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1Abstract—Image processing systems based on 

neighborhood operations i.e. Neighborhood Processing Systems 
(NPSs) are computationally expensive and memory intensive. 
Field Programmable Gate Array (FPGA) based parallel 
processing architectures accelerate calculations of NPS 
provided if they have fast external-memory data access by 
using on-chip data buffers. The conventional data buffers 
namely full Row Buffers (RBs) implemented with FPGA 
embedded memory resources i.e. Block RAMs (BRAMs) are 
resource inefficient. It makes overall NPS implementation on 
FPGA expensive and infeasible especially for resource-
constraint environment. This paper presents compact and 
efficient image buffering architecture with an additional 
feature of pre-fetching. Proposed design fits in minimal 
BRAMs by using small yet efficient Main Control Unit (MCU). 
Its optimal multi-rated BRAM data accessing technique 
reduces BRAM cost to provide multiple pixels of pre-fetched 
data/clock to NPS in a fixed pattern. It controls and 
synchronizes BRAMs operations to attain throughput of 1 
clock/pixel. Thus our buffer architecture with 66% reduction 
in BRAM requirement as compared to conventional RBs is 
capable to support buffering for real time systems with high 
resolution (1080x1920@62fps). Therefore proposed buffer 
architecture can suitably replace conventional RB in any real 

me NPS application. 
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I. INTRODUCTION 

Neighborhood operations based image pre-processing is 
frequently used to obtain high quality output images. These 
neighborhood operations use two dimensional (2D) 
structuring element i.e. filter kernel which i s  shifted pixel-
wise over the entire image. For every shift operation, the 
input  image pixels covered by the filter kernel are 
processed by mathematical operation to calculate an output 
pixel. The overall operation requires high computational 
power and extensive extern

e image processing [1]. 
FPGA based parallel processing architectures exploit data 

and instruction level parallelism of these neighborhood 
operations to accelerate its calculation [2]. However while 
accelerating performance of NPS on FPGA platform, high 
data transfer rate between NPS and external memory 
becomes bottleneck as fetching redundant neighborhood 
data from external

ow process [3].  
For this reason, it is essential to limit the data traffic 

between FPGA based NPS and external memory by 

NPS a rapid access to on-chip buffered data and to re-use 
this data as many times as required by NPS without using 
external memory bandwidth [4,5]. Therefore on chip image 
data buffering systems become indispensable for high 
performance FPGA based NPS. 

 

On chip image buffering schemes can be categorized as 
Partial Buffering (PB) schemes and Full Buffering (FB) 
schemes. PB stores only partial input image rows involved 
in current neighborhood operation in its shift registers to 
calculate current output pixel. It requires multiple  pixels  
from external memory for every next output pixel 
calculation,  to keep pixel throughput rate of 1 clock/pixel 
[5,6]. This scheme occupies few FPGA resources for 
buffering partial image data at the expense of increased 
external memory bandwidth requirement.  

Second category of image buffering scheme is FB. It 
stores full rows of input image involved in current 
neighborhood operation in its RBs to calculate current 
output pixel [7]. A single pixel is required from external 
memory for every next pixel calculation to keep pixel 
throughput rate of 1clock/pixel. With efficiency of 1 
clock/pixel and external memory bandwidth requirement of 
1, FB is more appropriate for real time applications at the 
expense of large amount of FPGA resources required for full 
rows buffering in its RBs. These FPGA resources for 
implementing RBs are even higher than resources for 
implementing rest of the  system (i.e. arithmetic unit for 
neighborhood operation) [7], which makes overall NPS 
implementation on FPGA very expensive.  

Therefore reducing implementation cost of RB in terms of 
FPGA area is of great interest to reduce NPS overall 
implementation cost for compact yet high performance 
FPGA based NPS. In this paper, we present a compact and 
efficient image buffering scheme, which uses lesser FPGA 
embedded memory resources as compared to conventional 
RBs to keep pixel throughput rate of 1clock/pixel. The good 
balance between on-chip memory resource utilization and 
overall system performance makes it suitable for any real 
time NPS application with high spatial and temporal 
resolution (1080x1920@62 fps). 

Rest of the paper is organized as follows. Section II 
discusses related work. In Section III we present our 
proposed efficient full image buffering architecture for NPS. 
Section IV declares results and comparison with up to date 
work. Performance analysis of our design is presented in 
Section V. Section VI concludes the work. 
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II. RELATED WORK  

On-chip (FPGA) data buffering is essentially required 
along with NPS to accelerate its performance on FPGA 
platform. A FPGA based PB scheme for single window 
processing was proposed by Bosi et al [5]. While increasing 
NPS kernel size, it costs a sharp increase in external 
memory bus bandwidth requirement in order to keep the 1 
clock/pixel throughput rate. Also, excessive data transfer 
from external memory per output pixel is a slow process that 
limits overall operating frequency of NPS. To improve data 
reuse capability and lowering bandwidth requirement of PB, 
different variants of PB were proposed [2,8]. However to 
scale PB for large kernel size or image data,  fixed and 
limited bandwidth of external memory device becomes a 
bottleneck [9]. Due to above mentioned limitations, PB is 
not recommended for real time image processing 
applications [9,10].  

For real time applications, FB is more appropriate 
buffering scheme but at the cost of additional memory 
resources. Its external memory bandwidth requirement is 1 
pixel/clock to keep the throughput rate at 1clock/pixel. For a 
RxC NPS, it buffers R-1 full rows of input image in RBs by 
using Configurable Logic Blocks (CLBs) as chain of shift 
registers [5]. This results in wastage of considerable amount 
of CLBs to implement large memory functions and degrades 
overall system performance. Liang et al [6] suggested using 
BRAMs instead of CLBs for implementing RBs to spare 
significant number of CLBs for rest of the logic circuitry. 
Wiatr et al [7] implemented FPGA based convolver and 
calculated that number of CLBs required to implement RBs 
is even more than CLBs required for implementing rest of 
the system i.e. convolver (NPS). Therefore they 
recommended BRAM based RBs. Moore et al [11] 
strengthened the concept of [6,7] by investigating 
performance and area requirement of FB scheme using 
combination of CLBs (as Shift registers) and BRAMs. They 
concluded that BRAM is more suitable to implement RBs in 
FB instead of CLBs based shift registers.  

All the latest implementations of NPS based real time 
systems follow the same trend for row buffering by using 
BRAMs as standard FPGA primitive. These 
implementations range from medical image processing [12-
16] to smart cameras  [10,17] and stereo vision [18] etc. In 
all of these RB implementations, BRAMs requirement 
increase linearly with increasing NPS kernel size, where 
each input image row requires a separate BRAM for 
buffering.  Secondly most frequently used image sizes are 
ranging from 320x256 to 640x480 [15,17,18]. Thus each 
row for buffering occupies only (320*8) =2.5kbits to 
(640*8) 5kbits of BRAM, which is quite less than actual 
capacity of latest available BRAM [19]. Therefore in most 
of these implementations, almost 80% capacity of BRAM 
remains unutilized. This inefficient BRAM utilization is a 
major contributing factor for increasing implementation cost 
of NPS on FPGAs as 70% to 60 % of total  resources are 
required  for implementing its RBs  and only 30% to 40% of 
total resources are required for its arithmetic unit (to 
perform neighborhood operation) [7].  

Up till date very little work is reported in open literature 
to optimize RB implementation on FPGA. Bailey [20] 
proposed a pipelined based BRAM architecture for RB to 

enhance operating frequency of their NPS architecture.  
They use register as pipeline stage at the input and output in 
their BRAM based RBs. This results in improving the 
impact of its clock to out timings which in turns increases 
the overall frequency of their design to 923 MHz on Virtex-
5. However it is evident from Virtex-5 data sheets [21] that 
frequency of BRAM cannot exceed 550 MHz therefore 
reported frequency of BRAM based design is practically not 
possible. This optimization has still underutilized the 
potential of BRAMs. Thus using these conventional 
inefficient BRAM based RBs [10,12-14,18] for NPS not 
only result in poor resource utilization but also increase 
power consumption. Therefore optimizing resource 
(BRAM) requirement for RBs is of great interest to reduce 
NPS overall implementation cost for compact yet high 
performance FPGA based NPS. 

III. OUR FPGA BASED EFFICIENT IMAGE BUFFERING 

ARCHITECTURE 

This work proposes a compact and efficient image 
buffering architecture with an additional feature of pre-
fetching data. We have chosen 7x7 convolution filter (as 
NPS) and 8 bit precise grey scale image of size 128x128 as 
a case study to explain the concept of our buffering 
architecture. The design of proposed buffering architecture 
is shown in Figure 1. It comprises of two main parts i.e. 
BRAMs (BRAM1 and BRAM2) as memory elements and 
MAIN CONTROL UNIT (MCU) as buffer and pre-fetch 
controller unit. Both BRAMs are working alternately for 
image pre-fetching and image buffering operations while 
MCU serves to control both BRAMs and provides multiple 
pixels of pre-fetched data per clock to NPS in a fixed pre-
defined pattern with an efficiency of 1 clock/pixel.  

For simplicity, MCU is further divided into four sub 
modules. PREFETCH CONTROL (PRC), BUFFER 
CONTROL (BUC), DATA SYNCHRONIZATION (DAS) 
and BRAM SELECTOR (BRS). Each sub module performs 
a specific task.  PRC module controls the pre-fetching of 
image data from external memory (i.e. BRAM write 
operation) while BUC module reads buffered data (i.e. 
BRAM read operation). DAS synchronizes and regulates the 
flow of buffered data to convolution filter and BRS 
alternately selects BRAM 1 and BRAM2 to maintain the 
throughput of 1.  

The design is initiated by Start signal which enables PRC 
module and buffer architecture starts fetching data from 
external memory  in segments of 32 Kb (to fully utilize 
single 32 Kb BRAM [19]) and writes  it onto BRAM1. Once 
first segment of 32Kb image data is completely written on 
BRAM1, it generates a signal at point 1 to enable BUC 
module as shown in Figure1. BUC module starts reading 
data from BRAM1 at four times higher clock speed than rest 
of the system clock CLK in column scan order. It reads total 
8 pixels from true dual port BRAM1 per CLK cycle and 
temporarily stores these premature output pixels to DAS 
module. It comprises of eight output registers (R0-R7) 
operating at twice the system clock speed to hold premature 
output data of BRAM 1 and delivers 7 out of 8 valid data 
pixels to convolution filter simultaneously per CLK cycle as 
shown in Figure 1. At the same time when BUC is reading 
data from BRAM1, PRC module starts fetching second 
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Figure 1. Our Compact and Efficient Image Buffering Architecture on FPGA 

 

segment of 32 Kb image data and writes on BRAM2. 
Alternate selection of BRAM1 and BRAM2 for data 
fetching and buffering operations is done by BRS module 
for a seamless data movement to NPS, keeping pixel 
throughput rate of 1. The process continues until entire 
image is accessed by convolution filter for processing. 

In order to further elaborate working of our buffering 
architecture, in next section we will individually discuss the 
working of each sub module of MCU in more detail. 

A. PRE-FETCH CONTROL (PRC) 

PRC module fetches packed data [6] from external 
memory (i.e. generally available in 32 bit wide data port [9]) 
and writes on the BRAM. With packed data fetching (should 
be ≥2 pixels), latency of data fetching operation remains less 
than latency of data buffering operation which in turn results 
seamless data movement to convolution filter at the 
throughput of 1 clock/pixel.  

In order to write the packed data (4 pixels per CLK) on 
BRAM, we configure it with different write and read port 
widths [19] i.e. 32-bits width for write and 8-bits for  read 
port. With this BRAM configuration, the PRC module 
writes same amount of data from external memory in lesser 
clock cycles as compared to conventional fixed port widths 
approach which results in data fetching latency less than 
data buffering latency without using any extra logic. 
Detailed working of PRC is shown in Figure 2. It mainly 
consists of two components, E_MEM_ADDR and 
W_ADDR_BRAM. They generate the external memory 
addresses and the BRAM write addresses respectively. 

Upon initialization by Start signal, E_MEM_ADDR 
generates external memory addresses starting from its first 
location at point 2. At the same time, W_ADDR_BRAM 
generates consecutive addresses for port A of BRAM at 
point 3. Once 32 rows are completely fetched from the 
external memory, it stops first pre-fetching operation for 

BRAM1 and will start the second pre-fetching operation for 
BRAM2. 

In first pre-fetch operation, PRC module loads BRAM 1 
with 32Kb image pixel data (4096 pixels i.e. X1 to X4096) 
starting from 1strow (pixel X1-X128) to 32ndrow (Pixel X3969-
X4096)  of the input image. Pixels processing requirement of 
convolution filter is shown in Figure 3. It shows that for 
processing the pixel X3712 (i.e. last pixel of 29th row) it 
requires its total 49 neighborhood pixels that are available 
from the 26th row (X3201 to X3328) till 32ndrow of image. This 
data is already available in BRAM1. Now for processing the 
next pixel i.e. X3713(i.e. first pixel of 30th row), it requires 
it’s another 49 neighborhood pixels from 27th row (X3328 to 
X3456) till 33nd(X4097 to X4224) row of image as shown in 
Figure 3. However 33rd row of the image data is not 
available in first 32 Kb data segment stored in BRAM 1 so 
at this point PRC module performs the second pre-fetch 
operation to acquire the next segment of input image which 
can provide neighborhood pixels required for processing of 
the pixel X3713 and onwards. 

Therefore for second pre-fetch operation, initial value of 
the E_MEM_ADDR is tracked and resets to first memory 
location of 27th row of input image to pre-fetch external 
memory data from 27th row till 58th row (X7297 to X7424) and 
writes on BRAM2. With E_MEM_ADDR, 
W_ADDR_BRAM and supporting circuitry, the PRC 
module continues pre-fetch operation alternately for both 
BRAMs (1 and 2) up till the last pixel of input image. 

B. BUFFER CONTROL MODULE (BUC) 

After writing image data to BRAM1 by PRC module as 
discussed in previous section, now the BUC module reads 
this stored data in a pre-determined pattern from each port 
of BRAM1. The BUC module reads BRAM1 at CLK4 
(4*CLK) and output 7 buffered image pixels per CLK in 
column wise pattern. 
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This module has a symmetrical circuitry to generate read 
addresses for both ports of BRAM1 (i.e. A and B). Its left 
portion generates addresses for port A while right portion 
generates addresses for port B. Right portion of symmetrical 
circuitry mainly comprises of the read address generator 
RD_ADDR_B for port B of BRAM1 controlled by 
COL_SEL_2 to read pixels in a required pattern from 
BRAM1. Its detailed working is shown in Figure 4.  

Upon initialization, both the left and right portions start 
working simultaneously, RD_ADDR_A of the left portion 
starts reading BRAM1 data as a set of four stored rows 
(Row 1,3,5,7 of input image) from port A in column scan 
order and delivers this premature data to output registers R0- 
R3. At the same time in right portion, RD_ADDR_B starts 
reading BRAM1 data as a set of four stored rows (Row 

2,4,6,8 of input image) from port B in column scan order 
and delivers this premature data to output registers R4-R7. 
In right half of symmetrical circuitry, RD_ADDR_B is 
controlled by COL_SEL_2 to generate addresses of each set 
of rows exactly twice in column scan order. It is clear from 
Figure 5 that by reading each set of rows exactly twice and 
swapping the output by using SWP_DATA  among output 
registers R0-R3 and R4-R7; BUC module delivers every 
input row, pixel by pixel to each 1D convolution filter and 
accomplishes the convolution operation successfully.  After 
completely reading the first set of rows (Row 2,4,6,8 of 
input image) twice, RD_ADDR_B starts reading the second 
set of rows (Row 4, 6,8,10 of input image) and continues the 
same process till last set of rows. 

 

 
Figure 2.  Pre-Fetch Control module (PRC) 

 
 

 
Figure 3. A 32 Kb image segment buffered in a single BRAM 
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Figure 4. Buffer Control Module (BUC) 

 
 
 

 
Figure 5.  BRAM data output flow to 2D Convolution filter 

 
 

Simultaneously left portion of symmetrical circuit 
performs the similar operation in parallel for port A of the 
BRAM1 by using COL_SEL_1, RD_ADDR_A and 
SWP_DATA. In this way BUC module reads all the pixel 
data from BRAM1 at CLK4 in column scan order and reuses 
this data as many times as required by the 2D convolution 
filter without using external memory bandwidth. 

C. DATA SYNCHRONIZATION (DAS) 

As discussed in  above section, BUC reads the buffered 
pixels from BRAM at 4 times higher clock speed than the 
system clock CLK i.e. CLK4 and delivers the output pixels 
to convolution filter which is operating at a different clock 
speed i.e. at system CLK speed. The output pixels data of 
BRAM at CLK4 is premature with respect to CLK. 
Therefore it is necessary to properly hold and synchronize 
BRAM1 output for its validity for a complete CLK cycle 

and it’s on time availability to convolution filter. For this 
reason, we deploy DAS module to balance the system. It is 
comprised of eight intermediate registers R0-R7 as shown in 
Figure 1. These registers are working at intermediate clock 
speed i.e. CLK2 (2x of CLK). They ensure pixels validity for 
a complete CLK cycle and it’s on time availability to 
convolution filter. 

Table I clearly shows that DAS completely synchronizes 
timings of output pixels from BUC module and keeps it 
valid for a complete CLK cycle. At first positive edge of 
CLK4, first output pixel P n-n of port A is stored in R0 at 
positive CLK2 cycle and negative CLK cycle. At second 
positive edge of CLK4, second output pixel Pn-n+1 of port A 
is stored in R1 at negative clock cycle of both  CLK2 and 
CLK . At third positive edge of CLK4, third output pixel Pn-

n+2 of port A is stored in R2 at positive clock cycle of  both 
CLK2 and CLK similarly at forth positive edge of CLK4,
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TABLE I. OUTPUT PIXELS SYNCHRONIZATION 
 
 

BRAM 
Port 

Output 
Registers 

CLK 
(Convolution 
Filter Clock) 

CLK2 
(Output Register 

Clock) 

CLK4 
(BRAM Read 

Clock) 

Valid Output 
Pixel Column – Row 

R0 0 1 +ve edge Pixel n-n 

R1 0 0 +ve edge Pixel n-n+1 
R2 1 1 +ve edge Pixel n-n+2 

 
Port A 

R3 1 0 +ve edge Pixel n-n+3 
R4 0 1 +ve edge Pixel n-n+4 
R5 0 0 +ve edge Pixel n-n+5 
R6 1 1 +ve edge Pixel n-n+6 

 
Port B 

R7 1 0 +ve edge Pixel n-n+7 

 
 
 

 
Figure 6.  Selection of BRAMs (1 and 2) for Pre-fetching and Buffering Operations 

 
forth output pixel Pn-n+3 of port A is stored in R3 at 

negative CLK2 cycle  and positive CLK cycle. The same 
pattern for four output pixels Pn-n+4 to Pn-n+7 from port B will 
be followed for registers R4-R7. In this way, 7 out of 8 valid 
pixels data are delivered to the convolution filter and this 
sequence continues for all output pixels from BUC module. 

D. BRAM SELECTOR (BRS) 

Our compact and efficient buffering design successfully 
performs pre-fetching and buffering operations for BRAM1 
and BRAM2 alternately as mentioned in previous sections. 
As soon as BRAM1 completes first pre-fetching operation, 
it starts first buffering operation to deliver 7 valid pixels 
data per CLK to the convolution filter. Meanwhile BRAM2 
pre-fetches data for next buffering operation which will be 
available to convolution filter without any delay to attain 
throughput of 1 clock/pixel. 

We deploy BRS module that balance both pre-fetching 
and buffering operations between BRAM1 and BRAM2 to 
continuously deliver pixel data to convolution filter without 
any delay as shown in Figure 6. While BRAM1 delivers 7 
pixel data per CLK to convolution filter, it selects BRAM2 
for the second pre-fetching operation. When the convolution 
filter completely process buffered data of BRAM1, it selects 
BRAM2 for second buffering operation which  further 
continues data delivery to convolution filter without second 
pre-fetching delay. Meanwhile it selects BRAM1 for third 
pre-fetching operation as shown in Figure 6. In this way our 
system completely hides pre-fetching latency and provides 
seamless data to 2D convolution filter to attain an ideal 

throughput of 1 clock/pixel. 

IV. RESULTS AND COMPARISON 

This work has presented a compact and efficient buffering 
architecture for real time NPS. A 128x128 image and a 7×7 
window were considered as a case study to describe 
effectiveness and efficiency of our buffer design concept. 
The design was tested and evaluated on a new generation of 
low power Atrix-7 device (Xc7A200t-3fbg484). All the 
coding, testing and validation has been done using Xilinx 
Integrated Software Environment (ISE) 14.6. 
 

TABLE II. IMPLEMENTATION RESULTS OF CASE STUDY ON 

ATRIX7 
Resources Used 

Area (Slices + BRAM) 131+2 

Total Power/Frame (m Watt) 0.038 

Dynamic Power/Frame (m Watt) 0.019 

Frequency (MHz) 127 

Frame Rate (fps) 7751 

 
Table II shows the results of our efficient buffer design. 

The design utilizes only 2 BRAMs (using it to its full 
capacity of 32Kb) with minimal overhead of supporting 
circuitry i.e. Main Control Unit (MCU) of just 131 Slices. 
With reasonable operating frequency of 127 MHz, it 
occupies minimal memory resources for RBs reported to 
date with an additional advantage of very low power 
consumption of 0.038 m W per frame @ 7751 fps. 
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TABLE III. COMPARISON OF OUR WORK WITH ROW BUFFER (RB) IMPLEMENTATIONS IN NPS 

Architecture Work Kernel Size Buffering Scheme BRAM Frequency (MHz) 

2D Convolver [22] 3x3 RB 2 118.5 

[16] 7x7 RB 6 216 Morphology 
[20] 7x7 RB 6 923** 

2D Convolver Proposed 7x7 C&EB 2 127 

 
 

TABLE IV.  COMPARISON OF BUFFERING SCHEMES ON ATRIX7 FOR OUR CASE STUDY 
 Standard Parameters Additional Parameters 
 Throughput 

(clock/pixel) 
Bandwidth 
(pixel/clock) 

Memory 
Resources 
(BRAMs) 

Frequency 
(MHz) 

Power 
Consumption 

(mW) 
Row Buffers 1 1 6 397 15.8*6=94.8 
Our Design 1 ≥2 2 127 15.8*2=31.6 
%Reduction - - 66% - 66% 

 
Table III compares our results with recent reported 

implementations of RBs for NPS used in different real time 
image processing applications [16,20,22]. It shows that all 
reported implementations follow the same conventional 
trend of R-1 rows buffering for RxC NPS, where each row 
was buffered in a separate BRAM. Our efficient buffer 
design significantly reduces linear requirement of BRAMs 
for full image buffering as compared to conventional RB 
implementations reported up till date.  

In addition to memory resource utilization in terms of 
number of BRAMs, few more standard parameters are also 
important for complete and true performance evaluation and 
comparison of buffer designs such as system throughput in 
terms of clock/pixel and  external memory bandwidth in 
terms of pixels/clock [2,23]. Also, to evaluate feasibility of 
these buffer designs in real time systems especially in 
emerging power constraint applications such as battery 
operated imaging devices, few additional parameters are 
also critical such as operating frequency [24] and power 
consumption [25] to determine fps and battery life 
respectively.  

It is evident from up to date literature review [16,20,22] 
that all of these performance parameters except number of 
BRAMs, are either not reported or specific to their overall 
image processing architecture and not separately mentioned 
for row buffering unit only. Secondly performance of few 
parameters varies from one FPGA device to another and it's 
not fair to compare them directly for different FPGA 
devices. Therefore to ensure equivalent functionality for a 
fair comparison of theses performance parameters, we 
implemented conventional RBs for our case study along 
with our design on same targeted device i.e. Atrix-7 
(Xc7A200t-3fbg484) and compare both results in Table IV.  

First three columns of Table IV compare standard 
parameters. For our case study (i.e. 7x7 NPS and a 128x128 
image) conventional RBs use 6 BRAMs to buffer 6 rows 
with partial utilization of each BRAM but our buffer design 
utilize only 2 BRAMs with 100 % utilization of each 
BRAM. It clearly shows that effective utilization of BRAM 
in our buffer design saves 66% BRAMs and at the same 
time maintains an ideal throughput of 1 cycle/pixel.  

Additional parameters shown in last two columns of 
Table IV are critical for real time systems in power 
constraint environment where we have to keep the balance 
between power and frequency. They should remain within a 

permissible range to deploy the design in real time, battery 
operated and high frame rate systems. Therefore these 
additional parameters need extra optimization efforts. 
Unlike to previously reported results without or with very 
little effort [20] to optimize buffer designs for these 
additional parameters i.e. frequency or  power,  we 
optimally implemented buffer design for these parameters 
by configuring embedded memory resources (BRAM) with 
their maximum performance and also by efficiently map the 
design onto the FPGA device to reduce critical paths of 
overall design. 

Performance in terms of frequency of our buffer design is 
enhanced by improving the impact of clock-to-out timings 
of output path of BRAM by using its output primitive 
registers. These embedded primitive registers are free of 
hardware cost to  hold output data of BRAM in pipeline 
manner which in turns improves its timing [26] at  the 
expense of an extra clock cycle. This extra clock cycle is 
added as an initial latency of our design. With these 
embedded primitive registers, BRAMs can be operated at 
their maximum frequencies which in turns enhance 
performance of overall buffer design. 

To further enhance design performance, we efficiently 
map the design onto the FPGA device to reduce critical 
paths. Conventionally synthesis tool uses Computer-Aided 
Design (CAD) algorithms that place and route the design 
onto the FPGA device. These mapping algorithms are 
heuristic in nature that shows good results but not guarantee 
the optimal solution [27]. Therefore for optimal solution 
with reduced critical paths, besides using tool efficiently by 
choosing optimal mapping strategy for our design, we also 
manually pack associated   logic across utilized dedicated 
resources of device. This optimization in design placement 
further reduces critical paths of overall design to enhance 
performance. It also reduce occupied slices of our design 
with reduced interconnect usage, which results in further 
reducing its overall power consumption.    

Two above mentioned optimization were applied to both 
conventional and our proposed buffering design for fair 
comparison and results are declared in table IV. It clearly 
shows that our design with minimum BRAM resources 
operates at a frequency of 127 MHz and meets the 
requirement of  full buffering for any real-time high frame 
rate (up to HD @ 62 fps) imaging system. This significant 
reduction in BRAM requirement also reduces down over all 
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power consumption of design which is a main contributing 
factor for any battery operated device. As in our design, 
each BRAM is consuming 15.8mW, so conventional RBs 
with 6 BRAMs consume 94.8 mW, while our design with 2 
BRAMs consumes only 31.6 mW. Hence our efficient 
buffer design  suitably replaces conventional RBs in NPS 
systems for real time image processing applications 
especially in battery operated portable devices to increase 
their performance, portability and battery life.  

V. DISCUSSION 

We have presented a compact buffering solution that can 
replace conventional RBs in any NPS. It uses multi rated 
clocking in conjunction with an efficient addressing 
technique to access fixed pattern of multiple neighborhood 
pixels/clock using single BRAM. This multi rated clocking 
economizes the buffer design on number of BRAMs, at the 
cost of limiting overall system performance. Despite of this 
fact, our design for the case study with performance 
efficiency of HD@62 fps meets the buffering requirement of 
high frame rate systems along with minimum BRAMs 
utilization and the same performance trend applies for any 
NPS with any image and kernel sizes. 

Up to 7x7 kernel size, design does not require any 
modification, but to extend the design for kernel sizes above 
7x7, either we go for higher multiple of clock with same 
BRAM requirement to cater real time systems with low 
frame rate requirement (HD @ < 60 fps) or use small 
multiple of clock with additional BRAMs requirement to 
cater real time systems with high frame rate requirement 
(HD @ > 60fps) as shown in Figure 7. A balance between 
resources (in terms of BRAMs) and overall design 
performance is obtained at 3x and 4x clock rates as shown in 
Figure 7, else these parameters can be selected upon demand 
of targeted image processing application. By keeping 
optimal choice of clock multiple (i.e. 3x or 4x) for a 
balanced system as discussed above, BRAMs requirement 
for our efficient design remains constant for four 

consecutive kernel sizes and subsequently increases by a 
factor of 2 for very next four filter sizes, while BRAM 
requirement for RBs increases linearly with increase in 
kernel size as shown in Figure 8. It clearly shows that our 
efficient buffer design reduces BRAMs requirement as 
compared to RB up to 66% for said case study. This 
percentage of reduction in BRAMs requirement is further 
increased with increase in kernel size which verifies 
effectiveness of our design for larger kernel sizes. 

In addition to kernel size, the proposed buffer design is 
also capable to support any image size for a variety of image 
processing applications. For 128x128 image size (case 
study), the design with single BRAM  buffers 32 rows 
(32*128*8 = 32,768bits) at a time and  can support up to 
7x7 kernel size using optimal multi rated clock. Increasing 
image size up to 512x512, it can buffer 8 rows (8*512*8 = 
32,768bits) at a time and can support up to 7x7 kernel size 
without any modification. However to extend the design for 
image size above 512x512, we  partition the image into 
vertical bands [4,5,28] of W width (W<512) and buffer these 
vertical bands by using same number of BRAMs as a 
narrow but complete image at a time. In this way, memory 
requirement of proposed design will remain same as for 
smaller images and intact its compactness. However few 
additional columns with overlap width 'OW' (OW= Kernel 
size - 1) are required to be fetched on border of each vertical 
band for the complete neighborhood operation, as explained 
in Figure 9. Fetching additional columns will not degrade 
our design performance due to executing buffering and pre-
fetching operations separately by using separate BRAMs. 
Therefore  by partitioning the larger images into vertical 
bands of 128 width (W=128); BRAM requirement and 
system performance in terms of operating frequency of 
proposed buffer design will remain almost same for any 
larger image size and consequently frame rate will decrease 
with increase in image size as shown in Table V. 

 

 
 

Figure 7. BRAM utilization versus Buffer Performance for different Kernel Sizes 
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Figure 8. Comparison of BRAM Requirement for different kernel size

 
Figure 9. Subdivision of MxN image into 4 vertical bands 

 
  TABLE V.  SCALABILITY OF OUR DESIGN FOR DIFFERENT IMAGE RESOLUTIONS (KERNEL SIZE IS TAKEN AS 7X7 

Image Resolution Vertical 
Band  

Width 'W' 

Overlap 
Width 
'OW' 

No. of Vertical 
Band(VB) 

No. of 
BRAMs 

Operating 
Frequency 

(MHz) 

Frame Rate 

128x128 128 0 1 2 127  7751 
256x256 128 6 2 2 127 1937 
512x512 128 6 4 2 127 484 

1024x1024 128 6 8 2 127 121 
1080x1920(HD) 128 6 15 2 127 61 

 

VI. CONCLUSION 

In this paper we propose a compact and efficient image 
buffering architecture for real time NPS with an additional 
feature of pre-fetching. The buffer design utilizes minimal 
BRAMs at the expense of small yet efficient Main Control 
Unit (MCU). The MCU provides multiple pixels of pre-
fetched data per clock to NPS in fixed pattern through its 
optimal multi rated BRAM data accessing technique. It also 
controls and synchronizes BRAMs operations to maintain an 
ideal throughput of 1 clock/pixel. The effectiveness of 
proposed buffering concept is explained with case study 
(7x7convolver and 128x128 image size) however it is not 
limited to this case study and efficiently buffer image data in 
minimum BRAMs for any NPS with any image and kernel 
size. Our proposed architecture reduces BRAMs 
requirement as compared to RB up to 66% for said case 

study. This percentage of reduction in BRAMs requirement 
is further increased with increase in kernel size along with 
significant reduction in power consumption.  At the same 
time, it is capable to support buffering for real time systems 
with high frame rates. Therefore, proposed buffer design 
suitably replaces conventional RB in any NPS system for 
real time image processing applications. Additionally, its 
low power consumption makes it an ideal solution for 
compact and battery operated portable devices.  
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