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1Abstract—Nature-inspired optimization algorithms can 

obtain the optima by updating the position of each member in 
the population. At the beginning of the algorithm, the particles 
of the population are spread into the search space. The initial 
distribution of particles corresponds to the beginning points of 
the search process. Hence, the aim is to alter the position for 
each particle beginning with this initial position until the 
optimum solution will be found with respect to the pre-
determined conditions like maximum iteration, and specific 
error value for the fitness function. Therefore, initial positions 
of the population have a direct effect on both accuracy of the 
optima and the computational cost. If any member in the 
population is close enough to the optima, this eases the 
achievement of the exact solution.  On the contrary, individuals 
grouped far away from the optima might yield pointless efforts. 
In this study, low-discrepancy quasi-random number sequence 
is preferred for the localization of the population at the 
initialization phase. By this way, the population is distributed 
into the search space in a more uniform manner at the 
initialization phase. The technique is applied to the 
Gravitational Search Algorithm and compared via the 
performance on benchmark function solutions.  
 

Index Terms—evolutionary computation, random number 
generation, Sobol quasi random number generation, 
gravitational search algorithm. 

I. INTRODUCTION 

The last two decades witnessed the definitions of various 
methods for solving the optimization problems, as well as 
suggestions regarding the performance improvement of 
existing algorithms. The methods defined for improvement 
can be categorized into three groups, roughly. In the first 
group, a new operator (for improving diversity in the search 
phase) is incorporated into the original code [1-3].  The 
second group of suggestions emphasizes the impact of the 
algorithm’s control parameters [4-6], and the last group aims 
at modifying the algorithm according to the specific 
problem requirements [7-9]. By this way, in some cases, an 
existing disadvantage of the algorithm is removed; in other 
cases, some powerful aspects of the algorithm are enhanced. 

One of the approaches within the first group deals with 
initialization of the algorithm [10]. Generally, heuristic 
methods are population-based methods, where each 
population member (or search agent) is a candidate solution 
[11]. At the beginning of the algorithm, these candidate 

solutions must be distributed in the search space; and 
throughout iterations, the solution is expected to be 
converging to the optimum (or the optima). Therefore, the 
initial position of each member is critical for convergence. 
Thus, the choice of the initial positions in a relatively 
narrow region causes the solution to be trapped into local 
optima; whereas, initialization in a wide region might cause 
poor search capability and slow convergence. 
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Usually, a random distribution of search members is 
performed by means of pseudo-random number generators, 
which are already implemented as libraries in many 
programming languages and embedded in compilers. In this 
study, instead of the conventional pseudo-random number 
generation techniques, random number generation via a 
"low-discrepancy quasi-random number sequence'' will be 
implemented at the initialization of population, and its 
performance will be investigated. In other words, the 
members of the population will be distributed in the search 
space after selection of random positions via a generated 
"low-discrepancy quasi-random number sequence''.  This 
analysis will be performed for a very recently defined 
heuristic method, called the Gravitational Search Algorithm. 

Gravitational Search Algorithm (GSA) [12], which is a 
population based nature inspired heuristic algorithm, is 
proposed by Rashedi et al. in 2009. The motivation of this 
algorithm is based on performing the search process of the 
search agents according to the physical relations 
(particularly, Newton’s Law of Gravity) among these 
agents. Variants of GSA were introduced by the same 
authors for finding the solution of continuous and discrete 
(combinatorial) optimization problems [13]. 

This paper is organized in four sections following the 
introduction. In Section 2, the basic idea beneath the Sobol 
quasi-random sequence is explained and demonstrated 
graphically. Section 3 presents explanation of the 
Gravitational Search Algorithm and its sub-routines to be 
modified. Section 4 gives the implementation results and 
performance comparison of the classical GSA, and the 
modified version. Finally, Section 5 consists of the 
concluding remarks and discussions regarding the outcomes 
and evidences of this study. 
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TABLE I. THE 7 UNIMODAL BENCHMARK FUNCTIONS USED IN OUR EXPERIMENT STUDY, WHERE N IS THE DIMENSION OF THE FUNCTION, S IS THE FEASIBLE 

SEARCH SPACE AND FMIN IS THE MINIMUM VALUE OF THE FUNCTION. 
Test Functions n S fmin 
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II. SOBOL QUASI-RANDOM SEQUENCE 

The idea of the quasi-random sequences comes from the 
problems related to the numerical calculation of the high-
dimension integration. A low-discrepancy point 
set/sequence (quasi-random points/sequence, respectively) is 
a random point set/sequence that is "less random'' compared 
to a pseudo-random number sequence. On the other hand, 
such "less randomness'' might give the benefit for higher 
dimension integration approximation, since this low 
discrepancy sequence samples the high dimension space 
more uniformly compared to pseudo-random numbers. 
When applied to an optimization algorithm, this idea might 
cause an increase at the convergence speed during global 
optimization; and this constitutes the basic motivation 
beneath this study. 

In general, the actual problem arises from the numerical 
integration for high-order integrals.  There exist two 
methods for the numerical integration problem: Monte-
Carlo and Quasi Monte-Carlo. For numerical integration of 
order one, there are some classical integration methods like 
trapezoidal or Simpson’s rules. In multidimensional case, 
this classical integration becomes complicated as the 
Cartesian products of the single dimensional integration 
nodes. That way, as the dimension increases, the number of 
the nodes exponentially increases. To overcome this 
problem, the Monte-Carlo method, which does not depend 
on the dimension, was introduced. Actually, Monte-Carlo 
method is a stochastic method which depends on the 
randomly selected sampling points in the space. Therefore, 
in the Monte-Carlo method, some statistical requirements 
must be satisfied for random numbers in order to obtain 
high-quality results in integration. 

On the other hand, random number generation is 
performed by means of pseudo-random number generators, 
which are already implemented as libraries in many 
programming languages and embedded in compilers. The 
outputs of such generators do not demonstrate uniformity 
despite their quality in terms of randomness. This constitutes 
a drawback during integration since the samples are desired 
to spread uniformly in the integral space in order to obtain 
more precise solution. Hence, the idea of applying quasi 
Monte-Carlo method arises. In current situation, the random 

selected deterministic points; this yields smaller error 
compared to a Monte-Carlo method. The quasi-Monte-Carlo 
integration is given by: 

 

numbers in Monte-Carlo method are replaced with the 
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which contains deterministic points of x1,x2,...,xN. Another 
problem arises from the choice of these deterministic points. 
There exist two approaches in order to obtain these points: 
(a) uniform distribution; alternatively, (b) distribution with 
low-discrepancy (discrepancy is nothing but the measure of 
the deviation from uniform distribution). In general, the 
points shall be selected in such a manner that the numerical 
integration result converges to the precise value; namely: 
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Therefore, the points must be selected in such a way tha

th

ated 
pe

t 
ey are uniformly distributed (evenly distributed). Hence, 

smaller discrepancy results better spacing [14].  That is why 
a low-discrepancy sequence is needed. In this study, Sobol 
generator [15] will be used in order to obtain an evenly 
distributed sequence. The paper [14] presents the 
implementation of Sobol sequence generator in details. 

Previously, in [16], the authors have demonstr
rformance improvement in GSA when a relatively-

uniform distribution is applied instead of pseudo-random 
number generator based initialization. And in this study, our 
aim is now to present a “low-discrepancy sequence 
initialized GSA” and to compare its performance with the 
conventional GSA. By this way, initialization of a 
population-based algorithm under high-dimension problems 
will be presented. In fact, the idea of the population 
initialization via quasi-random sequences (instead of 
pseudo-random number generators) is not brand new. 
Previously in [17], the authors applied the idea to the genetic 
algorithm, and obtained promising results. However, they 
tested this approach for a limited variety of benchmark 
functions. 
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TABLE II. THE 6 MULTIMODAL WITH MANY LOCAL MINIMA BENCHMARK FUNCTIONS USED IN OUR EXPERIMENT STUDY, WHERE N IS THE DIMENSION OF THE 

min

FUNCTION, S IS THE FEASIBLE SEARCH SPACE AND FMIN IS THE MINIMUM VALUE OF THE FUNCTION. 
Test Functions N S f  
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Figure 1. The 2D graphical demon on of the a) quasi-random obol) 

ig. 1 illustrates the distribution of Sobol data set and 
un

to the random data. The difference is clearer for higher data 

 MODIFIED GRAVITATIONAL SEARCH ALGORITHM 

izat  alg m  grouped 
m 

fo

en impacts of objects, that 
th

strati  (S
sampling b) random sampling on [0, 1]2 space with 1000 samples 

 
F
iformly distributed pseudo-random data set at two-

dimensional space for 1000 data. It clearly demonstrates that 
the Sobol data are evenly distributed in the space compared 

size. 

III.

The heuristic optim ion orith s can be
based on their behavior. If an optimization algorith

rmulates inspired from natural events, this group of 
algorithms are called nature-inspired optimization 
algorithms [18]. As one of the members of this group, 
Gravitational Search Algorithm (GSA), which is based on 
the nature interaction, is selected as the optimization 
algorithm for this study. There are four fundamental 
interactions existing in the nature: gravitation, 
electromagnetic force, weak and strong nuclear forces. By 
taking the “law of gravitation” as the basis of the algorithm, 
the GSA method was developed. 

The law of gravity is the formulation of a force between 
matters. It gives the relation betwe

e force upon on a matter is directly-proportional to the 
mass of the objects and inversely-proportional to square of 
the distance between them, as given in (3): 

 

2
21

R

MM
GF                     (3) 

where G is the gravitation constant, M1 and M2 are the 
masses of the objects, and R is the distance between them.

 

 
The force upon on an object changes its position by 
increasing velocity. This relation between force and  
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TABLE III. THE 10 MULTIMODAL WITH FEW LOCAL MINIMA BENCHMARK FUNCTIONS USED IN OUR EXPERIMENT STUDY, WHERE N IS THE DIMENSION OF THE 

min

FUNCTION, S IS THE FEASIBLE SEARCH SPACE AND FMIN IS THE MINIMUM VALUE OF THE FUNCTION. 
Test Functions N S f  
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cceleration defined by Newton's second law, which is given a

in (4) for an object with mass M: 
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F
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Mass M and acceleration a are inversely proportional.

H

pace, each mass influence each other by 
gr

 
ence, when the mass increases, the acceleration decreases, 

and vice versa. In other words, the smaller mass approaches 
to the bigger one. 

In multi-mass s
avity force. Therefore, general versions of (3) and (4) are 

defined in (5) and (6), respectively [12], where Fij is the 
force applied to the jth mass by the ith mass, and G is the 
gravitational constant: 
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A very common belief about the evolution of the universe

is
 

 that our universe is continuously broadening. It is 
assumed that the universe expands; therefore the distance 
between any object-pair also increases in time. In an object-
pair, if the distance in-between increases, then the mutual 
force shall decrease. Thus, G will decrease by the time as 
given in (7) [12]. Moreover, (5) becomes more complicated 
as in (8): 
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where β<1. At this point, it should be noted that, even

ture of the GSA algorithm is 
co

pulation of agents (objects); 

hysical laws; 
he 

te at
e, only step 1 is modified by 

ch

Step 1: Initialization of the Population of Agents (Objects) 
f 

ag

 
though G is referred to as the “gravitational constant”, it will 
no more be a constant as seen in (8) under these 
assumptions. Nevertheless, throughout the paper, we will 
continue referring to G as the “gravitational constant” in the 
conventional manner. The physical relations among force, 
velocity and mass cause the gravity alternation with time. In 
the meantime, the mass and acceleration of each object, 
calculated from the law of motion and the law of velocity, 
undergo a change. Hence, that is the motivation source of 
the GSA algorithm, which is proposed by using these 
equations and relations. 

The fundamental na
mposed of four steps [19]:   
1. initialization of the po
2. fitness evaluation for each agent; 
3. updates and calculations by using p
4. repeating the 2nd and the 3rd steps until t

rmin ion condition is met. 
From the steps given abov
anging the pseudo-random number generator. 
 

In the conventional GSA, the positions of N number o
ents (objects) for n dimensional search space are 

randomly initialized with a pseudo-random number 
generator between the boundaries of the search space at the  
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TABLE IV. THE 7 SHIFTED/ROTATED BENCHMARK FUNCTIONS (30 DIMENSION) USED IN OUR EXPERIMENTAL STUDY, WHERE O IS THE SHIFTED VALUE FOR 

THE OPTIMUM, MO IS THE ORTHOGONAL MATRIX FOR ROTATION, S IS THE FEASIBLE SEARCH SPACE AND FMIN IS THE MINIMUM VALUE OF THE FUNCTION. 
Test Functions
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itial iteration t=0, where t={0,1,2,...,tmax}. However, in this 
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Step 2: Fitness Evaluation for Each Agent 
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Step 3: Updates and Calculations 
or similar nature-inspired 

op

e iterations. The 

gravitational constant G(t), velocity V and position X are 
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where t is the time variable, correspon curren
t e maximum iteration, G  is the initial gravitational 

in
study, instead of a pseudo-random number generator, Sobol 
data set are preferred. For both methods, the initial position 
(X) and initial velocity (V) of the ith agent are defined as 
follows: 
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The fitness function (fiti(t)) is evaluated
ble I and II present lists of fitness functions which are 

evaluated in this paper for minimization problem; 
argminx(f(Xi)), where i=1,...,N at each iteration t and stored 
in memory. After evaluations, the best and worst fitness 
values are obtained from (11) and (12), respectively: 
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In
orst fitness values are evaluated to assign mass for each 

agent. The large masses mean better agents with relatively 
small fitness values, the small masses correspond to worst 
agents with relatively large fitness values.  

 

Steps 1 and 2 are very common f
timization algorithms (i.e., particle swarm optimization). 

However, both methods become different at this step, where 
position and/or other particle properties are altered in this 
stage. In this step, gravitational “constant”, applied force on 
each particle, distance between masses, new velocity and 
new position of all particles are computed. 

The gravitational constant varies along th

dated; the mass M and acceleration of the agents are 
computed. The gravitational constant G is computed from 
(13): 

 
max/ 

0)( tteGtG   
 

ds to t iteration; 
ma 0

constant (set to 100), and α is the algorithm control variable 
(set to 20) [6]. The mass of each agent is constructed 
according to its fitness. In (14) the fitness value of the ith 
agent is normalized between best and worst fitness values of 
all population at the current iteration. Thus, the mass of ith 
agent is calculated from fitj(t) value of each agent. Therefore 
the fitness values of population are normalized in [0,1], 
where 0 means that the agent has the worst fitness value, 
similarly, 1 means that is has the best fitness value among 
the whole population. By the definition of (15), the sum of 
all normalized values become unity (The sum of all 
masses/universe becomes unity by this formulation).  

 

x is th
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where Mi is the normalized mass of the ith agent. The 
acceleration of the ith agent is computed directly by using 

          (15) 

(6), where the acceleration depends on the force applied to 
an agent. Thus, primarily, the force Fij applied by the ith 
mass to the jth one at the dimension n is calculated via (16): 
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TABLE V. THE 30 BENCHMARK FUNCTIONS USED IN COMPARISON BETWEEN CONVENTIONAL GSA AND SOBOL-GSA ALGORITHMS BASED ON MEAN BEST 

FITNESS (MF), STANDARD DEVIATION (SD), BEST (B), AND WORST (W) OPTIMUM VALUES FOR 50 INDEPENDENT RUNS. 
GSA Sobol-GSA 

Func. 
W MF SD B W MF SD   B

f1 17 4 124.8005 26.5186 556.0885 7.700 0 0 0 0 
f2 0.14647 0.33494 4  .1086e-8 1.8944 0 0 0 0 
f3 1  2739.5361 101.3305 517.8541 488.9794 0 0 0 0 
f4 8.7763 1.6418 6.027 12.6601 0 0 0 0 
f5 3  55.7593 401.1153 32.284 2455.806 28 6 0.39142 26.8602 .883 29 
f6 369.7 190.061 69 826 0 0 0 0 
f7 0  .051294 0.029094 0.0095005 0.055473 0.028806 0.006339 0.13754 0.1816 
f8 - -  -8133.8942 -7025.3361 2728.6023 383.5772 -3565.1249 1805.754 -7506.903 260.027 
f9 18.5359 4.8938 10.9445 29.8488 0 0 0 0 
f10 0.027435 0.089776 5  .3065e-9 0.35711 8.881e-16 0 8.881e-16 8.881e-16 
f11 168.4556 28.0281 81.1541 207.6757 0 0 0 0 
f12 2.2109 0.99297 0.55883 4.6405 0.061416 0.069812 2.8808e-9 0.29786 
f13 22.5079 10.2072 2.4648 45.5253 0.93685 0.76739 0.013017 3 
f14 6.2841 3.36196 1.0057 14.2686 4.2772 1.4968 1.1099 5.3525 
f15 -1.0316 4.3145e-16 4  -1.0316 -1.0316 -1.0316 .2082e-16 -1.0316 -1.0316 
f16 0.39789 3.3645e-16 0.39789 0.39789 0.39789 3.3645e-16 0.39789 0.39789 
f17 3 3.5854e-15 3 3 3 4.7404e-15 3 3 
f18 6.6 -3 8e 4e-3 1.48e-3 20.3e-3 5.86e-3 3.39e-3 1.16e-3 17.4e-3 
f19 -3.8609 3.05e-3 -3.8628 -3.8464 -3.861 2.72e-3 -3.8628 -3.8482 
f20 -3.3159 3.03e-3 -3.322 -3.1608 -3.3189 2.16e-3 -3.322 -3.169 
f21 -6.9569 3.6808 -  -10.1532 10.1532 -2.6305 -6.9685 6.6654 -2.6829 
f22 -10.1358 1.322 -10.4029 -3.7243 -10.1431 1.3062 -10.4029 -2.7659 
f23 -10.2208 1.5625 -10.5364 -2.4217 -10.0778 1.841 -10.5364 -2.4217 
f24 9.93e4 5.03e4 2.75e4 2.34e5 10.2e4 4.29e4 2.1e4 2.15e5 
f25 1.34e9 2.61e8 9.21e8 1.93e9 1.32e9 1e8 10.4e8 1.52e9 
f26 1.22e5 3.66e4 6.15e4 2.1e5 1.5e5 3  .08e4 9.4e4 2.13e5 
f27 8.09e4 2.04e4 4.93e4 1.41e5 1.25e5 2.33e4 7.85e4 1.64e5 
f28 189e10 3.1e9 1.33e10 2.53e10 2.3e10 1.13e9 2.12e10 2.56e10 
f29 12.1e4 0.6e3 1.1e4 1.3e4 4.6e3 0 4.6e3 4.6e3 
f30 -257.4 16.4 -288.2 -223.5 -261.7 13  .19 -287.6 -224.5 
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where ε>0 is a small constant. In GSA, the total force 

                         (17) 

 
 summary, the total sum of the weighted force applied 

on

applied on agent i is calculated as randomly weighted sum 
of the fitness values of all agents (in (17)) where rand is a 
random variable uniformly distributed in [0,1] and produced 
by a pseudo-random number generator: 
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In
 a particle with a random number is found. Finally, the 

acceleration of the agent i at dimension n is calculated from 
(6) and defined as (18): 
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t the beginning of the new iteration, the positions and 

ve

         (19) 

                     (20

 

Step 4: Repeat 
 the end criterion (such as reaching the maximum 

nu ns) is met then the solution is picked as 
th

TS 

In this study, the initialization phase GSA is altered by 
appl instead of 

SA); and 

A
locities are calculated by using (19) and (20): 
 

ttatvrandtv i
n

i
n

ii
n )()()1(   

 

ttvtxtx i
n

i
n

i
n )()()1(  ) 

If
mber of iteratio
e position of the best agent, and the program is terminated; 

else Step 2 is re-executed, and the process is repeated by 
taking the last population as the initial population of the new 
iteration by incrementing the iteration index. 

IV. IMPLEMENTATION AND RESUL

ying the “quasi-random number generator” 
the pseudo-random number generator for distribution of the 
search agents; then, the modified GSA will be applied to 30 
benchmark functions, and results will be compared to 
previously obtained conventional GSA outputs. Tables I-III 
present the benchmark functions in three different 
categories: unimodal, multimodal with many local minima, 
and multimodal with few local minima, and Table IV gives 
the rotated/shifted benchmark problems (detailed 
information related to benchmark functions can be obtained 
in [20]). In this study, instead of conventional benchmark 
problems, which has the global optimum point generally 
located in the center of the search space, or at zero, the 
shifted and rotated problems are preferred such that the 
shape and optimum of conventional problems is altered 
since almost all cases the real-word problems have the 
solution far from zero and center of search space. 

Two implementations are executed in this study: the 
conventional Gravitational Search Algorithm (G

 60 

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:36:54 (UTC) by 52.87.200.112. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 14, Number 3, 2014 

th

t fitness values (MF) of 50 independent 
M

ned global optimum at every independent Monte-
C

ev

cate that at every independent run 
of

e GSA with quasi-random number generator, which is 
named as Sobol-GSA. The parameters of these two methods 
are set to be equal: the number of particles is 50 and the 
number of iterations is 250. For a fair performance 
comparison, 50 independent runs are executed, and the 
average, best and worst values as well as the standard 
deviation are taken into consideration. Table V presents the 
relevant results. 

The results presented in Table V are categorized as the 
mean of the bes

onte-Carlo runs, standard deviation of all executions (SD) 
and best/worst fitness values (B and W, respectively) among 
the results. The results indicate that Sobol-GSA is superior 
to GSA. 

For unimodal benchmark functions f1-f4 and f6, Sobol-
GSA obtai

arlo run. For other unimodal benchmark functions except 
mean best fitness value of f7, Sobol-GSA outperforms GSA. 

For multimodal benchmark functions with many local 
optimum f9 and f11, Sobol-GSA obtains a global optimum at 

ery independent run. Furthermore, it outperforms GSA for 
other benchmark functions. When the results demonstrated 
in Table V are investigated, it is observed that, GSA and 
Sobol-GSA present the same performance for benchmark 
functions f15, f16 and almost for f17. However, for f14 Sobol-
GSA performs better. The results for the rotated/shifted 
benchmark problems demonstrate that the proposed 
initialization scheme might demonstrate worse performance 
for most cases. On the other hand, the obtained results are 
quite close to each other. 

The results for the benchmark functions f1, f2, f3, f4, f6, f9, 
f11 and f17 in Table V indi

 the Sobol-GSA, the algorithm can detect the global 
optimum, possibly at the beginning or early phase of the 
iterations. This reason behind these phenomena is explained 
as regards the comparison of pseudo random and Sobol 
distributed particles on problem contours. For this reason the 
benchmark problems f1, f8 and f9 are selected as test beds 
because of their various contour shapes. Figs. 2-4 show the 
contour plots of the case problems. 

 

 
Figure 2. The contour description of the benchmark problem f1 and scatter 
particles both uniform pseudo-randomly (‘X’) and Sobol quasi-randomly 

es 

emonstrate the distribution of the Sobol numbers, some of 
th

s the number of local optimum 
in

(‘O’) 
 

In Fig. 2, the contour plot and position of particl

d
em are located at (near to) the global optimum (0,0). 

Therefore, for f1 (or similar functions: f2, f3, f4, f6) at the 
initialization (or at the first few iterations), the algorithm 
reaches the global optimum. 

The benchmark functions f8 and f9 are the examples which 
have many local optimums. A

creases, the number of the circles and nested circles also 
increases. This turn out that the size of the smaller circle on 
the contour plot (which is the area of the local/global 
optimum) lessens, which yield that finding the global 
optimum becomes harder for proposed initialization. 
However, even for these cases, the proposed algorithm 
shows better performance than common initialization. 

 
Figure 3. The contour description of the benchmark problem f8 and scatter 
particles both uniform pseudo-randomly (‘X’) and Sobol quasi-randomly 
(‘O’) 

 
 Figure 4. The contour description of the benchmark problem f9 and scatter 
particles both uniform pseudo-randomly (‘X’) and Sobol quasi-randomly 

V. CONCLUSION 

This pape on of the GSA by 
changing th tituting the pseudo-
ra

(‘O’) 

r presents improved versi
e initialization phase by subs

ndom number generator with a quasi-random number 
generator based on the Sobol data set. Simulation results 
were obtained for the conventional GSA and the so-called 
Sobol-GSA for 30 benchmark functions. From these results, 
it can be clearly seen that the Sobol set improves the 
performance of the optimization algorithm for unimodal 
benchmark functions and multimodal functions with many 
local optima. However, for multimodal functions with a few 
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