phenomena of multiple regions at multiple scales.
The geospatial data need to be calculated in spatial
information applications is massively increasing. The
complexity and the demand for accuracy in data processing
are also growing. Geospatial data processing has presented
more data-intensive and compute-intensive [6],[18]. Using
multi-processor cluster and parallel computing technology

 127

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 09:19:33 (UTC) by 3.92.96.247. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

has become an inevitable trend. When the performance of
processing is enhanced, the parallel computing processes
would wait for data reading or writing if data access is
serial. In this context, parallel data I/O is crucial for efficient
geospatial data processing. Therefore, a parallel strategy for
geospatial raster data is presented in this section.

A. Problem in Parallel Raster I/O Mode

There are usually two methods used in parallel processing
geospatial raster data. The first is the Data Distribution and
Collection (DDC) method as illustrated in Fig. 11. In this
method, only the master process is responsible for all read
and write operations of the geospatial raster data, while
slave processes are responsible for data processing. The
sending and receiving of data are implemented through an
inter process message passing mechanism between the
master and slave processes. The main drawback of the DDC
method is that the master process easily becomes a
bottleneck when the number of slave processes increases.

Figure 11. Parallel geospatial raster with distribution and collection

Another parallel I/O mode does not rely on the
distribution and collection of the master process, as
illustrated in Fig. 12. Each process can relatively
independently access the data. Only Meta data is distributed
by a master process. Each processes simultaneously access
data, which can largely increase the overall I/O bandwidth.
However, this approach requires an underlying parallel
system support such as General Parallel File System
(GPFS). Parallel file system provides high performance by
allowing data to be accessed over multiple computers at
once. Higher I/O performance can be gained by “striping”
blocks of data from individual files over multiple disks, and
reading and writing these blocks in parallel. Unfortunately,
in a non-parallel system, e.g. Network File System (NFS),
there are no strip blocks in the disks. If the read and write
request very randomly, the file system must response to the
requests randomly. Because of the mechanics of a disk
transfer, in this situation, the I/O efficiency will be
significantly reduced.

Some recent studies have tried to apply Geospatial Data
Abstraction Library (GDAL) to parallel geospatial raster
processing [19-20]. GDAL (http://www.gdal.org/) is a
popular open source tool for geospatial raster I/O processing.
These works explore the efficiency and flexibility of using
GDAL in parallel raster I/O mode. Experimentations show
that parallel raster I/O using GDAL cannot work well under
column-wise or block-wise data partition. Two-phase I/O
strategy is used to reduce the I/O requests through inter-
process communication [20]. While small I/O requests
combined into large contiguous I/O requests, the
communication costs will likely be the new bottleneck. On
the basis of a specific format (e.g. Hierarchical Data Format
v5 [HDF5], Parallel Network Common Data Format

[PnetCDF]), massive geospatial raster data set can be
accessed by parallel I/O library [21]. But these specific
formats will face the great challenge of diversity in many
current geospatial applications. For the reason that we are
living in the era of Big Data, large-scale of spatiotemporal
data are generated per day. Consequently we cannot wait for
transforming various formats of geospatial data to a specific
format, and then processing these data.

Figure 12. Parallel geospatial raster with distributing only metadata

B. Parallel Geospatial Raster I/O Using File View

MPI (Message Passing Interface) is a standardized
message passing system designed for high performance
computing. The standard defines a core of library routines
use to develop portable and scalable large-scale parallel
applications. This section introduces “file view” strategy
which is suitable for both GPFS and NFS file system. File
view is a new file concept introduced in MPI 2.0 standard. A
process file view is created by calling up MPI-IO function.
Each process can define its own file view made up of non-
contiguous file segments. If the underlying MPI-IO
implementation considers the access to these file segments
as aggregated read/write call, the I/O performance should be
greatly improved. This strategy was first implemented in
MPI-IO for a much more efficient use of the I/O subsystem
[22]. Based on file view mechanism, non-contiguous and
piecemeal I/O requests are aggregated into a small amount
of contiguous I/O requests. MPI-IO can be used to schedule
the read/write sequences between multiple processes, and
there is little data exchange in its implementation. File view
is a critical optimization of parallel I/O, which allows
communication of “big picture” to file system. Two-phase
I/O strategy spends more communication costs on
sending/receiving data between parallel processes. The basic
idea of file view is building large blocks instead of using
communication to precede I/O, so that I/O performance will
be largely improved.

Figure 13. Parallel geospatial raster I/O using file view

Fig. 13 shows the basic process of parallel geospatial
raster I/O using file view. Firstly, all processes read
metadata of the geospatial raster data to be processed using
GDAL. These information is stored in a memory data
structure, where includes: MPI file handle, columns and
rows of raster data cells, bands of raster data, data types of
cell, absolute offset address of raster data in the file. After
that each process calculating the data size and offsets needed
to read and process. Data partitioning methods can be row-,

 128

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 09:19:33 (UTC) by 3.92.96.247. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

column-, or block-wise. Subsequently, one specific process
is responsible for creating the output file with the metadata.
Once created, the process will broadcast to other processes.
Other processes start to read raster data to be processed.
Finally, each process completes their computing tasks, and
then opens the output file, sets the respective file view and
writes the result data into the output file.

The example of geospatial data file view is illustrated as
the right part of Fig. 13. Assuming data partitioning method
is block-wise. File view includes three elements: absolute
offset address (Displacement), the basic element type
(ElementType) and file type (FileType). There are n parallel
processes (P0, P1, … Pn). The rows and columns of
geospatial raster cell is RasterYSize and RasterXSize, and
cell data type is ElementType. For process P0 the file view
parameters are: the RowB1, RowBn, ColB1 and ColBn are
used to compute the block sizes of the raster data for P0 to
process. The row size of a block is

1BlockYSize RowBn RowB (1)
and column size of a block is

1BlockXSize ColBn ColB (2)
The FileType is made up of ElementType (BlockXSize),

hole (RasterXSize - BlockXSize), and one ElementType in Y
dimension. After setting the file type, each process can use
its own file view to read and write data. We can use this file
type in MPI_File_set_view and MPI_File_write_at_all
functions provided by MPI-IO to implement the parallel I/O.
It should be noted that file view type setting is depended on
different MPI version. We can only support GeoTiff format
as an output type so far. But it is easy to extend our function
interfaces to support other geospatial raster formats.

TABLE II. FUNCTION INTERFACES FOR FILE VIEW

Name Description
create_raster Create a geospatial raster file to read or write
open_raster Open a specified geospatial raster file to read/write
close_raster Close a opened geospatial raster dataset
write_rows Data partition is row-wise. Write data rows
write_cols Data partition is column-wise. Write data columns

write_blocks Data partition is block-wise. Write a data block

We defined a set of function interfaces to encapsulate the
operations to parallel access raster data, including
create_raster, open_raster, close_raster, write_rows,
write_cols and write_blocks listed in Table II.

V. INTERACTIVE CARTOGRAPHIC SCRIPT

The OpenStreetMap project provides user-generated
street maps [23], which make it easier for crowdsourcing
cartography. While traditional mapping is often carried out
by professional organizations, crowdsourcing cartography
generates a map using informal social networks and web 2.0
technologies. Mapbox (http://www.mapbox.com) offers
commercial mapping services using Python scripts for the
data parsing, CartoCSS for the designing of the maps,
JavaScript to make the maps interactive, and HTML to
combine all the layers together a set of maps were created.
By this means, anyone can design a map and choose what he
wants on the map and exactly how it looks. Every detail is
under control, e.g., adding data, picking fonts and colors.

A. Interactive cartography in HiGIS

Interactive cartographic script can be used to define the

style of a map, which enables the interpretation of the map,
the construction of page layouts. These scripts need to be
parsed as actual cartographic instructions sent to a map
renderer. According to Web Map Service standard proposed
by Open Geospatial Consortium, Map can be defined as
follows:

 , 0i iMap Layer Style i N (3)

Where Layeri is a layer in a map, and Stylei is a text
defining the map elements of Layeri, such as legends, titles,
and related text or symbols. Cartographic script designed in
HiGIS includes two parts, Selector and Declaration. Selector
defines the subject for map manipulation, such as map,
layer, and objects with filter conditions. The declaration
defines the style of the subject. The syntax can be described
as follows.

Selector {
Declaration;
Selector {

Declaration;
}

}
As an example of a map, if there is a highway layer

graded to different classes, and we want to render the class-1
highway into the red color. Therefore the Selectors are
highway layer and class-1 highway, Declaration is “line-
color=#ff0000”. This map can be defined as follows.

highway {
[class=1] {

line-color = #ff0000;
}

}
Interactive cartography in HiGIS includes three steps as

shown in Fig. 14. The user sends a request to the Register to
create a map. Then CartoCSS scripts specifying map layers
and styles are sent to the Parser. Parser complies CartoCSS
scripts to scripts which can be processed by Renderer.
Borrowing HPC power, Renderer generates the map tiles in
parallel. User can view a map by sending the request to the
Tiles server. If the user is not satisfied with the results, he
can re-execute these steps to adjust.

Figure 14. Interactive cartography in HiGIS

B. Mapping with template

The cartographic script gave plenty of control to the
person writing the script, but the user experience was not
very friendly. The scripts had to be written as text files.
Even drawing a simple map required writing a somewhat
lengthy script. Many users were desired to simplify these

 129

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 09:19:33 (UTC) by 3.92.96.247. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

works. HiGIS provided automation capability for mapping
from template.

A sample use case of HiGIS contains data selection,
spatial analysis and cartography. Assuming we want to buy
a house in a city. An eligible housing area should have a
good surrounding environment and provide with convenient
living conditions. Therefore, we need to take into account
the city’s education, transportation and other important
factors: such as, schools, shopping malls and hospitals are in
the housing area within 100 meters, railways, main roads
must be 200 meters away from housing area, and housing
area is less than 100 meters to district roads, and so on. It is
a typical application of workflow shown in Fig. 9.

According to the workflow described above, typical use
mode in HiGIS is as below:

1. Construction of the geocomputation flow model for
housing locating area.

2. Select input geospatial data set such as points of
interest, railways and roads et al shown in Fig. 15. These
data are rendered in default map styles.

3. Run the model, and each step in the execution progress
can be observed dynamically.

4. Monitor the status of the task (I/O time and computing
time), run time and results in the dashboard.

5. If the task is finished, open results into the map, the
housing areas can be visualized in a comprehensive style as
shown in Fig. 15.

Figure 15. Mapping with template in HiGIS

The resulted map is made from a template. A map

template is described by cartographic script. When mapping
with template, a new map is forked from an existing
template. Then the layers of the new map are replaced
according to result data. In order to generate a map as the
same style as a template, the properties of layers in the new
map must be consistent with those in template, which means
the number of layers, order of layers, and attribute names of
each layer must be the same.

VI. EXPERIMENT AND RESULTS

A. Experimental environment and datasets

The experiment environment was an IBM SMP cluster
with 32 server nodes running RedHat Enterprise Linux 6.4.
Each server node consists of two Intel Xeon (X5540
2.4GHz) six-core CPUs and 24 GB DDRIII memory. The
role assigned to server nodes is: four nodes for data service
(d01-d04), four nodes for visualization service (v01-v04),
and 28 nodes for computing service (c01-c28). Test datasets
are listed in Table III. Geometry features are stored in
PostGIS. Raster data are stored in GeoTiff files on 24 shared

disks (3TB each disk) which is used as storage array.
General Parallel File System (GPFS) is used for sharing test
data between compute nodes, and configured with default
parameters. The network configuration is 10GigE.

TABLE III. TEST DATASETS
Notation Type Description

Data1 Raster Dimension: 31,250*34,472, cell depth: 1 Byte
Data2 Raster Dimension: 16,160*17,128, cell depth: 2 Byte
Data3 Raster Dimension: 8,290*9,598, cell depth: 2 Byte
Data4 Feature Road network of Beijing, feature count: 71,862
Data5 Feature Road network of Beijing, feature count: 72,308
Data6 Feature Point data of Beijing, feature count: 251,282
Data7 Raster DEM data, Dimension: 30,000*30,000
Data8 Raster DEM data, Dimension: 6,000*6,000

For the purpose of parallel performance comparison to
ArcGIS, we deploy HiGIS and ArcGIS 10.2 Desktop in the
same hardware environment. The server is a SuperMicro
server with four Intel Xeon E5-4620 processors, clocked at
2.2 GHz, and 512 GB memory of DDR3-1333. ArcGIS is
installed on Windows 7.

B. Parallel performance

In order to measure the parallel performance of workflow,
the jobs are submitted in sequential and parallel mode in
HiGIS. The case study of locating the house is used to
examine the parallel performance. Test datasets are Data4 to
Data6. The results are listed in Table 4. It is clear to see that
Buffer1, Buffer2 and Buffer3 are simultaneously started.
When Buffer1 is ended, computing nodes c01, c02 and c03
are released for Overlay1. The same situation can be seen in
Overlay2 and Visualization. In parallel mode, the runtime of
all jobs is 1 minutes 18 seconds. While in sequential mode,
the runtime of all jobs is 2 minutes 22 seconds. The
experimental results are similar in IBM SMP cluster and
SuperMicro server. When using ArcGIS ModelBuilder to
submit the same workflow with the same datasets, the
results are gained after 2 hours running. Because spatial
analysis operations are parallelized and the workflow is also
scheduled by higine in parallel, there is two-level parallel
processing in HiGIS. Thus, it shows the parallelization
performance of HiGIS through the case study.

TABLE IV. PARALLEL PERFORMANCE OF WORKFLOW

Job Node Start End Runtime(s)
Buffer1 c01-c03 00:00:00 00:00:21 21
Buffer2 c04-c07 00:00:00 00:00:25 25

Overlay1 c01-c03 00:00:25 00:00:47 22
Buffer3 c08-c10 00:00:00 00:00:23 23

Overlay2 c01-c03 00:00:47 00:01:15 28
Visualization v01-v03 00:01:15 00:01:18 3

Parallel I/O performance is evaluated by measuring the
MB/s to read and write data from/to a raster file
with/without file view. The data is partitioned by block-wise
decomposition. The block size is depended on the number of
processes. In the experiment, we compared the performance
to the method without file view mechanism, and also the
GDAL-2P strategy [20]. As Fig. 14 shown, if parallel
processes access the data file (Data1) without file view, I/O
performance will be significantly lower than the aggregate
request method using file view. Two-phase I/O strategy
GDAL-2P performs better but still lower than file view
method thanks to communication costs. When increasing the
number of processes, without file view, parallel I/O

 130

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 09:19:33 (UTC) by 3.92.96.247. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

performance will decrease with the increase of the number
of processes. When the number is less than 32, I/O
performance remained stable using file view. It can be
observed that the increase in performance up to 6 processes
followed by a decline with file view. This is because when
the number of processes is increasing, the costs they take to
schedule, communication and other system overhead also
increased. The more number of processes is used, said the
size of the blocks for decomposition is smaller. Therefore,
the experimental results also reflect the influence of block
size on the overall performance.

The parallel I/O performance shows some correlation to
the size of data as Fig. 16-17. Generally speaking, the larger
the data size, I/O performance is better. Meanwhile, when
increasing the number of processes, dip in performance is
later seen in larger data.

Figure 16. Performance comparison of different I/O methods

Figure 17. Performance comparison between different datasets

0

50

100

150

200

1 4 8 16 24

Co
m

pu
ti

ng
 T

im
e(

s)

Number of Processes

HiGIS

ArcGIS

Figure 18. Performance of parallel slope analysis on Data7

0

2

4

6

8

10

1 4 8 16 24

Co
m

pu
ti

ng
 T

im
e(

s)

Number of Processes

HiGIS

ArcGIS

Figure 19. Performance of parallel slope analysis on Data8

In Fig. 18-19, there are the parallel performance
comparisons of slope analysis between HiGIS and ArcGIS.
The test datasets are Data7 (Fig. 18) and Data8 (Fig. 19). It
can be observed that despite the size of test data, HiGIS

outperforms ArcGIS when the number of processes is more
than 4. ArcGIS Desktop supports multiple processors/cores
with parallel processing, and performs extremely better than
HiGIS when using 1 CPU and 4 processes especially for
large size data (Data7). It suggests that ArcGIS Desktop can
get the exclusive use of one CPU. However, when
increasing the number of processes, ArcGIS performs
comparably. HiGIS allows users to process geocomputation
tasks cross multiple processors. By doing so, we can achieve
more than 40% parallel efficiency for slope analysis.

C. Concurrency performance

Tsung (http://tsung.erlang-projects.org/) is a distributed
load testing tool. Tsung’s main strength is its ability to
simulate a huge number of simultaneous users from a single
machine. We can easily set-up and maintain an impressive
load on a server. Tsung 1.4.2 is used to test the scalability
and performance of core services of HiGIS. We tested the
load and stress of hiart, hipo, and higine. The HTTP
response results of HiGIS are shown in Fig. 20-23.

nu
m
be

r/
se
c

unit = 1000sec
0 1 2 3 4 5 6 7 8

700

600

500

400

300

200

100

0

200
500

Figure 20. Concurrency test for meta data service of hipo

nu
m
be

r/
se
c

unit = 1000sec
0 1 2 3 4 5 6 7 8

800

700

600

500

400

300

200

100

0

502
200
500

Figure 21. Concurrency test for spatial data service of hipo

nu
m
be

r/
se
c

unit = 1000sec
0 1 2 3 4 5 6 7 8

600

500

400

300

200

100

0

200

Figure 22. Concurrency test for hiart

The successful metadata query requests are more than 400
per second, and successful spatial query requests are more
than 700 per second. Successful cartography requests are
more than 400 per second, Average response time for 20

 131

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 09:19:33 (UTC) by 3.92.96.247. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 3, 2015

 132

users to submit 2000 tasks is less than 0.1 second. These
results prove that HiGIS is efficient and scalable.

[5] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz,
"Hadoop gis: a high performance spatial data warehousing system
over mapreduce," Proc. VLDB Endow., vol. 6, no. 11, pp. 1009-1020,
2013. doi: 10.14778/2536222.2536227

ti
m
e(
se
c)

number of procedures
0 500 1000 1500 2000 2500

0.25

0.20

0.15

0.10

0.05

0

user 0
user 1
user 2
user 3
user 4
user 5
user 6
user 7
user 8
user 9
user 10
user 11
user 12
user 13
user 14
user 15
user 16
user 17
user 18
user 19

[6] X. Guan, H. Wu, and L. Li, "A Parallel Framework for Processing
Massive Spatial Data with a Split-and-Merge Paradigm," Trans. GIS,
vol. 16, no. 6, pp. 829-843, 2012. doi: 10.1111/j.1467-
9671.2012.01347.x

[7] W. Guo, X. Zhu, T. Hu, and L. Fan, "A Multi-granularity Parallel
Model for Unified Remote Sensing Image Processing WebServices,"
Trans. GIS, vol. 16, no. 6, pp. 845-866, 2012. doi: 10.1111/j.1467-
9671.2012.01367.x

[8] L. Liu, A. Yang, L. Chen, W. Xiong, Q. Wu, and N. Jing, "HiGIS -
When GIS Meets HPC," In Proc. 12th Int. Conf. on GeoComputation,
WuHan, 2013. [Online]. Available:
http://www.geocomputation.org/2013/papers/26.pdf

[9] J. Liu, A.X. Zhu, Y. Liu, T. Zhu, and C.Z. Qin, "A layered approach
to parallel computing for spatially distributed hydrological modeling,"
Environ. Model. Softw., vol. 51, no. 0, pp. 221 - 227, 2014. doi:
10.1016/j.envsoft.2013.10.005

Figure 23. Concurrency test for higine

VII. CONCLUSION

In this paper, we propose a framework based on HPC and
CSP to enable quick building of decent geographical
information applications in the web. The prototype system
HiGIS attempts to reduce the complexity when building
efficient solutions to complex geographical problems.
Taking house location calculation as a use case, we
demonstrate that HiGIS can easily build a spatial analysis
application integrated with a full stack of GIS tools like
spatial analysis algorithms, geographical data management,
spatial query and cartography, which take full advantages of
high performance computing. The experimental results show
both stability due to CSP and efficiency due to HPC, which
proves the feasibility of the system.

In the near future, the visualization and processing
component of HiGIS will be more compatible with various
types of data, e.g. spatio-temporal data, 3D data and user-
defined data. Spatial database in main memory is considered
to improve parallel I/O for geometry features data. In
addition, an open development framework including
mapping, processing and data access API will be provided
to enable geoapp development based on HiGIS, which will
help form an ecosystem around HiGIS.

[10] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, "A Theory of
Communicating Sequential Processes," J ACM, vol. 31, no. 3, pp.
560-599, Jun. 1984. doi: 10.1145/828.833.

[11] W. Guo, J.Y. Gong, W.S. Jiang, Y. Liu and G. She, "OpenRS-Cloud:
A remote sensing image processing platform based on cloud
computing environment," Sci. CHINA Technol. Sci., vol. 53, no. 1,
pp. 221-230, 2010. doi: 10.1007/s11431-010-3234-y

[12] Q. Chen, L. Wang, and Z. Shang, "MRGIS: A MapReduce-Enabled
High Performance Workflow System for GIS," in Proc. of the 2008
Fourth IEEE Int. Conf. on eScience, Washington, DC, USA, 2008, pp.
646-651. doi: 10.1109/eScience.2008.169

[13] Y. Ma, D. Liu and J. Li, "A new framework of cluster-based parallel
processing system for high-performance geo-computing," In
Geoscience and Remote Sensing Symposium, Cape Town, 2009, vol.
4, pp. IV49-IV52. doi: 10.1109/IGARSS.2009.5417598

[14] T. Yuan, Y. Tang, X. Wu, Y. Zhang, H. Zhu, J. Guo, and W. Qin,
"Formalization and Verification of REST on HTTP Using CSP,"
Electron. Notes Theor. Comput. Sci., vol. 309, no. 0, pp. 75-93, 2014.
doi: 10.1016/j.entcs.2014.12.007

[15] G. Staples, "TORQUE Resource Manager," in Proc. of the 2006
ACM/IEEE Conf. on Supercomputing, New York, NY, USA, 2006.
doi: 10.1145/1188455.1188464

[16] D. Jackson, Q. Snell, and M. Clement, "Core Algorithms of the Maui
Scheduler," in Job Scheduling Strategies for Parallel Processing, vol.
2221, D. Feitelson and L. Rudolph, Eds. Springer Berlin Heidelberg,
2001, pp. 87-102. doi: 10.1007/3-540-45540-X_6

[17] S. Zhang, L. Chen, W. Xiong, "Research on performances of parallel
programming models based on chip multi-processor," in Proc. 2011
Int. Conf. Computer Application and System Modeling, XiaMen,
2011, pp. 2688-2691.

[18] C. Yang, M. Goodchild, Q. Huang, D. Nebert, R. Raskin, Y. Xu, M.
Bambacus, and D. Fay, "Spatial cloud computing: how can the
geospatial sciences use and help shape cloud computing?," Int. J.
Digit. Earth, vol. 4, no. 4, pp. 305-329, 2011.
doi:10.1016/j.cageo.2012.04.021

ACKNOWLEDGMENT

We deeply appreciate the supports from other research
groups in China including Institute of Geographic Sciences
and Natural Resources Research in C.A.S., Nanjing Normal
University, Wuhan University, Nanjing University and
North East University, for their contribution to the HiGIS
tool repository.

[19] L. Ouyang, J. Huang, X. Wu, and B. Yu, "Parallel Access
Optimization Technique for Geographic Raster Data," in Geo-
Informatics in Resource Management and Sustainable Ecosystem,
vol. 398, F. Bian, Y. Xie, X. Cui, and Y. Zeng, Eds. Springer Berlin
Heidelberg, 2013, pp. 533-542. doi: 10.1007/978-3-642-45025-9_52

[20] C.Z. Qin, L.J. Zhan, and A.X. Zhu, "How to Apply the Geospatial
Data Abstraction Library (GDAL) Properly to Parallel Geospatial
Raster I/O?," Trans. GIS, vol. 18, no. 6, pp. 950-957, 2014. doi:
10.1111/tgis.12068.

REFERENCES
[1] A. G. Aly and N. M. Labib, "Proposed Model of GIS-based Cloud

Computing Architecture for Emergency System," Int. J. Comput. Sci.,
vol. 1, no. 4, pp. 17-28, 2013.

[21] Y. Zou, W. Xue, and S. Liu, "A case study of large-scale parallel I/O
analysis and optimization for numerical weather prediction system,"
Future Gener. Comput. Syst., vol. 37, no. 0, pp. 378-389, 2014. doi:
10.1016/j.future.2013.12.039 [2] J. de la Torre, "Organising geo-temporal data with CartoDB. an open

source database on the cloud," In Proc. Biodiversity Informatics
Horizons, Rome, Italy, Sept. 2013

[22] R. Thakur, W. Gropp, and E. Lusk, "Optimizing noncontiguous
accesses in MPI-IO," Parallel Comput., vol. 28, no. 1, pp. 83 - 105,
2002. doi: 10.1016/S0167-8191(01)00129-6 [3] S. Wang, "CyberGIS: blueprint for integrated and scalable geospatial

software ecosystems," Int. J. Geogr. Inf. Sci., vol. 27, no. 11, pp.
2119-2121, 2013. doi: 10.1080/13658816.2013.841318

[23] C. Heipke, "Crowdsourcing geospatial data," ISPRS J. Photogramm.
Remote Sens., vol. 65, no. 6, pp. 550-557, 2010. doi:
10.1016/j.isprsjprs.2010.06.005[4] I.H. Kim and M.H. Tsou, "Enabling Digital Earth simulation models

using cloud computing or grid computing-two approaches supporting
high-performance GIS simulation frameworks," Int. J. Digit. Earth,
vol. 6, no. 4, pp. 383-403, 2013. doi: 10.1080/17538947.2013.783125

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 09:19:33 (UTC) by 3.92.96.247. Redistribution subject to AECE license or copyright.]

