
Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

Improvement of the Gravitational Search
Algorithm by means of Low-Discrepancy Sobol

Quasi Random-Number Sequence Based
Initialization

O. Tolga ALTINOZ1, A. Egemen YILMAZ1, Gerhard-Wilhelm WEBER2
1Ankara University, Faculty of Engineering, Electrical-Electronics Engineering Dept., Ankara, Turkey

2Middle East Technical University, Institute of Applied Mathematics, Ankara,Turkey
taltinoz@ankara.edu.tr,aeyilmaz@eng.ankara.edu.tr,gweber@metu.edu.tr

1Abstract—Nature-inspired optimization algorithms can

obtain the optima by updating the position of each member in
the population. At the beginning of the algorithm, the particles
of the population are spread into the search space. The initial
distribution of particles corresponds to the beginning points of
the search process. Hence, the aim is to alter the position for
each particle beginning with this initial position until the
optimum solution will be found with respect to the pre-
determined conditions like maximum iteration, and specific
error value for the fitness function. Therefore, initial positions
of the population have a direct effect on both accuracy of the
optima and the computational cost. If any member in the
population is close enough to the optima, this eases the
achievement of the exact solution. On the contrary, individuals
grouped far away from the optima might yield pointless efforts.
In this study, low-discrepancy quasi-random number sequence
is preferred for the localization of the population at the
initialization phase. By this way, the population is distributed
into the search space in a more uniform manner at the
initialization phase. The technique is applied to the
Gravitational Search Algorithm and compared via the
performance on benchmark function solutions.

Index Terms—evolutionary computation, random number
generation, Sobol quasi random number generation,
gravitational search algorithm.

I. INTRODUCTION

The last two decades witnessed the definitions of various
methods for solving the optimization problems, as well as
suggestions regarding the performance improvement of
existing algorithms. The methods defined for improvement
can be categorized into three groups, roughly. In the first
group, a new operator (for improving diversity in the search
phase) is incorporated into the original code [1-3]. The
second group of suggestions emphasizes the impact of the
algorithm’s control parameters [4-6], and the last group aims
at modifying the algorithm according to the specific
problem requirements [7-9]. By this way, in some cases, an
existing disadvantage of the algorithm is removed; in other
cases, some powerful aspects of the algorithm are enhanced.

One of the approaches within the first group deals with
initialization of the algorithm [10]. Generally, heuristic
methods are population-based methods, where each
population member (or search agent) is a candidate solution
[11]. At the beginning of the algorithm, these candidate

solutions must be distributed in the search space; and
throughout iterations, the solution is expected to be
converging to the optimum (or the optima). Therefore, the
initial position of each member is critical for convergence.
Thus, the choice of the initial positions in a relatively
narrow region causes the solution to be trapped into local
optima; whereas, initialization in a wide region might cause
poor search capability and slow convergence.

1

Usually, a random distribution of search members is
performed by means of pseudo-random number generators,
which are already implemented as libraries in many
programming languages and embedded in compilers. In this
study, instead of the conventional pseudo-random number
generation techniques, random number generation via a
"low-discrepancy quasi-random number sequence'' will be
implemented at the initialization of population, and its
performance will be investigated. In other words, the
members of the population will be distributed in the search
space after selection of random positions via a generated
"low-discrepancy quasi-random number sequence''. This
analysis will be performed for a very recently defined
heuristic method, called the Gravitational Search Algorithm.

Gravitational Search Algorithm (GSA) [12], which is a
population based nature inspired heuristic algorithm, is
proposed by Rashedi et al. in 2009. The motivation of this
algorithm is based on performing the search process of the
search agents according to the physical relations
(particularly, Newton’s Law of Gravity) among these
agents. Variants of GSA were introduced by the same
authors for finding the solution of continuous and discrete
(combinatorial) optimization problems [13].

This paper is organized in four sections following the
introduction. In Section 2, the basic idea beneath the Sobol
quasi-random sequence is explained and demonstrated
graphically. Section 3 presents explanation of the
Gravitational Search Algorithm and its sub-routines to be
modified. Section 4 gives the implementation results and
performance comparison of the classical GSA, and the
modified version. Finally, Section 5 consists of the
concluding remarks and discussions regarding the outcomes
and evidences of this study.

 55
1582-7445 © 2014 AECE

Digital Object Identifier 10.4316/AECE.2014.03007

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:36:54 (UTC) by 52.87.200.112. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

TABLE I. THE 7 UNIMODAL BENCHMARK FUNCTIONS USED IN OUR EXPERIMENT STUDY, WHERE N IS THE DIMENSION OF THE FUNCTION, S IS THE FEASIBLE

SEARCH SPACE AND FMIN IS THE MINIMUM VALUE OF THE FUNCTION.
Test Functions n S fmin





n

i
ixxf

1

2
1)(30 n]100,100[ 0





n

i
i

n

i
i xxxf

11
2)(30 n]10,10[ 0

 
 











n

i

i

j
jxxf

1

2

1
3)(30 n]100,100[ 0

 nixxf i  1,max)(4
 30 n]100,100[ 0





 

1

1

222
15))1()(100()(

n

i
iii xxxxf

30 n]30,30[ 0

 



n

i
ixxf

1

2
6)5.0()(

30 n]100,100[ 0

randixxf
i

i 
1

4
7)(

n
30 n]28.1,28.1[ 0

II. SOBOL QUASI-RANDOM SEQUENCE

The idea of the quasi-random sequences comes from the
problems related to the numerical calculation of the high-
dimension integration. A low-discrepancy point
set/sequence (quasi-random points/sequence, respectively) is
a random point set/sequence that is "less random'' compared
to a pseudo-random number sequence. On the other hand,
such "less randomness'' might give the benefit for higher
dimension integration approximation, since this low
discrepancy sequence samples the high dimension space
more uniformly compared to pseudo-random numbers.
When applied to an optimization algorithm, this idea might
cause an increase at the convergence speed during global
optimization; and this constitutes the basic motivation
beneath this study.

In general, the actual problem arises from the numerical
integration for high-order integrals. There exist two
methods for the numerical integration problem: Monte-
Carlo and Quasi Monte-Carlo. For numerical integration of
order one, there are some classical integration methods like
trapezoidal or Simpson’s rules. In multidimensional case,
this classical integration becomes complicated as the
Cartesian products of the single dimensional integration
nodes. That way, as the dimension increases, the number of
the nodes exponentially increases. To overcome this
problem, the Monte-Carlo method, which does not depend
on the dimension, was introduced. Actually, Monte-Carlo
method is a stochastic method which depends on the
randomly selected sampling points in the space. Therefore,
in the Monte-Carlo method, some statistical requirements
must be satisfied for random numbers in order to obtain
high-quality results in integration.

On the other hand, random number generation is
performed by means of pseudo-random number generators,
which are already implemented as libraries in many
programming languages and embedded in compilers. The
outputs of such generators do not demonstrate uniformity
despite their quality in terms of randomness. This constitutes
a drawback during integration since the samples are desired
to spread uniformly in the integral space in order to obtain
more precise solution. Hence, the idea of applying quasi
Monte-Carlo method arises. In current situation, the random

selected deterministic points; this yields smaller error
compared to a Monte-Carlo method. The quasi-Monte-Carlo
integration is given by:

numbers in Monte-Carlo method are replaced with the

 



1

0
1

)(
1

)(
t

t

N

n
nxf

N
df  (1)

which contains deterministic points of x1,x2,...,xN. Another
problem arises from the choice of these deterministic points.
There exist two approaches in order to obtain these points:
(a) uniform distribution; alternatively, (b) distribution with
low-discrepancy (discrepancy is nothing but the measure of
the deviation from uniform distribution). In general, the
points shall be selected in such a manner that the numerical
integration result converges to the precise value; namely:







1

0

)()(
1

lim
1

t

t

N

n
n

N
dfxf

N
 (2)

Therefore, the points must be selected in such a way tha

th

ated
pe

t
ey are uniformly distributed (evenly distributed). Hence,

smaller discrepancy results better spacing [14]. That is why
a low-discrepancy sequence is needed. In this study, Sobol
generator [15] will be used in order to obtain an evenly
distributed sequence. The paper [14] presents the
implementation of Sobol sequence generator in details.

Previously, in [16], the authors have demonstr
rformance improvement in GSA when a relatively-

uniform distribution is applied instead of pseudo-random
number generator based initialization. And in this study, our
aim is now to present a “low-discrepancy sequence
initialized GSA” and to compare its performance with the
conventional GSA. By this way, initialization of a
population-based algorithm under high-dimension problems
will be presented. In fact, the idea of the population
initialization via quasi-random sequences (instead of
pseudo-random number generators) is not brand new.
Previously in [17], the authors applied the idea to the genetic
algorithm, and obtained promising results. However, they
tested this approach for a limited variety of benchmark
functions.

 56

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:36:54 (UTC) by 52.87.200.112. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

TABLE II. THE 6 MULTIMODAL WITH MANY LOCAL MINIMA BENCHMARK FUNCTIONS USED IN OUR EXPERIMENT STUDY, WHERE N IS THE DIMENSION OF THE

min

FUNCTION, S IS THE FEASIBLE SEARCH SPACE AND FMIN IS THE MINIMUM VALUE OF THE FUNCTION.
Test Functions N S f


n

x sin((
i

ii xxf
1

8)))(-12569.5 30 n]500,500[





n

i
ii xxxf

1

22
9)10)2cos(10()(

30 0 n]12.5,12.5[

exxxf
n

i
i

n

i
i 


















 



20)2cos(
30

1
exp

30

1
2,0exp20)(

11

2
10 

30 0 n]32,32[

)1(
4

1
1

1
100

cos)100(
4000

1
)(

11

2
11










 
 



ii

n

i

i
n

i
i

xy

i

x
xxf

30]600,600[ 0 n

        

    

 

 
 

 


































axaxk

axa

axaxk

mkaxiu

xy

xuy

yyyxf

i
m

i

i

i
m

i

ii

i
i

n

i
ii

,

,0

,

,,,

1
4

1
1

4,100,10,1

sin1011sin10
30

30

1

2
30

1

1
1

22
1

2
12 

30 n]50,50[ 0

        

      

 
 

 
































axaxk

axa

axaxk

mkaxiu

xuxx

xxxxf

i
m

i

i

i
m

i

i
i

n

i
ii

,

,0

,

,,,

4,100,5,2sin11

3sin113sin101.0

30

1
30

22
30

1

1
1

22
1

2
13





30 n]50,50[ 0

(a)

(b)

Figure 1. The 2D graphical demon on of the a) quasi-random obol)

ig. 1 illustrates the distribution of Sobol data set and
un

to the random data. The difference is clearer for higher data

 MODIFIED GRAVITATIONAL SEARCH ALGORITHM

izat alg m grouped
m

fo

en impacts of objects, that
th

strati (S
sampling b) random sampling on [0, 1]2 space with 1000 samples

F
iformly distributed pseudo-random data set at two-

dimensional space for 1000 data. It clearly demonstrates that
the Sobol data are evenly distributed in the space compared

size.

III.

The heuristic optim ion orith s can be
based on their behavior. If an optimization algorith

rmulates inspired from natural events, this group of
algorithms are called nature-inspired optimization
algorithms [18]. As one of the members of this group,
Gravitational Search Algorithm (GSA), which is based on
the nature interaction, is selected as the optimization
algorithm for this study. There are four fundamental
interactions existing in the nature: gravitation,
electromagnetic force, weak and strong nuclear forces. By
taking the “law of gravitation” as the basis of the algorithm,
the GSA method was developed.

The law of gravity is the formulation of a force between
matters. It gives the relation betwe

e force upon on a matter is directly-proportional to the
mass of the objects and inversely-proportional to square of
the distance between them, as given in (3):

2
21

R

MM
GF  (3)

where G is the gravitation constant, M1 and M2 are the
masses of the objects, and R is the distance between them.

The force upon on an object changes its position by
increasing velocity. This relation between force and

 57

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:36:54 (UTC) by 52.87.200.112. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

TABLE III. THE 10 MULTIMODAL WITH FEW LOCAL MINIMA BENCHMARK FUNCTIONS USED IN OUR EXPERIMENT STUDY, WHERE N IS THE DIMENSION OF THE

min

FUNCTION, S IS THE FEASIBLE SEARCH SPACE AND FMIN IS THE MINIMUM VALUE OF THE FUNCTION.
Test Functions N S f

1

35

1
2

1

6
14

)(

1

500

1
)(

























 

i

j
iji axj

xf

2 n]65,65[ 1

4
2

2
221

6
1

4
1

2
115 44

3

1
1,24)(xxxxxxxxf  2 -1.03162 n]5,5[

  10cos
8

1
1106

5

4

1.5
1

2

1
2

12216 





 






  xxxxxf


 2 0.398 n]1.5,1.5[

     
   2

2212
2

11
2

21

2
2212

2
11

2
2117

2736481232183230

36143141911

xxxxxxxx

xxxxxxxxxf



 2 3 n]2,2[

















11

1

2

43
2

2
2

1
18

)(
)(

i ii

ii
i

xxbb

xbbx
axf 4 3e-4 n]5,5[

 
 











4

1

3

1

2
19)(exp)(

i j
ijjiji pxacxf 3 -3.38 n]1,0[

 
 











4

1

6

1

2
20)(exp)(

i j
ijjiji pxacxf

6 -3.32 n]1,0[





5

1

12
21])[()(

i
ii caXxf 4 -10.1532 n]10,0[





7

1

12
22])[()(

i
ii caXxf 4 -10.4028 n]10,0[





10

1

12
23])[()(

i
ii caXxf 4 -10.5363 n]10,0[

cceleration defined by Newton's second law, which is given a

in (4) for an object with mass M:

M

F
a  (4)

Mass M and acceleration a are inversely proportional.

H

pace, each mass influence each other by
gr

ence, when the mass increases, the acceleration decreases,

and vice versa. In other words, the smaller mass approaches
to the bigger one.

In multi-mass s
avity force. Therefore, general versions of (3) and (4) are

defined in (5) and (6), respectively [12], where Fij is the
force applied to the jth mass by the ith mass, and G is the
gravitational constant:

2R

MM
GF pipj

ij  (5)

i

ij
i M

F
a  (6)

A very common belief about the evolution of the universe

is

 that our universe is continuously broadening. It is
assumed that the universe expands; therefore the distance
between any object-pair also increases in time. In an object-
pair, if the distance in-between increases, then the mutual
force shall decrease. Thus, G will decrease by the time as
given in (7) [12]. Moreover, (5) becomes more complicated
as in (8):











t

t
tGtG 0

0)()((7)

2
)(

R

MM
tGF pipj

ij  (8)

where β<1. At this point, it should be noted that, even

ture of the GSA algorithm is
co

pulation of agents (objects);

hysical laws;
he

te at
e, only step 1 is modified by

ch

Step 1: Initialization of the Population of Agents (Objects)
f

ag

though G is referred to as the “gravitational constant”, it will
no more be a constant as seen in (8) under these
assumptions. Nevertheless, throughout the paper, we will
continue referring to G as the “gravitational constant” in the
conventional manner. The physical relations among force,
velocity and mass cause the gravity alternation with time. In
the meantime, the mass and acceleration of each object,
calculated from the law of motion and the law of velocity,
undergo a change. Hence, that is the motivation source of
the GSA algorithm, which is proposed by using these
equations and relations.

The fundamental na
mposed of four steps [19]:
1. initialization of the po
2. fitness evaluation for each agent;
3. updates and calculations by using p
4. repeating the 2nd and the 3rd steps until t

rmin ion condition is met.
From the steps given abov
anging the pseudo-random number generator.

In the conventional GSA, the positions of N number o
ents (objects) for n dimensional search space are

randomly initialized with a pseudo-random number
generator between the boundaries of the search space at the

 58

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:36:54 (UTC) by 52.87.200.112. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

TABLE IV. THE 7 SHIFTED/ROTATED BENCHMARK FUNCTIONS (30 DIMENSION) USED IN OUR EXPERIMENTAL STUDY, WHERE O IS THE SHIFTED VALUE FOR

THE OPTIMUM, MO IS THE ORTHOGONAL MATRIX FOR ROTATION, S IS THE FEASIBLE SEARCH SPACE AND FMIN IS THE MINIMUM VALUE OF THE FUNCTION.
Test Functions

biasf z S fmin





i

ii xBAxf
1

2
24))(()(

n

oxz  n],[ -460



















n

i
i

n

i

zxf
1

2

21

1
6

25)10()(
o

-450 Moxz)(
n]100,100[

 
 











n

i

i

j
j Nzxf

1

2

1
26))1,0(4,01()(z x o 

-250
n]100,100[

 
 











n

i

i

j
jzxf

1

2

1
27)(z x o 

-450
n]100,100[





 

1

1

222
128))1()(100()(

n

i
iii zxzxf 1 oxz

390
n]100[ 100,

)1(
4

1
1

1
100

cos)100(
4000

1
)(

11

2
29










 
 



ii

n

i

i
n

i
i

xy

i

z
zxf

oMoyz)(  n]600,0[-180





n

i
ii zzxf

1

22
30)10)2cos(10()(

o -330 Moxz)( n]5,5[

itial iteration t=0, where t={0,1,2,...,tmax}. However, in this

 (9)

Step 2: Fitness Evaluation for Each Agent
 for each agent j

Ta

 (11)

 the GSA, the fitness values of each agent, the best and

w

Step 3: Updates and Calculations
or similar nature-inspired

op

e iterations. The

gravitational constant G(t), velocity V and position X are
up

 (13)

where t is the time variable, correspon curren
t e maximum iteration, G is the initial gravitational

in
study, instead of a pseudo-random number generator, Sobol
data set are preferred. For both methods, the initial position
(X) and initial velocity (V) of the ith agent are defined as
follows:

))(),...,(),(()(21 txtxtxtX i
n

iii 

))(),...,(),(()(21 tvtvtvtV i
n

iii  (10)

The fitness function (fiti(t)) is evaluated
ble I and II present lists of fitness functions which are

evaluated in this paper for minimization problem;
argminx(f(Xi)), where i=1,...,N at each iteration t and stored
in memory. After evaluations, the best and worst fitness
values are obtained from (11) and (12), respectively:

))((min)(

,...,1
tfittbest j

Nj


))((max)(
,...,1

tfittworst j
Nj

 (12)

In
orst fitness values are evaluated to assign mass for each

agent. The large masses mean better agents with relatively
small fitness values, the small masses correspond to worst
agents with relatively large fitness values.

Steps 1 and 2 are very common f
timization algorithms (i.e., particle swarm optimization).

However, both methods become different at this step, where
position and/or other particle properties are altered in this
stage. In this step, gravitational “constant”, applied force on
each particle, distance between masses, new velocity and
new position of all particles are computed.

The gravitational constant varies along th

dated; the mass M and acceleration of the agents are
computed. The gravitational constant G is computed from
(13):

max/

0)(tteGtG 

ds to t iteration;
ma 0

constant (set to 100), and α is the algorithm control variable
(set to 20) [6]. The mass of each agent is constructed
according to its fitness. In (14) the fitness value of the ith
agent is normalized between best and worst fitness values of
all population at the current iteration. Thus, the mass of ith
agent is calculated from fitj(t) value of each agent. Therefore
the fitness values of population are normalized in [0,1],
where 0 means that the agent has the worst fitness value,
similarly, 1 means that is has the best fitness value among
the whole population. By the definition of (15), the sum of
all normalized values become unity (The sum of all
masses/universe becomes unity by this formulation).

x is th

)()(

)()(
)(

tworsttfit
tm i

tworsttbesti 


 (14)





N

j
j

i
i

tm

tm
tM

1

)(

)(
)(

where Mi is the normalized mass of the ith agent. The
acceleration of the ith agent is computed directly by using

 (15)

(6), where the acceleration depends on the force applied to
an agent. Thus, primarily, the force Fij applied by the ith
mass to the jth one at the dimension n is calculated via (16):

 59

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:36:54 (UTC) by 52.87.200.112. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

TABLE V. THE 30 BENCHMARK FUNCTIONS USED IN COMPARISON BETWEEN CONVENTIONAL GSA AND SOBOL-GSA ALGORITHMS BASED ON MEAN BEST

FITNESS (MF), STANDARD DEVIATION (SD), BEST (B), AND WORST (W) OPTIMUM VALUES FOR 50 INDEPENDENT RUNS.
GSA Sobol-GSA

Func.
W MF SD B W MF SD B

f1 17 4 124.8005 26.5186 556.0885 7.700 0 0 0 0
f2 0.14647 0.33494 4 .1086e-8 1.8944 0 0 0 0
f3 1 2739.5361 101.3305 517.8541 488.9794 0 0 0 0
f4 8.7763 1.6418 6.027 12.6601 0 0 0 0
f5 3 55.7593 401.1153 32.284 2455.806 28 6 0.39142 26.8602 .883 29
f6 369.7 190.061 69 826 0 0 0 0
f7 0 .051294 0.029094 0.0095005 0.055473 0.028806 0.006339 0.13754 0.1816
f8 - - -8133.8942 -7025.3361 2728.6023 383.5772 -3565.1249 1805.754 -7506.903 260.027
f9 18.5359 4.8938 10.9445 29.8488 0 0 0 0
f10 0.027435 0.089776 5 .3065e-9 0.35711 8.881e-16 0 8.881e-16 8.881e-16
f11 168.4556 28.0281 81.1541 207.6757 0 0 0 0
f12 2.2109 0.99297 0.55883 4.6405 0.061416 0.069812 2.8808e-9 0.29786
f13 22.5079 10.2072 2.4648 45.5253 0.93685 0.76739 0.013017 3
f14 6.2841 3.36196 1.0057 14.2686 4.2772 1.4968 1.1099 5.3525
f15 -1.0316 4.3145e-16 4 -1.0316 -1.0316 -1.0316 .2082e-16 -1.0316 -1.0316
f16 0.39789 3.3645e-16 0.39789 0.39789 0.39789 3.3645e-16 0.39789 0.39789
f17 3 3.5854e-15 3 3 3 4.7404e-15 3 3
f18 6.6 -3 8e 4e-3 1.48e-3 20.3e-3 5.86e-3 3.39e-3 1.16e-3 17.4e-3
f19 -3.8609 3.05e-3 -3.8628 -3.8464 -3.861 2.72e-3 -3.8628 -3.8482
f20 -3.3159 3.03e-3 -3.322 -3.1608 -3.3189 2.16e-3 -3.322 -3.169
f21 -6.9569 3.6808 - -10.1532 10.1532 -2.6305 -6.9685 6.6654 -2.6829
f22 -10.1358 1.322 -10.4029 -3.7243 -10.1431 1.3062 -10.4029 -2.7659
f23 -10.2208 1.5625 -10.5364 -2.4217 -10.0778 1.841 -10.5364 -2.4217
f24 9.93e4 5.03e4 2.75e4 2.34e5 10.2e4 4.29e4 2.1e4 2.15e5
f25 1.34e9 2.61e8 9.21e8 1.93e9 1.32e9 1e8 10.4e8 1.52e9
f26 1.22e5 3.66e4 6.15e4 2.1e5 1.5e5 3 .08e4 9.4e4 2.13e5
f27 8.09e4 2.04e4 4.93e4 1.41e5 1.25e5 2.33e4 7.85e4 1.64e5
f28 189e10 3.1e9 1.33e10 2.53e10 2.3e10 1.13e9 2.12e10 2.56e10
f29 12.1e4 0.6e3 1.1e4 1.3e4 4.6e3 0 4.6e3 4.6e3
f30 -257.4 16.4 -288.2 -223.5 -261.7 13 .19 -287.6 -224.5

))()((
)(),(

)(
)(

2

2

txtx
tXtX

tm
tGF i

n
j

n

ji

i
ji

n 





 (16)

where ε>0 is a small constant. In GSA, the total force

 (17)

 summary, the total sum of the weighted force applied

on

applied on agent i is calculated as randomly weighted sum
of the fitness values of all agents (in (17)) where rand is a
random variable uniformly distributed in [0,1] and produced
by a pseudo-random number generator:





N

j

ij
n

j
n

i tFrandF
1

))((

In
 a particle with a random number is found. Finally, the

acceleration of the agent i at dimension n is calculated from
(6) and defined as (18):

)(

)(
)(

tM

tF
ta

i

i
n

i
n  (18)

t the beginning of the new iteration, the positions and

ve

 (19)

 (20

Step 4: Repeat
 the end criterion (such as reaching the maximum

nu ns) is met then the solution is picked as
th

TS

In this study, the initialization phase GSA is altered by
appl instead of

SA); and

A
locities are calculated by using (19) and (20):

ttatvrandtv i
n

i
n

ii
n )()()1(

ttvtxtx i
n

i
n

i
n )()()1()

If
mber of iteratio
e position of the best agent, and the program is terminated;

else Step 2 is re-executed, and the process is repeated by
taking the last population as the initial population of the new
iteration by incrementing the iteration index.

IV. IMPLEMENTATION AND RESUL

ying the “quasi-random number generator”
the pseudo-random number generator for distribution of the
search agents; then, the modified GSA will be applied to 30
benchmark functions, and results will be compared to
previously obtained conventional GSA outputs. Tables I-III
present the benchmark functions in three different
categories: unimodal, multimodal with many local minima,
and multimodal with few local minima, and Table IV gives
the rotated/shifted benchmark problems (detailed
information related to benchmark functions can be obtained
in [20]). In this study, instead of conventional benchmark
problems, which has the global optimum point generally
located in the center of the search space, or at zero, the
shifted and rotated problems are preferred such that the
shape and optimum of conventional problems is altered
since almost all cases the real-word problems have the
solution far from zero and center of search space.

Two implementations are executed in this study: the
conventional Gravitational Search Algorithm (G

 60

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:36:54 (UTC) by 52.87.200.112. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

th

t fitness values (MF) of 50 independent
M

ned global optimum at every independent Monte-
C

ev

cate that at every independent run
of

e GSA with quasi-random number generator, which is
named as Sobol-GSA. The parameters of these two methods
are set to be equal: the number of particles is 50 and the
number of iterations is 250. For a fair performance
comparison, 50 independent runs are executed, and the
average, best and worst values as well as the standard
deviation are taken into consideration. Table V presents the
relevant results.

The results presented in Table V are categorized as the
mean of the bes

onte-Carlo runs, standard deviation of all executions (SD)
and best/worst fitness values (B and W, respectively) among
the results. The results indicate that Sobol-GSA is superior
to GSA.

For unimodal benchmark functions f1-f4 and f6, Sobol-
GSA obtai

arlo run. For other unimodal benchmark functions except
mean best fitness value of f7, Sobol-GSA outperforms GSA.

For multimodal benchmark functions with many local
optimum f9 and f11, Sobol-GSA obtains a global optimum at

ery independent run. Furthermore, it outperforms GSA for
other benchmark functions. When the results demonstrated
in Table V are investigated, it is observed that, GSA and
Sobol-GSA present the same performance for benchmark
functions f15, f16 and almost for f17. However, for f14 Sobol-
GSA performs better. The results for the rotated/shifted
benchmark problems demonstrate that the proposed
initialization scheme might demonstrate worse performance
for most cases. On the other hand, the obtained results are
quite close to each other.

The results for the benchmark functions f1, f2, f3, f4, f6, f9,
f11 and f17 in Table V indi

 the Sobol-GSA, the algorithm can detect the global
optimum, possibly at the beginning or early phase of the
iterations. This reason behind these phenomena is explained
as regards the comparison of pseudo random and Sobol
distributed particles on problem contours. For this reason the
benchmark problems f1, f8 and f9 are selected as test beds
because of their various contour shapes. Figs. 2-4 show the
contour plots of the case problems.

Figure 2. The contour description of the benchmark problem f1 and scatter
particles both uniform pseudo-randomly (‘X’) and Sobol quasi-randomly

es

emonstrate the distribution of the Sobol numbers, some of
th

s the number of local optimum
in

(‘O’)

In Fig. 2, the contour plot and position of particl

d
em are located at (near to) the global optimum (0,0).

Therefore, for f1 (or similar functions: f2, f3, f4, f6) at the
initialization (or at the first few iterations), the algorithm
reaches the global optimum.

The benchmark functions f8 and f9 are the examples which
have many local optimums. A

creases, the number of the circles and nested circles also
increases. This turn out that the size of the smaller circle on
the contour plot (which is the area of the local/global
optimum) lessens, which yield that finding the global
optimum becomes harder for proposed initialization.
However, even for these cases, the proposed algorithm
shows better performance than common initialization.

Figure 3. The contour description of the benchmark problem f8 and scatter
particles both uniform pseudo-randomly (‘X’) and Sobol quasi-randomly
(‘O’)

 Figure 4. The contour description of the benchmark problem f9 and scatter
particles both uniform pseudo-randomly (‘X’) and Sobol quasi-randomly

V. CONCLUSION

This pape on of the GSA by
changing th tituting the pseudo-
ra

(‘O’)

r presents improved versi
e initialization phase by subs

ndom number generator with a quasi-random number
generator based on the Sobol data set. Simulation results
were obtained for the conventional GSA and the so-called
Sobol-GSA for 30 benchmark functions. From these results,
it can be clearly seen that the Sobol set improves the
performance of the optimization algorithm for unimodal
benchmark functions and multimodal functions with many
local optima. However, for multimodal functions with a few

 61

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:36:54 (UTC) by 52.87.200.112. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

 62

r em
ps

ctions, the performance do
im

CKNOWLEDGMENTS

This study is ma ble by a grant from TUB
(with Grant Nr. rs would like
ex

[1] Y.W. Leung, Y. Wang, Y.W. Leung, “An orthogonal genetic
algorithm with quantiza merical optimization,” IEE

in cellular GAs,” Advances in Electrical

rical and

mization of

application to the

ommunicating grids for assembly line balancing problems,”

heduling,” IEEE Transactions on Systems,

cademic Press, 2001.

 Sciences, Vol. 179, No. 13, pp. 2232-

search algorithm,” Natural Computing, Vol. 9, No. 3, pp.

equence generator,” ACM Transactions on

tematik i

algorithm,”

 Computers & Mathematics with

Transactions on

ications of Artificial

 criteria for the CEC

local optimum Sobol-GSA and GSA present almost the
same performance. From the results obtained in this study
and the previous studies of the authors, it can be concluded
that, improvement in distribution of the particles at the
initialization phase has a considerable positive performance
impact for the solution of unimodal functions and
multimodal functions with many local optima.

The random number generation method used throughout
this study does not rely on any in-complie bedded

multimodal functions,” IEEE Transactions on Evolutionary
Computation, Vol. 10, No. 3, pp. 281-295, 2006.

[8] O.T. Altinoz, A.E. Yilmaz, “Particle swarm optimization with
parameter dependency walls and its sample

eudo-random number generator. This is a significant
advantage especially on the currently evolving parallel and
distributed architectures, such as GPGPU (General Purpose
Graphics Processing Unit) or grid structures, in which the
message traffic due to the transfer of the generated random
number constitutes a bottleneck. Via the quasi-random
number generators, the random numbers can be directly
generated on the relevant core (or the processing unit),
without any need of data transfer among the cores. Hence,
the proposed method might be applicable to research areas,
such as cryptology, financial mathematics, stochastic
problems on signal processing and power electronics, in
which accurate and fast random number generation
techniques are desired.

On the other hand, for functions with a few local optimum
and shifted/rotated fun es not 727-745, 2010.

[14] P. Bradley, B.L. Fox, “Algorithm 659: Implementing Sobol’s
quasirandom s

prove dramatically. As a future study, the authors will
focus on this issue.

A

de possi
112E168). The autho

ITAK
to

Matematicheskoi Fiziki (USSR Computational Mathematics and
Mathematical Physics), Vol. 7, No. 4, pp. 784-802, 1967.

[16] O.T.Altinoz, A.E. Yilmaz, G.W. Weber, “Orthogonal array based
performance improvement in the gravitational search press their gratitude to TUBITAK for their support.

REFERENCES

tion for global nu E App

Transactions on Evolutionary Computation, Vol. 5, No. 1, pp. 41-53,
2001.

[2] O.T. Altinoz, A.E. Yilmaz, G.W. Weber, “Application of chaos
embedded PSO for PID tuning,” International Journal of Computers,
Communications and Control, Vol. 7, No. 2, pp. 204-218, 2012.

[3] E. Masahian, D. Sedighizadeh, “Multiobjective particle swarm
optimization and NPSO-based algorithms for robot path planning,”
Advances in Electrical and Computer Engineering, Vol. 10, No. 4, pp.
69-76, 2010.

[4] A. Ratnaweera, S.K. Halgamuge, H.C. Watson, “Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration

coefficients,” IEEE Transactions on Evolutionary Computation, Vol.
8, No. 3, pp. 240-255, 2004.

[5] A. Morales-Reyes, A.T. Erdogan, “A structure based coarse fine
approach for diversity tuning
and Computer Engineering, Vol. 12, No. 3, pp. 39-46, 2012

[6] G. Mortinovic, D. Bojer, “Elitist ant system with 2-opt local search
for the traveling salesman problem,” Advances in Elect
Computer Engineering, Vol. 12, No. 1, pp. 25-32, 2012.

[7] J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, “Comprehensive
learning particle swarm optimizer for global opti

microstrip-like interconnect line design,” AEÜ-International Journal
of Electronics and Communications, Vol. 66, No. 2, pp. 107-114,
2012.

[9] O. Brudaru, D. Popovich, C. Copecanu, “Cellular genetic algorithm
with c
Advances in Electrical and Computer Engineering, Vol. 10, No. 2, pp.
87-93, 2010.

[10] B. Liu, L. Wang, Y.H. Jin, “An effective PSO-based memetic
algorithm for flow shop sc
Man, and Cybernetics, Part B: Cybernetics, Vol. 37, No. 1, pp. 18-27,
2007.

[11] J. Kennedy, Y. Shi, R. Eberhart, Swarm Intelligence. San Diego, CA,
USA: A

[12] E. Rashedi, H. Nezamabadi, S. Saryazdi, “GSA: A gravitational
search algorithm,” Information
2248, 2009.

[13] E. Rashedi, H. Nezamabadi, S. Saryazdi, “BGSA: Binary
gravitational

Mathematical Software, Vol. 14, No. 1, pp. 88-100, 1988.
[15] I.M. Sobol, “Distribution of points in a cube and approximate

evaluation of integrals,” Zhurnal Vychislitelnoi Ma

Turkish Journal of Electrical Engineering and Computer Sciences,
Vol. 21, No. 1, pp. 174-185, 2013.

[17] H. Maaranen, K. Miettinen, M.M. Makela, “Quasi-random initial
population for genetic algorithms,”

lications, Vol. 47, No. 12, pp. 1885-1895, 2004.
[18] S.A. Kazarlis, A.G. Bakirtzis, V.A. Petridis, “A genetic algorithm

solution to the unit commitment problem,” IEEE
Power Systems, Vol. 11, No. 1, pp. 83-92, 1996.

[19] E. Rashedi, H. Nezamabadi, S. Saryazdi, “Filter modeling using
gravitational search algorithm,” Engineering Appl
Intelligence, Vol. 24, No. 1, pp. 117-122, 2011.

[20] P.N. Suganthan, N. Hansen, J.J. Liang, K.Deb, Y.P. Chen, A. Auger,
S. Tiwari, “Problem definitions and evaluation
2005 special session on real parameter optimization,” 2005 IEEE
Congress on Evolutionary Computation (CEC 2005), pp. 1-5, 2005.

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:36:54 (UTC) by 52.87.200.112. Redistribution subject to AECE license or copyright.]

