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1Abstract—In this paper, findings and analysis detail the 

implementation of fault tolerance services into a goal-oriented 
multi-agent systems development platform. Fault tolerance 
services are used to provide replication-based fault tolerance 
policies (i.e. static and adaptive) to multi-agent systems.  This 
approach provided flexibility and reusability to multi-agent 
systems because fault tolerance policies were implemented as 
reusable plan structures. Thus, whenever an agent was needed 
to be made fault-tolerant, plans for fault tolerance policies 
were simply activated by sending a request message.  
 

Index Terms—availability, fault tolerance, multi-agent 
systems, replication, redundancy, software agents. 

I. INTRODUCTION 

Multi-agent systems (MAS) are vulnerable to failures that 
can occur when a system crashes and/or there are shortages 
of system resources.  In addition, MAS is susceptible to 
failures when communications links are either interrupted or 
disconnected. Moreover, MAS is directly affected by errors 
in programs. Therefore, any fault in an agent can be 
disseminated thus creating systems failures in the MAS.  It 
would appear that fault tolerance is a necessary paradigm 
that must be taken into consideration for the multi-agent 
development environment.  

There are many different types of multi-agent systems 
development platforms; however, only a limited number of 
platforms offer fault tolerance [1-9]. Those multi-agent 
systems development platforms provide beneficial solutions 
to the problem of fault tolerance in multi-agent systems. 
However, certain techniques used for 
troubleshooting/solving specific problems can force a 
specific multi-agent system to become less flexible and 
unreusable. 

The basis of this research is to provide fault tolerance to 
MAS by implementing replication-based fault tolerance 
policies as reusable agent plans. The details of static and 
adaptive fault tolerance policies are embedded into reusable 
agent plans using Hierarchical Task Network (HTN) 
formalism [10]. By doing so, fault tolerance policies can be 
implemented as distinct plans. Hence, an agent is able to 
change its fault tolerance policy autonomously by changing 
its fault tolerance plans. Moreover, whenever an agent needs 
to be made fault-tolerant, plans are activated by sending a 
request message. That message is sent to the agent by a user 
or another agent to make it fault-tolerant. Even if these plans 
are not included in the plan library, they would still be sent 
to the agent to be fault-tolerant. 

In order to apply a static fault tolerance policy in MAS, 

the replication degree and strategy are defined before the 
application starts. In adaptive fault tolerance policies, the 
replication degree and strategy are defined at runtime. Data 
illustrate the most effective approach is to apply the static 
fault tolerance policy to less critical agents, agents that 
exhibit predictable behaviors, and whose organizational 
structure does not change at run time. In addition, it is 
necessary to apply adaptive fault tolerance policies to the 
critical agents or agents having their criticalities understood 
during the organization’s lifetime, and the organization that 
its structure changes during run time.  Both fault tolerance 
policies are simultaneously applied to different replica 
groups of a multi-agent system [11].   

 
 

The necessary services used by fault tolerance policies are 
identified and how these services are implemented and then 
integrated into a multi-agent system development 
framework are explained. The services to support 
replication-based fault-tolerant systems such as replication 
service, group communication service, and membership 
service are essential in constructing the infrastructure for 
supporting fault tolerance policies.   

The remainder of this paper is structured as follows: 
Section 2 presents the context of the research and  
introduces an abstract architecture for applying fault 
tolerance in MAS and the SEAGENT platform [12-13] (A 
Semantic Web Enabled Multi-Agent Development 
Framework) architecture in which fault tolerance services 
are developed; Section 3 describes how to implement fault-
tolerant services for a multi-agent system using the 
SEAGENT platform; Section 4 presents a performance 
analysis; and lastly Section 5 provides the conclusion.  

II. CONTEXT OF THIS WORK 

In any computer system, both processes and 
communication channels sometimes do fail. As a result, they 
depart from desirable behaviors. The failure model defines 
ways in which failure may occur in order to provide a more 
accurate understanding of the effects of the failures. In this 
work, the failure model is defined as fail-silent model where 
the considered system allows only crash failures [14]. 

A. Types of Fault Tolerance Techniques Considered 

A number of design techniques have been proposed in the 
literature to implement fault-tolerant systems. Specifically, 
replication-based techniques that mask process or agent 
failures from the users of the system are considered here. 
There are two main techniques for replication: the passive 
replication technique and the active replication technique.  
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In active replication, there are multiple copies of a service 
or an agent (called replicas) processing requests sent by 
clients and synchronizing internal states with all other 
replicas. Group communication provides multi-point-to-
multi-point communication by organizing replicas in groups 
[15]. If a primary service or agent fails, any replica can 
become a primary service provider.  

In the passive replication technique, there are multiple 
copies of a service or an agent (replicas); however, primary 
services (leader) only respond to a client’s requests. Also, 
leaders periodically update the replicas’ states. If a leader 
fails, a replica can be elected as a new leader. 

The replication service of a fault-tolerant multi-agent 
system can execute an active or passive replication 
technique. Active and passive replication techniques mainly 
focus on coordination within a group. In addition to 
coordination requirements, the replication degree, or the 
number of replicas within a group, is a crucial concept for 
applying replication-based fault tolerance policies. One key 
challenge is to understand how the system will decide on the 
number of replicas at runtime. The replication degree can be 
identified adaptively or statically. In a static fault tolerance 
policy, the replication degree is set by a programmer during 
the initialization period. In an adaptive fault tolerance 
policy, the leader agent determines the replication degree 
based on the system’s resources. This process employs an 
observation service that observes the agents’ behaviors as 
well as the availability of resources, and adaptively 
reconfigures the system’s resources [11]. 

There are many different systems and research projects 
that have proposed a range of services to support 
replication-based fault-tolerant systems [16-18] such as 
global time service, replication service, group 
communication service, failure detector and membership 
service. These services form the infrastructure in order to 
enhance fault tolerance in distributed and multi-agent 
systems. 

B. An Agent-Based Architecture 

In the following section, a rough sketch of the proposed 
architecture is presented for providing fault tolerance to 
MAS. This architecture is built on a goal-oriented MAS 
architecture. The MAS architecture is supplemented with 
the Foundations for Physical Agents’ (FIPA) software 
standards specifications for agent based systems.  

The main modules of a goal-oriented agent [19] are its 
goal manager and planner. A goal manager identifies the 
goal extracted from an incoming FIPA-ACL message and 
initializes the plan (a partially-ordered sequence of primitive 
tasks) of this goal. Next, a planner schedules and executes 
the plan in a planning formalism [20]. If a users’ aim is to 
integrate services for supporting replication-based fault-
tolerant systems into a goal-oriented FIPA-based 
architecture, then he/she has to identify new goals coming 
from fault tolerance requirements, plans of these goals, and 
reusable services that can be used by plans of these goals. 

A replication-based fault tolerant MAS consists of leader 
agents and their replicas that run on computers. In any event 
that a computer crashed or is disconnected from a network, 
leader agents and their replicas could fail.  

In Fig. 1, a leader agent and its replica are presented. The 

aim of the leader agent is to be fault-tolerant against any 
crash failures; therefore, it has the Fault Tolerance plan and 
Adaptive Fault Tolerance plan in which adaptive replication 
is performed. In addition, it uses necessary services such as 
the failure detector, the membership service, the group 
communication service, the replication service, and its 
subservices such as the cloning service and the leader 
election service. 

 
Figure 1. An abstract architecture of a replication-based fault tolerant MAS 

In a static fault tolerance policy, the main goal is to keep 
the group’s replication degree constant unless a request is 
received for altering it. If a failure report (i.e., it reports a 
replica has crashed) is received from the failure detector, the 
Fault Tolerance plan is executed by the leader in order to 
reach the same replication degree when the application 
starts. The Fault Tolerance plan uses the cloning service for 
replication of new replicas in order to keep the replication 
degree constant.  

In order to apply an adaptive fault tolerance policy, the 
environment must be monitored to collect data and then data 
must be analyzed to adapt agent systems. Therefore, an 
agent called the adaptive replication manager (illustrated in 
Fig. 1) is used. The goal of the adaptive replication manager 
is to dynamically compute the criticalities of agents 
applying the adaptive fault tolerance policy in an agent 
system and initiate the Calculate Criticalities of Agents plan 
to achieve this goal. The quantities that define the 
criticalities of agents are used for calculations to share the 
limited resources between agent replica groups. In the 
Calculate Criticalities of Agents plan, an observation service 
is used.  

The observation service collects data from the 
environment and then processes it to identify critical agents. 
The quantity that defines a level of agent’s criticality is sent 
within the content of a FIPA-ACL message to the leader 
agent(s) applying the adaptive fault tolerance policy. When 
the leader receives this message, it executes the Adaptive 
Fault Tolerance plan. Thus, the leader creates new replicas 
or removes replicas with respect to the content of the FIPA-
ACL message received from the adaptive replication 
manager.  

In order to provide fault tolerance to multi-agent systems, 
the group communication service, the membership service, 
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the failure detector, the observation service, and the 
replication service were implemented in the SEAGENT 
Platform. In Section 3, it is explained in detail how these 
services are implemented. In the next section, SEAGENT 
layered architecture is presented. 

C. Layered Architecture of the SEAGENT Platform 

In order to integrate fault tolerance services into the 
SEAGENT platform, SEAGENT’s layered software 
architecture needs to be introduced briefly.  

The initial layer of the platform architecture is the 
platform's communication infrastructure which incorporates 
FIPA's Agent Communication and Agent Message 
Transport specifications for agent messaging. This layer 
transmits messages by using FIPA-ACL; however, it only 
supports FIPA RDF content language in order to carry 
semantic web enabled content [12-13]. FIPA standards are 
not concerned with the message transport protocol inside an 
agent platform. Agents in the SEAGENT platform 
communicate by using Java Remote Method Invocation 
(RMI). Moreover, Internet Inter ORB Protocol (IIOP) is 
used to communicate with different agent platforms. The 
realization of this protocol uses Java RMI over IIOP. 

The second layer of SEAGENT architecture includes 
packages in order to construct the functionality of the 
platform. For example, the Agency package manages the 
internal functionality of an agent like an agent operating 
system. It includes dispatcher, matcher, scheduler and 
executer modules. Each module runs concurrently as a 
separate Java thread and uses common data structures. The 
dispatcher module sends outgoing messages and retrieves 
incoming messages. It resolves the incoming FIPA-ACL 
message into a new objective, puts it in the objective queue 
and notifies the matcher. Next, the matcher module matches 
the incoming objective to a plan. Then, the scheduler 
module determines each task’s execution time. The 
scheduler and executer modules use the waiting and ready 
queues as common data structures. If a task is ready to be 
executed, the scheduler deletes it from the waiting queue 
and places it in the ready queue. The executor module then 
executes the ready tasks [12-13].  

In the Core Functionality Layer, there are service sub-
packages which form standard MAS services such as the 
Semantic Service Matcher, the Directory Facilitator (DF) 
Service, the Ontology Management Service, and the Agent 
Management Service (AMS) [12-13]. 

The third layer of the overall architecture includes generic 
agent plans that are divided into two generic packages: 
Generic Behaviors and Generic Semantic Behaviors. The 
Generic Behavior package contains independent domain 
reusable behaviors such as Calculation of Criticalities of 
Agents, Leader Election, Fault Tolerance, Adaptive Fault 
Tolerance, and Cloning Service (Replication Service) 
behaviors for fault-tolerance. The Generic Semantic 
Behaviors package only contains the semantic web related 
behaviors. In the following section, it is explained in detail 
how to implement fault tolerance services.  

III. IMPLEMENTING FAULT TOLERANCE SERVICES 

IN THE SEAGENT PLATFORM 

In order to implement fault-tolerant services in the 

SEAGENT Platform, specific services carried out in the 
Agency Package that could cause performance bottleneck 
were identified if implemented as reusable plans.  

For example, when a failure detector (illustrated in Fig. 1) 
was implemented as a reusable plan, the scheduled actions 
were not executed in a timely manner due to the multi-
threaded structure in the SEAGENT platform. The actions 
were held in the waiting and ready queues of the scheduler 
and executer modules delayed by the execution of other 
tasks; therefore, when new messages arrived, the 
dispatcher’s thread started to execute its task. As a result, 
the actions of the periodic tasks could not be executed on 
time. For example, the heartbeat mechanism of the failure 
detector had to periodically multicast alive messages. 
However, when the time came for the heartbeat mechanism 
of the failure detector to send alive messages, some requests 
were fetched by the dispatcher. Consequently, the heartbeat 
mechanism was not able to send alive messages on time 
because of the requests needed to be processed.  It is evident 
that implementing the failure detector and the services that 
required periodic tasks created a performance bottleneck in 
the case of modeling them as reusable plans.  

A membership service maintains a list of agents which are 
currently in a replica group. It depends on a failure detector 
to reach a decision about the group’s membership. The 
membership service and the failure detector (illustrated in 
Fig. 1) were implemented in the SEAGENT’s Agency 
Package. Thus some functions and data structures are shared 
without introducing extract communication overhead. 

SEAGENT also supports a multicasting feature that can 
implement the group communication service (highlighted in 
Fig. 1). However, this basic multicasting mechanism 
delivers requests in an arbitrary order. In multicasting, an 
ordering sequence must be provided to fault-tolerant 
systems since consistency between replicas is built by 
performing incoming requests in order. The total ordering 
scheme provides the ordering sequence and is implemented 
in the Agency package to provide an ordered multicasting 
mechanism of the group communication service.   

As aforementioned in previous sections, the adaptive    
replication manager’s responsibility is to compute the 
agent’s criticality and associates with the replication service 
to dynamically adapt resource allocation. It has the 
Calculate Criticalities of Agents plan (illustrated in Fig. 1) 
which is implemented in the Generic Behaviors Package of 
the Reusable Behavior Layer of SEAGENT. The Calculate 
Criticalities of Agents plan uses an observation service that 
is implemented as a reusable plan in the Generic Behaviors 
Package. 

The main priorities of the replication service are to create 
new replicas, destroy agents and apply fault tolerance 
policies such as static and adaptive ones. The replication 
service provides certain subservices such as cloning [21-22], 
and uses other services such as membership service, group 
communication service, and failure detector (illustrated in 
Fig. 1) in order to achieve its purposes. The replication 
services’ internal mechanisms change in accordance with 
the replication techniques, such as active and passive 
replication techniques. The replication service is 
implemented as reusable plans in the Generic Behaviors 
Package of SEAGENT. Thus, this makes the agents flexible 
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in terms of fault tolerance, since they are able to change a 
preset plan at run-time via a FIPA-ACL message. 

When fault tolerance services are integrated into the 
SEAGENT platform, an agent can be replicated with 
different strategies. Each replica group has a leader which 
coordinates the group and communicates with other agents. 
When a leader fails, a new replica is selected as a new leader 
in the replica group.  

The next section presents how the membership service 
and failure detector are implemented in the SEAGENT’s 
agency package. 

A. Implementing Failure Detector and Membership Service 
in the Agency Package 

The membership service employs a failure detector to 
determine the group’s membership. The decision made by 
the membership service includes a view which is a list of 
replicas of a group. Reliable multicast services multicast 
messages to members in a current view. 
    In this study, the failure detector was implemented by 
using an unreliable failure detector approach [23]. Each 
agent has a failure detector that exchanges heartbeats 
periodically; therefore, the dispatcher module uses timers to 
implement the failure detection mechanism. One of the 
timers (Heartbeat_Timer) periodically multicasts a heartbeat 
message to group members.  Definitions of methods and 
data structures used for implementing the failure detector 
and a pseudo code of Heartbeat_Timer are presented in Fig. 
2 and Fig. 3, respectively. 

 
Figure 2. Definitions used for implementing the failure detector 

 

Figure 3. Algorithm for Heartbeat_Timer of the failure detector 

A heartbeat message is prepared as a FIPA-ACL message 
and contains a performative (INFORM), which includes the 
name of the sender, the names of the receivers, the type of 
language, the contents of the act, the actor, and the number 
of heartbeats as an argument. The message includes FIPA 
RDF content language. A heartbeat message sent by AgentA 
is as follows:  

( 
INFORM 
 :Sender AgentA 
 :Receiver all members of the group 
 :Language FPA RDF 0 
 :Content  
<rdf:RDF 
… 
    <j.0:act>alive</j.0:act> 
    <j.0:actor>EtmenA@aegeants.com</j.0:actor> 
    <j.0:argument>0</j.0:argument> 
    </rdf:Description> 
… 
… 
</rdf:RDF> 
) 
When a heartbeat message is received by agents in a 

group, each agent’s timer (called Failure_Detector_Timer) 
begins (line 4 in the failure detector’s algorithm illustrated 
in Fig. 4). Next, each Failure_Detector_Timer waits to 
receive a new heartbeat message sent from the same agent 
that sent the previous heartbeat message.  

 
Figure 4. Algorithm for implementing the failure detector 

The algorithm of Failure_Detector_Timer is presented in 
Fig. 5. If a new heartbeat message is not received during 
timeout, that agent’s state is defined as SUSPECT. In this 
case, an INFORM message is sent to group members. The 
content of the message contains SUSPECT as the act, the 
sender’s name as the actor, and the suspected agent’s name 
as the argument (lines 6-7 in Fig.5). If agents detect any 
agent on timeout is suspect, they place the replica in 
question on their suspect_vectors.  
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Figure 5. Algorithm for Failure _Detector_Timer of the failure detector 

The agents’ dispatcher modules extract information from 
the incoming messages both the names of suspected 
members and the names of agents that suspect the members. 
According to this information, the suspect_vector of each 
member agent is updated.  If a member receives a heartbeat 
message from a suspected member, it then multicasts a 
message informing that it has refuted a suspected agent 
(lines 2-3 in Fig. 5).  

If members of a group agree that the agent is suspect (line 
7 in Figure 4), each agent multicasts a FIPA-ACL message 
that states the suspected agent will be deleted (line 8 in 
Fig.4).  When a member agent receives DELETE message, 
it extracts the member’s name(s) to be deleted and then 
updates the delete_member_vector with this information. If 
all members decide to delete the suspected agent, the 
suspected agent is removed from the 
membership_data_structure and heartbeat_data_structure 
(line 11-12 in Fig. 4).  

Since the deleted member is no longer part of the group, it 
no longer receives multicasting messages. The leader sends 
a failure report in a FIPA-ACL message to itself in order to 
activate the Fault Tolerance plan (line 16 in Fig 4). If the 
leader is deleted from the group, the Leader Election plan is 
activated in order to select a new leader by sending the 
Leader Failed message (line 13-14 in Fig 4).  

B. Implementing the Group Communication Service in the 
Agency Package 

The SEAGENT’s communication layer is responsible for 
abstracting the platform's communication infrastructure 
implementation and it supports multicasting. The basic 
multicast operation delivers messages to agents in arbitrary 
orders. The ordering scheme is implemented by using a 
sequencer module. Since the dispatcher module is 
responsible for sending and receiving messages, the 
sequencer is implemented in the dispatcher module of the 
Agency package. It assigns a group-specific ascending 
number to a new message whenever it is received from 
another agent. The algorithm for the Sequencer is given in 
Fig. 7, and definitions for the algorithm are given in Fig. 6. 

 

Figure 6. Definitions for the algorithm of the Sequencer module of the 
group communication service 

 

Figure 7. Algorithm for the Sequencer module of the group communication 
service 

C. Implementing  Replication Techniques in the Agency 
Package 

In this study, a passive replication technique and a semi-
active replication technique (a subtype of active replication) 
were implemented so that the agents would show non-
deterministic behaviors due to their multi-threaded internal 
structures. 

 A Semi-active replication technique is employed in 
SEAGENT as follows: When a FIPA-ACL message 
containing a request is received by the leader of the replica 
group, the leader assigns a group specific ascending number 
to the message and multicasts it to the group. It is then 
processed by each replica and forwarded to the dispatcher 
module. If the dispatcher module belongs to the leader, the 
leader sends the response to the agent waiting for the reply. 
Therefore, only the leader provides a response to the 
requesting agent while the actual processing of a request is 
performed by all replicas. In the absence of failures, replicas 
process received messages but do not respond, thus their 
internal state is directly updated by the processing of 
received messages. If any agent finds out that it has lost the 
message, it will then get it from the leader.   

 A passive replication technique is also used to provide 
fault tolerance when an agent’s failure occurs. During a 
fault-free operation, only the leader processes the requests; 
the other replicas merely store the sequence of incoming 
requests. The leader periodically updates its replicas and if a 
leader fails, one of the replicas will take. When the leader 
receives a request message, it assigns a number to the 
message and sends it to the group. In order to update the 
replicas’ states, it serializes the agent’s state. It is then 
written to a file and sent as a byte array to the cloning server 
of each host, where replicas reside. In the presence of a 
leader crash, a replica member receives it from the directory 
and updates its state when selected as a new leader.  

Fault tolerance mechanisms are automatically activated 
when an agent is created. If an agent is created as a fault-
tolerant agent, it is created as a parent. The default 
replication technique is defined as semi-active replication. It 
can be changed to passive replication by simply sending a 
FIPA-ACL request at run time.  

D. Implementing the Replication Service as Reusable Plans 

The replication service creates new replicas, removes 
agents, and applies static and adaptive policies. If a static 
fault tolerance policy is applied to a multi-agent system, the 
replication degree and technique are identified, and the 
application is initialized. If the adaptive fault tolerance is 
applied, the replication degree is identified during course of 
application. However, a group’s replication degree and 
technique can be easily changed by sending a request for a 
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new replication degree and technique.  
1)     Fault Tolerance Plan 

Whichever policy is applied to an agent system, the leader 
still needs to receive a failure report to activate the Fault 
tolerance plan. After a suspected replica is deleted from the 
membership_data_structure, a message containing Failure 
Report is sent to the leader by the failure detector. In this 
case, the leader’s goal matcher receiving this message 
matches it to the Fault  tolerance goal. To achieve this goal, 
the Fault Tolerance plan outlined in Fig.9 is executed to 
keep the same replication degree before the failure occurs. 
Several definitions used in the algorithm of the Fault 
Tolerance plan and the algorithm of this plan are given in 
Fig.8 and Fig. 9, respectively. 

 
Figure 8.Definitions for the task networks used in the algorithm of the Fault 
Tolerance plan 

 
Figure 9. Algorithm of the Fault Tolerance Plan  

The task networks consist of complex tasks, and primitive 
tasks (actions) which may be processed directly. A 
'reduction schema' knowledge defines the decomposition of 
the complex task to the sub-tasks and the information flow 
between these sub-tasks and their parent task. The 
information flow mechanism is as followed: each task 
represents information acquired by a set of provisions; next, 
the execution of a task produces outcomes; and lastly, there 
are links that represent the flow of information between the 
tasks using these provision and outcome slots. After the task 
has been completed, an outcome state is produced. The 
subtasks’ provisions and outcomes can be linked to their 
parent tasks by provision inheritance and outcome 
disinheritance [13]. 

The Fault Tolerance plan’s first task is for the leader to 
check the membership_data_structure to determine how 
many replicas will be needed to produce the same 
replication degree. The difference between the size of the 
membership_data_structure and the replication degree of 
the group equals the number of the replicas needed and is 
the provision of the Create New Replicas task. Thus the link 

between the Increase the Replication Degree task and the 
Create New Replicas task is a provisional link since both 
tasks construct a non-hierarchical task network. 

As soon as the Create New Replicas task is assigned a 
number, it starts to execute the code. In the Create New 
Replicas task, FIPA-ACL messages containing copy 
requests are prepared according to the number and are then 
sent to the agent to activate the Cloning a Replica plan 
(implementing the cloning service as a reusable plan). After 
the copy request messages are received by the leader agent, 
the Cloning a Replica plan is executed. 
2) Cloning Service 

The cloning service is implemented as a reusable plan 
structure. The algorithm for the Cloning a Replica plan 
structure is shown in Fig. 10.   

 
Figure 10. Algorithm of the Cloning a Replica plan implementing the 
cloning service 

The plan’s first task is to ask AMS to find a suitable host 
where new replicas will be placed; afterwards, the IP of the 
host is passed via a provision link and the Clone Itself 
complex task executes the cloning process. In the Clone 
Itself complex task, the cloning server on the remote host 
where the replicated agent will be placed is contacted by 
sending messages using RMI. Before sending RMI 
messages to the cloning server, object serialization of the 
agent state is performed in the first subtask of the Clone 
Itself complex task. The serialized agent’s state is written to 
a file and sent as a byte array to the cloning server of each 
host, where each replica resides. In the Send Agent State 
subtask, several messages using RMI are sent to the cloning 
server at the remote to transfer necessary agent knowledge 
to perform replication.  After sending these RMI messages, 
this task has outcome state OK. In the last subtask of the 
Clone Itself complex task, the Agent Identifier(s) of new 
replica(s) are added to the membership_data_structure and 
heartbeat_data_structure.  The OK outcome state is 
propagated upwards via outcome disinheritance.  

The cloning server places the unserialized agent’s state, 
the agent’s libraries and source code sent in the messages to 
the paths and then executes the agent’s source code. When 
the replica is initiated, it is registered to AMS and ready to 
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achieve its fault tolerance goals. Since it has the current 
version of the leader agent’s state, it also contains the last 
view of the group. It multicasts a JOIN message informing 
the other replicas that it has joined the group. The other 
replicas register the new replica to their 
membership_data_structure and heartbeat_data_structure 
[11]. 

The replica’s only limitation is that it cannot replicate 
itself. Nevertheless, the replica does have the ability to 
replicate and respond to other agents, if it is selected as a 
new leader when the previous leader has crashed.  
3) Leader Election  

 After replicas receive a Leader Failed messages from 
their failure detectors, they execute the Leader Election plan 
to achieve the Elect a New Leader goal (see Fig. 11). In the 
plan’s first task, the first member in the 
membership_data_structure is selected as a new leader as 
indicated by the OK outcome state. The Assignment of the 
Leader task is then enabled via its provision called AID 
(Agent Identifier).  During this task, all replicas send an 
INFORM message to the agent assigned as the leader. The 
OK outcome state is propagated upwards via the outcome 
disinheritance.  

 
Figure 11.  Algorithm of the Leader Election plan 

When the agent selected to be a leader, its mode is set to 
parent. It multicasts an I am the Leader message to the 
group and sends a Failure Report message to itself to 
achieve the Fault Tolerance goal (line 19-22 in Fig. 4). 
Lastly, the Increase the Replication Degree and Create New  
Replicas tasks are executed.  
4) Adaptive Fault Tolerance Plan 

When applying a replication-based fault tolerance policy 
to a system, a programmer will generally statically define 
the parameters before the application starts [1], or they will 
be non-automatically defined at run-time [2]. However, it is 
very difficult to identify which agent(s) needs to be 
replicated, and the replication degree in dynamic and/or 
large scale environments.  

In this performance study, the leader agents use an 
Adaptive Fault Tolerance plan (illustrated in Fig. 1) in 
which an adaptive replication mechanism is performed. The 
adaptive replication manager sends the agent’s criticality (a 
value between 0 and 1) to each leader agent in the content of 
a FIPA-ACL message. It indicates the importance of its 
reliance to a specific agent; therefore, an agent’s criticality 
is important in terms of fault tolerance. Subsequently, if a 
critical agent fails, other agents that rely on that specific 
agent will have difficulty in achieving their individual goals. 
Therefore, critical agents are initialized as fault tolerant 
agents. Since resources are limited in the environment, they 

dynamically and automatically share available resources 
with respect to their criticalities in the environment and they 
replicate themselves on these resources by applying the 
adaptive fault tolerance policy. Thus when a critical agent 
has crashed, their replicas will mask the failure. 

 When the leader agent receives the message including its 
criticality from the adaptive replication manager, it executes 
the Adaptive Fault Tolerance plan and gets its criticality 
value as a provision (outlined in Fig. 12).  

 
Figure 12. Algorithm of the Adaptive Fault Tolerance plan  

The first task of the Adaptive Fault Tolerance plan 
(Increase/Decrease the Replication Degree) is to determine 
the group’s replication degree by using criticality of the 
agent (Wratio) sent by the adaptive replication manager. 
Due to limitation of resources, the new replication degree 
for each leader agent is defined as follows: 
 max)_(deg RWroundedreeR ratio   (1) 

 RNoreeRagentNo _deg_                  (2)                    

Rdegree conveys the replication degree in the current 
sampling period and R_max identifies the number of 
available resources that define the maximum number of 
possible simultaneous replicas. Lastly, No_R gives the 
number of replicas in the group. 

If  is positive, then the outcome state is 

expressed as Increase. When the Create New Replicas task 
identifies the value of  as its provision, 

it executes its code. In the Create New Replicas task, as 
many FIPA-ACL messages containing copy request are 
prepared as the value of  and are then 

sent to the agent itself in order to activate the Cloning a 
Replica plan. After the COPY request messages are received 
by the leader agent, the Cloning a Replica plan is executed. 
New replicas are created; therefore, the replication degree of 
the group reaches to the value of . 

agentNo _

)_deg( RNoreeR 

_deg( NoreeR 

reeRdeg

)R

If  is negative, then the outcome state is 

expressed as Decrease. When the Decrease the Replication 
Degree task identifies the value of as its 

provision, it executes its code to decrease the replication 
degree of the group. In the Decrease the Replication Degree 
task, as many FIPA-ACL messages containing the request to 
decrease the replication degree of the group are prepared as 

agentNo _

)deg_( reeRRNo 
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the value of  and are then sent to the 

agent itself in order to activate the Decreasing Replication 
Degree plan. After the leader receives these messages, it 
executes the Decrease the Replication Degree plan. 

)deg_( reeRRNo 

In the first subtask of this plan, a FIPA message is sent to 
AMS to determine which replica is performing the worst. 
After AMS identifies the agent that is to be removed, the 
next subtask is executed which kills the agent and the 
information related to this agent is deleted from the 
membership_data_structure.  

E. Observation Service and Calculate Criticalities of 
Agents Plan 

Monitoring is necessary in order to acquire specific 
information that determines the criticality of agents. The 
information is acquired from either the system-level such as 
communication load and processing time etc. or the 
application level information such as the importance of 
messages and the role criticalities of the agents [3], [7], [11], 
and [24-25]. 

In order to collect and evaluate criticality related data, a 
replication manager role is proposed. The agent that enacts 
the role of the replication manager is called the replication 
manager agent. It is a centralized agent that controls leader 
agents in the MAS during runtime and is the single point of 
failure. In order to prevent the replication manager from 
failing, it also needs to be replicated (see Fig. 1). 

The replication manager stores the current states of the 
leader agents. It receives criticality related messages sent by 
the leader agents and then forwards extracted data to the 
observation service plan. All data received from leaders is 
stored in a data structure that is updated periodically. 
Afterwards, the criticalities of agents are calculated by using 
the collected data in the Calculate Criticalities of Agents 
plan (illustrated in Fig. 1). How to calculate criticalities of 
agents is explained in [7], [11], [24].  Criticality values of 
leader agents are sent to the leader agents and used in the 
adaptive fault tolerance plan that is implemented as a 
reusable plan using HTN formalism.   

In order to better illustrate how fault-tolerant services are 
implemented and integrated into the SEAGENT platform, a 
performance analysis of the proposed approach is presented 
in the following section. 

IV. A PERFORMANCE ANALYSIS OF THE 

PROPOSED IMPLEMENTATION APPROACH 

The fault tolerance approach presented in this paper has 
been implemented within SEAGENT’s internal architecture. 
In order to evaluate the presented approach, an agent system 
was designed that included library assistant agents and user 
agents that were uniquely designed to query library assistant 
agents. Each library assistant agent monitors a different 
library and has the library knowledge using the library 
ontology. In the case study, each user agent directly sent a 
book request to all of the library assistant agents. The library 
assistant agent initiated only one plan to match the request 
to the book ontology instance(s) and return the matched 
books’ descriptions within a FIPA-ACL message. When the 
user agent received responses from the library assistant 
agents, it selected a library based on the responses and 
presented the result to the user. Each library assistant agent 

was a critical agent for the system’s operation; therefore, it 
was initialized as a fault-tolerant agent [11].  

The agent system was implemented in the SEAGENT 
platform and Java Version 1.5.0. The tests were performed 
on a computer with Intel Core2 Q6600 CPU and 2GB of 
RAM.  

The evaluation consisted of four tests: the cost resulting 
from agent replication as the number of requests increased; 
the cost resulting from agent replication as the number of 
replicas increased; the cost of adding new replicas; and 
lastly the cost of failure recovery in the case of a crash of a 
replica and/or leader. In the next sections, both the tests and 
their results are presented in detail. 

A. The Cost of Replication 

In order to evaluate the cost of replication, the response 
times of a replicated group employing the semi-active 
replication technique were observed. As the number of 
requests sent to the group increased, the number of replicas 
also increased. Therefore, a test environment was 
implemented, which included a library assistant agent leader 
and its replicas in the number range from 5 to 20, and a user 
agent that queried the library assistant agent. In order to 
report the effect of the number of replicas to the response 
time of the system, the user agent sent requests to the leader 
and the response times for queries were measured. The 
response time was calculated by measuring the amount of 
time taken for the user agent to receive the reply from a 
leader agent after sending its request to the leader. The 
results of the first tests are illustrated in Fig. 13. 

 
Figure 13. Evaluation of  the cost of replication as the number of requests 
sent to the replica groups increases 

As indicated by the graphs, the average response times of 
the system applying the semi-active replication increased 
with the number of requests sent in a group. The increase in 
response time was expected, since the number of requests 
sent to the system increased. The leader of the group 
multicasts all incoming requests to the replicas and all 
replicas process these requests. Moreover, as the number of 
replicas increased, the response time of the system 
increased, as seen from Fig. 13.  

In SEAGENT environment, communication module uses 
the RMI based communication infrastructure and all 
functionalities of internal architecture are based on threads 
and implemented as separate modules. Therefore, when all 
agents were created in a single machine, then agents’ 
threads initialized. In addition, the number of the messages 
exchanged increased with the number of agents due to the 
multicasting of request and heartbeat messages. 
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In the second part of the test, the response times of a 
replicated group were observed, as the number of replicas in 
the group increased when the number of requests was set to 
40. In this test, a library assistant agent leader has replicas in 
the number range from 5 to 50. In order to determine the 
effect of the number of replicas to the response time of the 
system, the user agent sent queries to the leader and the 
response times of the queries were measured in this test.  

 

The results of the second test are illustrated in Fig. 14. As 
indicated by the graph, the average response times of the 
system increased exponentially with the number of replicas 
in a group. The increase in response time was expected, 
since all replicas process client requests. Moreover, the 
number of the messages exchanged increased with the 
number of agents due to the multicasting of requests and 
heartbeat messages. Figure 15. Evaluation of the cost of adding new replicas and the cloning 

service 

 

C. Evaluation of Failure Occurrence 

1) Crash of a Replica: 
    In order to observe a replica crash, the replication 
technique was set as semi-active replication and the 
replication degree was set as 5 in the system. Next, a failure 
simulator sent a kill message to one of the replicas. The 
agent receiving the kill message eventually stopped its 
threads.  The group members’ failure detector mechanisms 
detected that one of the replicas had crashed and, removed it 
from their membership_data_structures. As a result, the 
leader sent a Failure Report message to itself. When the 
leader received the Failure Report message, it matched the 
message to the Fault Tolerance plan. The Increase the 
Replication Degree and Create New Replicas actions were 
executed to replicate a new member in the same host. After 
receiving the message from failure detector, all operations 
were executed in a time frame ranging from   30146-32348 
ms. 

Figure 14.  Evaluation of the cost of replication for 40 requests as the 
number of replicas in the group increases 

In replication-based approaches, there are multiple 
replicas of the same agent that run concurrently. The cost of 
the replication of an agent is the sum of the cost of replica 
creation, replica usage, and overheads incurred by the 
coordination of the replicas. While applying static fault 
tolerance, a certain number of resources in a system are 
reserved to provide fault tolerance to multi-agent systems. 
Changing the replication degree may decrease the 
replication cost of an agent as illustrated in Fig. 13 and Fig. 
14. Thus an adaptive fault tolerance policy enables a system 
to automatically change its replication degree in accordance 
to its environment. Findings of the cost of applying the 
adaptive fault tolerance policy were presented in previous 
works [3], [11], [24]. However, the cost resulting from 
monitoring of the environment and the agents’ behaviors is 
inevitable while determining the agents’ criticalities and 
adapting replica groups in an adaptive fault tolerance policy.   

2) Crash of a Leader: 
Also, the system was observed when a leader crashed. In 

order to simulate the presence of failures, the failure 
simulator sent a kill message to the leader, whereby it 
eventually stopped its threads. Upon receiving the Leader 
Failed messages from their failure detectors, they executed 
the Leader Election plan in order to achieve the Election of 
a new Leader goal. According to the plan, the first member 
in the membership_data_structure was selected as the new 
leader. The new leader then sent a Failure Report message 
to itself to achieve the Fault Tolerance goal by executing 
the Fault Tolerance plan. After receiving the message from 
failure detector, all operations were executed in a time frame 
ranging from 44605-47853ms. 

Moreover, it was also possible to evaluate the change of 
the Leader Election plan at run-time. Two plan structures 
were designed for leader election. In the first plan, replicas 
asked AMS to select a new leader in the Ask ID for a New 
Leader task. After receiving the new leader’s AID from 
AMS, all replicas sent an INFORM message to the agent 
assigned  in the Assignment of the Leader task. In the second 
plan, the first member in the membership_data_structure 
was selected as a new leader. It was observed that the 
change of plan structure at run time was possible by 
implementing the following scenario. While the leader and 

B.     Evaluation of the Cloning Service 

The results of the third test are illustrated in Fig. 15. The 
response time is the time it took a leader to receive heartbeat 
messages from new replicas after receiving COPY requests 
for replicating new replicas. As the number of replicas to be 
replicated increased, the amount of time taken to replicate 
new replicas also linearly increased. 
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its replicas were processing the incoming requests, the 
leader was killed. When the replicas received the Leader 
Failed messages from their failure detectors, they executed 
the Leader Election plan. According to the first plan, a new 
leader selected by AMS was identified. In the second part, 
one of the user agents sent a FIPA-ACL request message to 
the leader to change the Leader Election plan. After the 
leader received that message, it was killed by sending a kill 
message. After the replicas executed the Leader Election 
plan, the leader which was the first agent in the 
membership_data_structure was selected as the new leader. 
Thus, it was observed that the Leader Election plan (any 
reusable plan structure in this approach) could be changed 
by sending a request at runtime. 

V.     CONCLUSION 

In this paper, an approach to provide replication-based 
fault tolerance to goal-oriented multi-agent systems was 
presented. In this approach, new goals coming from fault 
tolerance requirements, the plans of these goals, and 
reusable fault tolerance services that could be used by the 
plans of these goals were identified. Implementations of 
fault tolerance services were elaborated and integration of 
these services to a goal-oriented architecture was explained. 

The approach provided flexibility to multi-agent 
organizations in terms of fault tolerance because the fault 
tolerance policies were implemented as reusable plan 
structures. Thus, whenever an agent needed to be made 
fault-tolerant, the action was performed by sending a request 
to that agent. Moreover, this approach was flexible due the 
fact that it was easy to modify existing plans, remove 
unnecessary parts from an existing plan, or create an entire 
new plan. 
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