
Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

Implementing Fault-Tolerant Services in Goal-
Oriented Multi-Agent Systems

Sebnem BORA
Department of Computer Engineering, Ege University, Izmir, Turkey

sebnem.bora @ege.edu.tr

1Abstract—In this paper, findings and analysis detail the

implementation of fault tolerance services into a goal-oriented
multi-agent systems development platform. Fault tolerance
services are used to provide replication-based fault tolerance
policies (i.e. static and adaptive) to multi-agent systems. This
approach provided flexibility and reusability to multi-agent
systems because fault tolerance policies were implemented as
reusable plan structures. Thus, whenever an agent was needed
to be made fault-tolerant, plans for fault tolerance policies
were simply activated by sending a request message.

Index Terms—availability, fault tolerance, multi-agent
systems, replication, redundancy, software agents.

I. INTRODUCTION

Multi-agent systems (MAS) are vulnerable to failures that
can occur when a system crashes and/or there are shortages
of system resources. In addition, MAS is susceptible to
failures when communications links are either interrupted or
disconnected. Moreover, MAS is directly affected by errors
in programs. Therefore, any fault in an agent can be
disseminated thus creating systems failures in the MAS. It
would appear that fault tolerance is a necessary paradigm
that must be taken into consideration for the multi-agent
development environment.

There are many different types of multi-agent systems
development platforms; however, only a limited number of
platforms offer fault tolerance [1-9]. Those multi-agent
systems development platforms provide beneficial solutions
to the problem of fault tolerance in multi-agent systems.
However, certain techniques used for
troubleshooting/solving specific problems can force a
specific multi-agent system to become less flexible and
unreusable.

The basis of this research is to provide fault tolerance to
MAS by implementing replication-based fault tolerance
policies as reusable agent plans. The details of static and
adaptive fault tolerance policies are embedded into reusable
agent plans using Hierarchical Task Network (HTN)
formalism [10]. By doing so, fault tolerance policies can be
implemented as distinct plans. Hence, an agent is able to
change its fault tolerance policy autonomously by changing
its fault tolerance plans. Moreover, whenever an agent needs
to be made fault-tolerant, plans are activated by sending a
request message. That message is sent to the agent by a user
or another agent to make it fault-tolerant. Even if these plans
are not included in the plan library, they would still be sent
to the agent to be fault-tolerant.

In order to apply a static fault tolerance policy in MAS,

the replication degree and strategy are defined before the
application starts. In adaptive fault tolerance policies, the
replication degree and strategy are defined at runtime. Data
illustrate the most effective approach is to apply the static
fault tolerance policy to less critical agents, agents that
exhibit predictable behaviors, and whose organizational
structure does not change at run time. In addition, it is
necessary to apply adaptive fault tolerance policies to the
critical agents or agents having their criticalities understood
during the organization’s lifetime, and the organization that
its structure changes during run time. Both fault tolerance
policies are simultaneously applied to different replica
groups of a multi-agent system [11].

The necessary services used by fault tolerance policies are
identified and how these services are implemented and then
integrated into a multi-agent system development
framework are explained. The services to support
replication-based fault-tolerant systems such as replication
service, group communication service, and membership
service are essential in constructing the infrastructure for
supporting fault tolerance policies.

The remainder of this paper is structured as follows:
Section 2 presents the context of the research and
introduces an abstract architecture for applying fault
tolerance in MAS and the SEAGENT platform [12-13] (A
Semantic Web Enabled Multi-Agent Development
Framework) architecture in which fault tolerance services
are developed; Section 3 describes how to implement fault-
tolerant services for a multi-agent system using the
SEAGENT platform; Section 4 presents a performance
analysis; and lastly Section 5 provides the conclusion.

II. CONTEXT OF THIS WORK

In any computer system, both processes and
communication channels sometimes do fail. As a result, they
depart from desirable behaviors. The failure model defines
ways in which failure may occur in order to provide a more
accurate understanding of the effects of the failures. In this
work, the failure model is defined as fail-silent model where
the considered system allows only crash failures [14].

A. Types of Fault Tolerance Techniques Considered

A number of design techniques have been proposed in the
literature to implement fault-tolerant systems. Specifically,
replication-based techniques that mask process or agent
failures from the users of the system are considered here.
There are two main techniques for replication: the passive
replication technique and the active replication technique.

 113

Digital Object Identifier 10.4316/AECE.2014.03015

1582-7445 © 2014 AECE

[Downloaded from www.aece.ro on Friday, July 04, 2025 at 01:32:57 (UTC) by 172.69.6.190. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

In active replication, there are multiple copies of a service
or an agent (called replicas) processing requests sent by
clients and synchronizing internal states with all other
replicas. Group communication provides multi-point-to-
multi-point communication by organizing replicas in groups
[15]. If a primary service or agent fails, any replica can
become a primary service provider.

In the passive replication technique, there are multiple
copies of a service or an agent (replicas); however, primary
services (leader) only respond to a client’s requests. Also,
leaders periodically update the replicas’ states. If a leader
fails, a replica can be elected as a new leader.

The replication service of a fault-tolerant multi-agent
system can execute an active or passive replication
technique. Active and passive replication techniques mainly
focus on coordination within a group. In addition to
coordination requirements, the replication degree, or the
number of replicas within a group, is a crucial concept for
applying replication-based fault tolerance policies. One key
challenge is to understand how the system will decide on the
number of replicas at runtime. The replication degree can be
identified adaptively or statically. In a static fault tolerance
policy, the replication degree is set by a programmer during
the initialization period. In an adaptive fault tolerance
policy, the leader agent determines the replication degree
based on the system’s resources. This process employs an
observation service that observes the agents’ behaviors as
well as the availability of resources, and adaptively
reconfigures the system’s resources [11].

There are many different systems and research projects
that have proposed a range of services to support
replication-based fault-tolerant systems [16-18] such as
global time service, replication service, group
communication service, failure detector and membership
service. These services form the infrastructure in order to
enhance fault tolerance in distributed and multi-agent
systems.

B. An Agent-Based Architecture

In the following section, a rough sketch of the proposed
architecture is presented for providing fault tolerance to
MAS. This architecture is built on a goal-oriented MAS
architecture. The MAS architecture is supplemented with
the Foundations for Physical Agents’ (FIPA) software
standards specifications for agent based systems.

The main modules of a goal-oriented agent [19] are its
goal manager and planner. A goal manager identifies the
goal extracted from an incoming FIPA-ACL message and
initializes the plan (a partially-ordered sequence of primitive
tasks) of this goal. Next, a planner schedules and executes
the plan in a planning formalism [20]. If a users’ aim is to
integrate services for supporting replication-based fault-
tolerant systems into a goal-oriented FIPA-based
architecture, then he/she has to identify new goals coming
from fault tolerance requirements, plans of these goals, and
reusable services that can be used by plans of these goals.

A replication-based fault tolerant MAS consists of leader
agents and their replicas that run on computers. In any event
that a computer crashed or is disconnected from a network,
leader agents and their replicas could fail.

In Fig. 1, a leader agent and its replica are presented. The

aim of the leader agent is to be fault-tolerant against any
crash failures; therefore, it has the Fault Tolerance plan and
Adaptive Fault Tolerance plan in which adaptive replication
is performed. In addition, it uses necessary services such as
the failure detector, the membership service, the group
communication service, the replication service, and its
subservices such as the cloning service and the leader
election service.

Figure 1. An abstract architecture of a replication-based fault tolerant MAS

In a static fault tolerance policy, the main goal is to keep
the group’s replication degree constant unless a request is
received for altering it. If a failure report (i.e., it reports a
replica has crashed) is received from the failure detector, the
Fault Tolerance plan is executed by the leader in order to
reach the same replication degree when the application
starts. The Fault Tolerance plan uses the cloning service for
replication of new replicas in order to keep the replication
degree constant.

In order to apply an adaptive fault tolerance policy, the
environment must be monitored to collect data and then data
must be analyzed to adapt agent systems. Therefore, an
agent called the adaptive replication manager (illustrated in
Fig. 1) is used. The goal of the adaptive replication manager
is to dynamically compute the criticalities of agents
applying the adaptive fault tolerance policy in an agent
system and initiate the Calculate Criticalities of Agents plan
to achieve this goal. The quantities that define the
criticalities of agents are used for calculations to share the
limited resources between agent replica groups. In the
Calculate Criticalities of Agents plan, an observation service
is used.

The observation service collects data from the
environment and then processes it to identify critical agents.
The quantity that defines a level of agent’s criticality is sent
within the content of a FIPA-ACL message to the leader
agent(s) applying the adaptive fault tolerance policy. When
the leader receives this message, it executes the Adaptive
Fault Tolerance plan. Thus, the leader creates new replicas
or removes replicas with respect to the content of the FIPA-
ACL message received from the adaptive replication
manager.

In order to provide fault tolerance to multi-agent systems,
the group communication service, the membership service,

 114

[Downloaded from www.aece.ro on Friday, July 04, 2025 at 01:32:57 (UTC) by 172.69.6.190. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

the failure detector, the observation service, and the
replication service were implemented in the SEAGENT
Platform. In Section 3, it is explained in detail how these
services are implemented. In the next section, SEAGENT
layered architecture is presented.

C. Layered Architecture of the SEAGENT Platform

In order to integrate fault tolerance services into the
SEAGENT platform, SEAGENT’s layered software
architecture needs to be introduced briefly.

The initial layer of the platform architecture is the
platform's communication infrastructure which incorporates
FIPA's Agent Communication and Agent Message
Transport specifications for agent messaging. This layer
transmits messages by using FIPA-ACL; however, it only
supports FIPA RDF content language in order to carry
semantic web enabled content [12-13]. FIPA standards are
not concerned with the message transport protocol inside an
agent platform. Agents in the SEAGENT platform
communicate by using Java Remote Method Invocation
(RMI). Moreover, Internet Inter ORB Protocol (IIOP) is
used to communicate with different agent platforms. The
realization of this protocol uses Java RMI over IIOP.

The second layer of SEAGENT architecture includes
packages in order to construct the functionality of the
platform. For example, the Agency package manages the
internal functionality of an agent like an agent operating
system. It includes dispatcher, matcher, scheduler and
executer modules. Each module runs concurrently as a
separate Java thread and uses common data structures. The
dispatcher module sends outgoing messages and retrieves
incoming messages. It resolves the incoming FIPA-ACL
message into a new objective, puts it in the objective queue
and notifies the matcher. Next, the matcher module matches
the incoming objective to a plan. Then, the scheduler
module determines each task’s execution time. The
scheduler and executer modules use the waiting and ready
queues as common data structures. If a task is ready to be
executed, the scheduler deletes it from the waiting queue
and places it in the ready queue. The executor module then
executes the ready tasks [12-13].

In the Core Functionality Layer, there are service sub-
packages which form standard MAS services such as the
Semantic Service Matcher, the Directory Facilitator (DF)
Service, the Ontology Management Service, and the Agent
Management Service (AMS) [12-13].

The third layer of the overall architecture includes generic
agent plans that are divided into two generic packages:
Generic Behaviors and Generic Semantic Behaviors. The
Generic Behavior package contains independent domain
reusable behaviors such as Calculation of Criticalities of
Agents, Leader Election, Fault Tolerance, Adaptive Fault
Tolerance, and Cloning Service (Replication Service)
behaviors for fault-tolerance. The Generic Semantic
Behaviors package only contains the semantic web related
behaviors. In the following section, it is explained in detail
how to implement fault tolerance services.

III. IMPLEMENTING FAULT TOLERANCE SERVICES

IN THE SEAGENT PLATFORM

In order to implement fault-tolerant services in the

SEAGENT Platform, specific services carried out in the
Agency Package that could cause performance bottleneck
were identified if implemented as reusable plans.

For example, when a failure detector (illustrated in Fig. 1)
was implemented as a reusable plan, the scheduled actions
were not executed in a timely manner due to the multi-
threaded structure in the SEAGENT platform. The actions
were held in the waiting and ready queues of the scheduler
and executer modules delayed by the execution of other
tasks; therefore, when new messages arrived, the
dispatcher’s thread started to execute its task. As a result,
the actions of the periodic tasks could not be executed on
time. For example, the heartbeat mechanism of the failure
detector had to periodically multicast alive messages.
However, when the time came for the heartbeat mechanism
of the failure detector to send alive messages, some requests
were fetched by the dispatcher. Consequently, the heartbeat
mechanism was not able to send alive messages on time
because of the requests needed to be processed. It is evident
that implementing the failure detector and the services that
required periodic tasks created a performance bottleneck in
the case of modeling them as reusable plans.

A membership service maintains a list of agents which are
currently in a replica group. It depends on a failure detector
to reach a decision about the group’s membership. The
membership service and the failure detector (illustrated in
Fig. 1) were implemented in the SEAGENT’s Agency
Package. Thus some functions and data structures are shared
without introducing extract communication overhead.

SEAGENT also supports a multicasting feature that can
implement the group communication service (highlighted in
Fig. 1). However, this basic multicasting mechanism
delivers requests in an arbitrary order. In multicasting, an
ordering sequence must be provided to fault-tolerant
systems since consistency between replicas is built by
performing incoming requests in order. The total ordering
scheme provides the ordering sequence and is implemented
in the Agency package to provide an ordered multicasting
mechanism of the group communication service.

As aforementioned in previous sections, the adaptive
replication manager’s responsibility is to compute the
agent’s criticality and associates with the replication service
to dynamically adapt resource allocation. It has the
Calculate Criticalities of Agents plan (illustrated in Fig. 1)
which is implemented in the Generic Behaviors Package of
the Reusable Behavior Layer of SEAGENT. The Calculate
Criticalities of Agents plan uses an observation service that
is implemented as a reusable plan in the Generic Behaviors
Package.

The main priorities of the replication service are to create
new replicas, destroy agents and apply fault tolerance
policies such as static and adaptive ones. The replication
service provides certain subservices such as cloning [21-22],
and uses other services such as membership service, group
communication service, and failure detector (illustrated in
Fig. 1) in order to achieve its purposes. The replication
services’ internal mechanisms change in accordance with
the replication techniques, such as active and passive
replication techniques. The replication service is
implemented as reusable plans in the Generic Behaviors
Package of SEAGENT. Thus, this makes the agents flexible

 115

[Downloaded from www.aece.ro on Friday, July 04, 2025 at 01:32:57 (UTC) by 172.69.6.190. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

in terms of fault tolerance, since they are able to change a
preset plan at run-time via a FIPA-ACL message.

When fault tolerance services are integrated into the
SEAGENT platform, an agent can be replicated with
different strategies. Each replica group has a leader which
coordinates the group and communicates with other agents.
When a leader fails, a new replica is selected as a new leader
in the replica group.

The next section presents how the membership service
and failure detector are implemented in the SEAGENT’s
agency package.

A. Implementing Failure Detector and Membership Service
in the Agency Package

The membership service employs a failure detector to
determine the group’s membership. The decision made by
the membership service includes a view which is a list of
replicas of a group. Reliable multicast services multicast
messages to members in a current view.
 In this study, the failure detector was implemented by
using an unreliable failure detector approach [23]. Each
agent has a failure detector that exchanges heartbeats
periodically; therefore, the dispatcher module uses timers to
implement the failure detection mechanism. One of the
timers (Heartbeat_Timer) periodically multicasts a heartbeat
message to group members. Definitions of methods and
data structures used for implementing the failure detector
and a pseudo code of Heartbeat_Timer are presented in Fig.
2 and Fig. 3, respectively.

Figure 2. Definitions used for implementing the failure detector

Figure 3. Algorithm for Heartbeat_Timer of the failure detector

A heartbeat message is prepared as a FIPA-ACL message
and contains a performative (INFORM), which includes the
name of the sender, the names of the receivers, the type of
language, the contents of the act, the actor, and the number
of heartbeats as an argument. The message includes FIPA
RDF content language. A heartbeat message sent by AgentA
is as follows:

(
INFORM
 :Sender AgentA
 :Receiver all members of the group
 :Language FPA RDF 0
 :Content
<rdf:RDF
…
 <j.0:act>alive</j.0:act>
 <j.0:actor>EtmenA@aegeants.com</j.0:actor>
 <j.0:argument>0</j.0:argument>
 </rdf:Description>
…
…
</rdf:RDF>
)
When a heartbeat message is received by agents in a

group, each agent’s timer (called Failure_Detector_Timer)
begins (line 4 in the failure detector’s algorithm illustrated
in Fig. 4). Next, each Failure_Detector_Timer waits to
receive a new heartbeat message sent from the same agent
that sent the previous heartbeat message.

Figure 4. Algorithm for implementing the failure detector

The algorithm of Failure_Detector_Timer is presented in
Fig. 5. If a new heartbeat message is not received during
timeout, that agent’s state is defined as SUSPECT. In this
case, an INFORM message is sent to group members. The
content of the message contains SUSPECT as the act, the
sender’s name as the actor, and the suspected agent’s name
as the argument (lines 6-7 in Fig.5). If agents detect any
agent on timeout is suspect, they place the replica in
question on their suspect_vectors.

 116

[Downloaded from www.aece.ro on Friday, July 04, 2025 at 01:32:57 (UTC) by 172.69.6.190. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

Figure 5. Algorithm for Failure _Detector_Timer of the failure detector

The agents’ dispatcher modules extract information from
the incoming messages both the names of suspected
members and the names of agents that suspect the members.
According to this information, the suspect_vector of each
member agent is updated. If a member receives a heartbeat
message from a suspected member, it then multicasts a
message informing that it has refuted a suspected agent
(lines 2-3 in Fig. 5).

If members of a group agree that the agent is suspect (line
7 in Figure 4), each agent multicasts a FIPA-ACL message
that states the suspected agent will be deleted (line 8 in
Fig.4). When a member agent receives DELETE message,
it extracts the member’s name(s) to be deleted and then
updates the delete_member_vector with this information. If
all members decide to delete the suspected agent, the
suspected agent is removed from the
membership_data_structure and heartbeat_data_structure
(line 11-12 in Fig. 4).

Since the deleted member is no longer part of the group, it
no longer receives multicasting messages. The leader sends
a failure report in a FIPA-ACL message to itself in order to
activate the Fault Tolerance plan (line 16 in Fig 4). If the
leader is deleted from the group, the Leader Election plan is
activated in order to select a new leader by sending the
Leader Failed message (line 13-14 in Fig 4).

B. Implementing the Group Communication Service in the
Agency Package

The SEAGENT’s communication layer is responsible for
abstracting the platform's communication infrastructure
implementation and it supports multicasting. The basic
multicast operation delivers messages to agents in arbitrary
orders. The ordering scheme is implemented by using a
sequencer module. Since the dispatcher module is
responsible for sending and receiving messages, the
sequencer is implemented in the dispatcher module of the
Agency package. It assigns a group-specific ascending
number to a new message whenever it is received from
another agent. The algorithm for the Sequencer is given in
Fig. 7, and definitions for the algorithm are given in Fig. 6.

Figure 6. Definitions for the algorithm of the Sequencer module of the
group communication service

Figure 7. Algorithm for the Sequencer module of the group communication
service

C. Implementing Replication Techniques in the Agency
Package

In this study, a passive replication technique and a semi-
active replication technique (a subtype of active replication)
were implemented so that the agents would show non-
deterministic behaviors due to their multi-threaded internal
structures.

 A Semi-active replication technique is employed in
SEAGENT as follows: When a FIPA-ACL message
containing a request is received by the leader of the replica
group, the leader assigns a group specific ascending number
to the message and multicasts it to the group. It is then
processed by each replica and forwarded to the dispatcher
module. If the dispatcher module belongs to the leader, the
leader sends the response to the agent waiting for the reply.
Therefore, only the leader provides a response to the
requesting agent while the actual processing of a request is
performed by all replicas. In the absence of failures, replicas
process received messages but do not respond, thus their
internal state is directly updated by the processing of
received messages. If any agent finds out that it has lost the
message, it will then get it from the leader.

 A passive replication technique is also used to provide
fault tolerance when an agent’s failure occurs. During a
fault-free operation, only the leader processes the requests;
the other replicas merely store the sequence of incoming
requests. The leader periodically updates its replicas and if a
leader fails, one of the replicas will take. When the leader
receives a request message, it assigns a number to the
message and sends it to the group. In order to update the
replicas’ states, it serializes the agent’s state. It is then
written to a file and sent as a byte array to the cloning server
of each host, where replicas reside. In the presence of a
leader crash, a replica member receives it from the directory
and updates its state when selected as a new leader.

Fault tolerance mechanisms are automatically activated
when an agent is created. If an agent is created as a fault-
tolerant agent, it is created as a parent. The default
replication technique is defined as semi-active replication. It
can be changed to passive replication by simply sending a
FIPA-ACL request at run time.

D. Implementing the Replication Service as Reusable Plans

The replication service creates new replicas, removes
agents, and applies static and adaptive policies. If a static
fault tolerance policy is applied to a multi-agent system, the
replication degree and technique are identified, and the
application is initialized. If the adaptive fault tolerance is
applied, the replication degree is identified during course of
application. However, a group’s replication degree and
technique can be easily changed by sending a request for a

 117

[Downloaded from www.aece.ro on Friday, July 04, 2025 at 01:32:57 (UTC) by 172.69.6.190. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

new replication degree and technique.
1) Fault Tolerance Plan

Whichever policy is applied to an agent system, the leader
still needs to receive a failure report to activate the Fault
tolerance plan. After a suspected replica is deleted from the
membership_data_structure, a message containing Failure
Report is sent to the leader by the failure detector. In this
case, the leader’s goal matcher receiving this message
matches it to the Fault tolerance goal. To achieve this goal,
the Fault Tolerance plan outlined in Fig.9 is executed to
keep the same replication degree before the failure occurs.
Several definitions used in the algorithm of the Fault
Tolerance plan and the algorithm of this plan are given in
Fig.8 and Fig. 9, respectively.

Figure 8.Definitions for the task networks used in the algorithm of the Fault
Tolerance plan

Figure 9. Algorithm of the Fault Tolerance Plan

The task networks consist of complex tasks, and primitive
tasks (actions) which may be processed directly. A
'reduction schema' knowledge defines the decomposition of
the complex task to the sub-tasks and the information flow
between these sub-tasks and their parent task. The
information flow mechanism is as followed: each task
represents information acquired by a set of provisions; next,
the execution of a task produces outcomes; and lastly, there
are links that represent the flow of information between the
tasks using these provision and outcome slots. After the task
has been completed, an outcome state is produced. The
subtasks’ provisions and outcomes can be linked to their
parent tasks by provision inheritance and outcome
disinheritance [13].

The Fault Tolerance plan’s first task is for the leader to
check the membership_data_structure to determine how
many replicas will be needed to produce the same
replication degree. The difference between the size of the
membership_data_structure and the replication degree of
the group equals the number of the replicas needed and is
the provision of the Create New Replicas task. Thus the link

between the Increase the Replication Degree task and the
Create New Replicas task is a provisional link since both
tasks construct a non-hierarchical task network.

As soon as the Create New Replicas task is assigned a
number, it starts to execute the code. In the Create New
Replicas task, FIPA-ACL messages containing copy
requests are prepared according to the number and are then
sent to the agent to activate the Cloning a Replica plan
(implementing the cloning service as a reusable plan). After
the copy request messages are received by the leader agent,
the Cloning a Replica plan is executed.
2) Cloning Service

The cloning service is implemented as a reusable plan
structure. The algorithm for the Cloning a Replica plan
structure is shown in Fig. 10.

Figure 10. Algorithm of the Cloning a Replica plan implementing the
cloning service

The plan’s first task is to ask AMS to find a suitable host
where new replicas will be placed; afterwards, the IP of the
host is passed via a provision link and the Clone Itself
complex task executes the cloning process. In the Clone
Itself complex task, the cloning server on the remote host
where the replicated agent will be placed is contacted by
sending messages using RMI. Before sending RMI
messages to the cloning server, object serialization of the
agent state is performed in the first subtask of the Clone
Itself complex task. The serialized agent’s state is written to
a file and sent as a byte array to the cloning server of each
host, where each replica resides. In the Send Agent State
subtask, several messages using RMI are sent to the cloning
server at the remote to transfer necessary agent knowledge
to perform replication. After sending these RMI messages,
this task has outcome state OK. In the last subtask of the
Clone Itself complex task, the Agent Identifier(s) of new
replica(s) are added to the membership_data_structure and
heartbeat_data_structure. The OK outcome state is
propagated upwards via outcome disinheritance.

The cloning server places the unserialized agent’s state,
the agent’s libraries and source code sent in the messages to
the paths and then executes the agent’s source code. When
the replica is initiated, it is registered to AMS and ready to

 118

[Downloaded from www.aece.ro on Friday, July 04, 2025 at 01:32:57 (UTC) by 172.69.6.190. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

achieve its fault tolerance goals. Since it has the current
version of the leader agent’s state, it also contains the last
view of the group. It multicasts a JOIN message informing
the other replicas that it has joined the group. The other
replicas register the new replica to their
membership_data_structure and heartbeat_data_structure
[11].

The replica’s only limitation is that it cannot replicate
itself. Nevertheless, the replica does have the ability to
replicate and respond to other agents, if it is selected as a
new leader when the previous leader has crashed.
3) Leader Election

 After replicas receive a Leader Failed messages from
their failure detectors, they execute the Leader Election plan
to achieve the Elect a New Leader goal (see Fig. 11). In the
plan’s first task, the first member in the
membership_data_structure is selected as a new leader as
indicated by the OK outcome state. The Assignment of the
Leader task is then enabled via its provision called AID
(Agent Identifier). During this task, all replicas send an
INFORM message to the agent assigned as the leader. The
OK outcome state is propagated upwards via the outcome
disinheritance.

Figure 11. Algorithm of the Leader Election plan

When the agent selected to be a leader, its mode is set to
parent. It multicasts an I am the Leader message to the
group and sends a Failure Report message to itself to
achieve the Fault Tolerance goal (line 19-22 in Fig. 4).
Lastly, the Increase the Replication Degree and Create New
Replicas tasks are executed.
4) Adaptive Fault Tolerance Plan

When applying a replication-based fault tolerance policy
to a system, a programmer will generally statically define
the parameters before the application starts [1], or they will
be non-automatically defined at run-time [2]. However, it is
very difficult to identify which agent(s) needs to be
replicated, and the replication degree in dynamic and/or
large scale environments.

In this performance study, the leader agents use an
Adaptive Fault Tolerance plan (illustrated in Fig. 1) in
which an adaptive replication mechanism is performed. The
adaptive replication manager sends the agent’s criticality (a
value between 0 and 1) to each leader agent in the content of
a FIPA-ACL message. It indicates the importance of its
reliance to a specific agent; therefore, an agent’s criticality
is important in terms of fault tolerance. Subsequently, if a
critical agent fails, other agents that rely on that specific
agent will have difficulty in achieving their individual goals.
Therefore, critical agents are initialized as fault tolerant
agents. Since resources are limited in the environment, they

dynamically and automatically share available resources
with respect to their criticalities in the environment and they
replicate themselves on these resources by applying the
adaptive fault tolerance policy. Thus when a critical agent
has crashed, their replicas will mask the failure.

 When the leader agent receives the message including its
criticality from the adaptive replication manager, it executes
the Adaptive Fault Tolerance plan and gets its criticality
value as a provision (outlined in Fig. 12).

Figure 12. Algorithm of the Adaptive Fault Tolerance plan

The first task of the Adaptive Fault Tolerance plan
(Increase/Decrease the Replication Degree) is to determine
the group’s replication degree by using criticality of the
agent (Wratio) sent by the adaptive replication manager.
Due to limitation of resources, the new replication degree
for each leader agent is defined as follows:
 max)_(deg RWroundedreeR ratio  (1)

 RNoreeRagentNo _deg_  (2)

Rdegree conveys the replication degree in the current
sampling period and R_max identifies the number of
available resources that define the maximum number of
possible simultaneous replicas. Lastly, No_R gives the
number of replicas in the group.

If is positive, then the outcome state is

expressed as Increase. When the Create New Replicas task
identifies the value of as its provision,

it executes its code. In the Create New Replicas task, as
many FIPA-ACL messages containing copy request are
prepared as the value of and are then

sent to the agent itself in order to activate the Cloning a
Replica plan. After the COPY request messages are received
by the leader agent, the Cloning a Replica plan is executed.
New replicas are created; therefore, the replication degree of
the group reaches to the value of .

agentNo _

)_deg(RNoreeR 

_deg(NoreeR 

reeRdeg

)R

If is negative, then the outcome state is

expressed as Decrease. When the Decrease the Replication
Degree task identifies the value of as its

provision, it executes its code to decrease the replication
degree of the group. In the Decrease the Replication Degree
task, as many FIPA-ACL messages containing the request to
decrease the replication degree of the group are prepared as

agentNo _

)deg_(reeRRNo 

 119

[Downloaded from www.aece.ro on Friday, July 04, 2025 at 01:32:57 (UTC) by 172.69.6.190. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

the value of and are then sent to the

agent itself in order to activate the Decreasing Replication
Degree plan. After the leader receives these messages, it
executes the Decrease the Replication Degree plan.

)deg_(reeRRNo 

In the first subtask of this plan, a FIPA message is sent to
AMS to determine which replica is performing the worst.
After AMS identifies the agent that is to be removed, the
next subtask is executed which kills the agent and the
information related to this agent is deleted from the
membership_data_structure.

E. Observation Service and Calculate Criticalities of
Agents Plan

Monitoring is necessary in order to acquire specific
information that determines the criticality of agents. The
information is acquired from either the system-level such as
communication load and processing time etc. or the
application level information such as the importance of
messages and the role criticalities of the agents [3], [7], [11],
and [24-25].

In order to collect and evaluate criticality related data, a
replication manager role is proposed. The agent that enacts
the role of the replication manager is called the replication
manager agent. It is a centralized agent that controls leader
agents in the MAS during runtime and is the single point of
failure. In order to prevent the replication manager from
failing, it also needs to be replicated (see Fig. 1).

The replication manager stores the current states of the
leader agents. It receives criticality related messages sent by
the leader agents and then forwards extracted data to the
observation service plan. All data received from leaders is
stored in a data structure that is updated periodically.
Afterwards, the criticalities of agents are calculated by using
the collected data in the Calculate Criticalities of Agents
plan (illustrated in Fig. 1). How to calculate criticalities of
agents is explained in [7], [11], [24]. Criticality values of
leader agents are sent to the leader agents and used in the
adaptive fault tolerance plan that is implemented as a
reusable plan using HTN formalism.

In order to better illustrate how fault-tolerant services are
implemented and integrated into the SEAGENT platform, a
performance analysis of the proposed approach is presented
in the following section.

IV. A PERFORMANCE ANALYSIS OF THE

PROPOSED IMPLEMENTATION APPROACH

The fault tolerance approach presented in this paper has
been implemented within SEAGENT’s internal architecture.
In order to evaluate the presented approach, an agent system
was designed that included library assistant agents and user
agents that were uniquely designed to query library assistant
agents. Each library assistant agent monitors a different
library and has the library knowledge using the library
ontology. In the case study, each user agent directly sent a
book request to all of the library assistant agents. The library
assistant agent initiated only one plan to match the request
to the book ontology instance(s) and return the matched
books’ descriptions within a FIPA-ACL message. When the
user agent received responses from the library assistant
agents, it selected a library based on the responses and
presented the result to the user. Each library assistant agent

was a critical agent for the system’s operation; therefore, it
was initialized as a fault-tolerant agent [11].

The agent system was implemented in the SEAGENT
platform and Java Version 1.5.0. The tests were performed
on a computer with Intel Core2 Q6600 CPU and 2GB of
RAM.

The evaluation consisted of four tests: the cost resulting
from agent replication as the number of requests increased;
the cost resulting from agent replication as the number of
replicas increased; the cost of adding new replicas; and
lastly the cost of failure recovery in the case of a crash of a
replica and/or leader. In the next sections, both the tests and
their results are presented in detail.

A. The Cost of Replication

In order to evaluate the cost of replication, the response
times of a replicated group employing the semi-active
replication technique were observed. As the number of
requests sent to the group increased, the number of replicas
also increased. Therefore, a test environment was
implemented, which included a library assistant agent leader
and its replicas in the number range from 5 to 20, and a user
agent that queried the library assistant agent. In order to
report the effect of the number of replicas to the response
time of the system, the user agent sent requests to the leader
and the response times for queries were measured. The
response time was calculated by measuring the amount of
time taken for the user agent to receive the reply from a
leader agent after sending its request to the leader. The
results of the first tests are illustrated in Fig. 13.

Figure 13. Evaluation of the cost of replication as the number of requests
sent to the replica groups increases

As indicated by the graphs, the average response times of
the system applying the semi-active replication increased
with the number of requests sent in a group. The increase in
response time was expected, since the number of requests
sent to the system increased. The leader of the group
multicasts all incoming requests to the replicas and all
replicas process these requests. Moreover, as the number of
replicas increased, the response time of the system
increased, as seen from Fig. 13.

In SEAGENT environment, communication module uses
the RMI based communication infrastructure and all
functionalities of internal architecture are based on threads
and implemented as separate modules. Therefore, when all
agents were created in a single machine, then agents’
threads initialized. In addition, the number of the messages
exchanged increased with the number of agents due to the
multicasting of request and heartbeat messages.

 120

[Downloaded from www.aece.ro on Friday, July 04, 2025 at 01:32:57 (UTC) by 172.69.6.190. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

 121

In the second part of the test, the response times of a
replicated group were observed, as the number of replicas in
the group increased when the number of requests was set to
40. In this test, a library assistant agent leader has replicas in
the number range from 5 to 50. In order to determine the
effect of the number of replicas to the response time of the
system, the user agent sent queries to the leader and the
response times of the queries were measured in this test.

The results of the second test are illustrated in Fig. 14. As
indicated by the graph, the average response times of the
system increased exponentially with the number of replicas
in a group. The increase in response time was expected,
since all replicas process client requests. Moreover, the
number of the messages exchanged increased with the
number of agents due to the multicasting of requests and
heartbeat messages. Figure 15. Evaluation of the cost of adding new replicas and the cloning

service

C. Evaluation of Failure Occurrence

1) Crash of a Replica:
 In order to observe a replica crash, the replication
technique was set as semi-active replication and the
replication degree was set as 5 in the system. Next, a failure
simulator sent a kill message to one of the replicas. The
agent receiving the kill message eventually stopped its
threads. The group members’ failure detector mechanisms
detected that one of the replicas had crashed and, removed it
from their membership_data_structures. As a result, the
leader sent a Failure Report message to itself. When the
leader received the Failure Report message, it matched the
message to the Fault Tolerance plan. The Increase the
Replication Degree and Create New Replicas actions were
executed to replicate a new member in the same host. After
receiving the message from failure detector, all operations
were executed in a time frame ranging from 30146-32348
ms.

Figure 14. Evaluation of the cost of replication for 40 requests as the
number of replicas in the group increases

In replication-based approaches, there are multiple
replicas of the same agent that run concurrently. The cost of
the replication of an agent is the sum of the cost of replica
creation, replica usage, and overheads incurred by the
coordination of the replicas. While applying static fault
tolerance, a certain number of resources in a system are
reserved to provide fault tolerance to multi-agent systems.
Changing the replication degree may decrease the
replication cost of an agent as illustrated in Fig. 13 and Fig.
14. Thus an adaptive fault tolerance policy enables a system
to automatically change its replication degree in accordance
to its environment. Findings of the cost of applying the
adaptive fault tolerance policy were presented in previous
works [3], [11], [24]. However, the cost resulting from
monitoring of the environment and the agents’ behaviors is
inevitable while determining the agents’ criticalities and
adapting replica groups in an adaptive fault tolerance policy.

2) Crash of a Leader:
Also, the system was observed when a leader crashed. In

order to simulate the presence of failures, the failure
simulator sent a kill message to the leader, whereby it
eventually stopped its threads. Upon receiving the Leader
Failed messages from their failure detectors, they executed
the Leader Election plan in order to achieve the Election of
a new Leader goal. According to the plan, the first member
in the membership_data_structure was selected as the new
leader. The new leader then sent a Failure Report message
to itself to achieve the Fault Tolerance goal by executing
the Fault Tolerance plan. After receiving the message from
failure detector, all operations were executed in a time frame
ranging from 44605-47853ms.

Moreover, it was also possible to evaluate the change of
the Leader Election plan at run-time. Two plan structures
were designed for leader election. In the first plan, replicas
asked AMS to select a new leader in the Ask ID for a New
Leader task. After receiving the new leader’s AID from
AMS, all replicas sent an INFORM message to the agent
assigned in the Assignment of the Leader task. In the second
plan, the first member in the membership_data_structure
was selected as a new leader. It was observed that the
change of plan structure at run time was possible by
implementing the following scenario. While the leader and

B. Evaluation of the Cloning Service

The results of the third test are illustrated in Fig. 15. The
response time is the time it took a leader to receive heartbeat
messages from new replicas after receiving COPY requests
for replicating new replicas. As the number of replicas to be
replicated increased, the amount of time taken to replicate
new replicas also linearly increased.

[Downloaded from www.aece.ro on Friday, July 04, 2025 at 01:32:57 (UTC) by 172.69.6.190. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 3, 2014

its replicas were processing the incoming requests, the
leader was killed. When the replicas received the Leader
Failed messages from their failure detectors, they executed
the Leader Election plan. According to the first plan, a new
leader selected by AMS was identified. In the second part,
one of the user agents sent a FIPA-ACL request message to
the leader to change the Leader Election plan. After the
leader received that message, it was killed by sending a kill
message. After the replicas executed the Leader Election
plan, the leader which was the first agent in the
membership_data_structure was selected as the new leader.
Thus, it was observed that the Leader Election plan (any
reusable plan structure in this approach) could be changed
by sending a request at runtime.

V. CONCLUSION

In this paper, an approach to provide replication-based
fault tolerance to goal-oriented multi-agent systems was
presented. In this approach, new goals coming from fault
tolerance requirements, the plans of these goals, and
reusable fault tolerance services that could be used by the
plans of these goals were identified. Implementations of
fault tolerance services were elaborated and integration of
these services to a goal-oriented architecture was explained.

The approach provided flexibility to multi-agent
organizations in terms of fault tolerance because the fault
tolerance policies were implemented as reusable plan
structures. Thus, whenever an agent needed to be made
fault-tolerant, the action was performed by sending a request
to that agent. Moreover, this approach was flexible due the
fact that it was easy to modify existing plans, remove
unnecessary parts from an existing plan, or create an entire
new plan.

REFERENCES
[1] A. Fedoruk and R. Deters, “Improving fault-tolerance by replicating

agents,” Proceedings of First International Joint Conference on
Autonomous Agents and Multi-Agent Systems, Bologna, Italy, 2002.

[2] J. Ren, M. Cukier, P. Rubel, W. Sanders, D. Karr,” Building
dependable distributed applications using AQuA,” Proceeding of the
4th IEEE International Symp. On High Assurance Systems
Engineering, 1999, pp. 189-196.

[3] Z. Guessoum, M. Ziane, and N. Faci, “Monitoring and organizational-
level adaptation of multi-agent systems,” Third International Joint
Conference on Autonomous Agents - AAMAS’04, ACM, New York
City, 2004, pp. 514-522.

[4] S. Kumar, P. Cohen, and H. J. Levesque, “ The adaptive agent
architecture: Achieving fault-tolerance using persistent broker teams,”
Proceedings of the Fourth International Conference on Multi-Agent
Systems, 2000.

[5] Klein and C. Dallarocas, “Exception handling in agent systems,” O.
Etzioni, J. P. Muller. and J. M. Bradshaw editors, Proceedings of the
Third International Conference on Agents (Agents’99), Seattle, WA,
1999, pp. 62-68.

[6] S. Hagg, “A sentinel approach to fault handling in multi-agent
systems,” Proceedings of the second Australian Workshop on
Distributed AI, in conjunction with the Fourth Pacific Rim
International Conference on Artificial Intelligence (PRICAI’96),
Cairns, Australia, 1996.

[7] Z. Guessoum , J.-P. Briot, Z. Charpentier, S. Aknine, O. Marin, and P.
Sens, “Dynamic and adaptive replication for large-scale reliable
multi-agent systems,” Proc. ICSE’02 First International Workshop on
Software Engineering for Large-Scale Multi-Agent Systems
(SELMAS’02), ACM. Orlando FL, U.S.A, 2002.

[8] Z. Guessoum, and J.–P. Briot, “From active objects to autonomous
agents,” IEEE Concurrency, 7(3), pp. 68-76, 1999.

[9] N. Faci, Z. Guessoum, and O. Marin, “DimaX: A fault tolerant multi-
agent platform,” Proc. ICSE’06 Fifth International Workshop on
Software Engineering for Large-Scale Multi-Agent Systems
(SELMAS’06), ACM. Shangai, China, 2006.

[10] K. Erol, J. Hendler, D. S. Nau, R. Tsuneto, “A critical look at critics
in HTN planning,” Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI-95), 1995, pp. 1592-
1598.

[11] S. Bora and O. Dikenelli, “Implementing a multi agent organization
that changes its fault tolerance policy at run-time,” Proceedings of
ESAW’05, Lecture Notes in Computer Science, Berlin, Germany,
Department of Computer Engineering Ege University, Springer
Verlag, 2006.

[12] O. Dikeneli et al., “SEAGENT: A platform for developing semantic
web based multi agent systems,” Fourth International Joint
Conference on Autonomous Agents - AAMAS05, 2005.

[13] O. Gurcan, G. Kardas, O. Gumus, E. E. Ekinci, and O. Dikenelli, “A
planner for implementing semantic service agents based on semantic
web services iniative architecture,” The Workshop on Service-
Oriented Computing and Agent-based Engineering (SOCABE’06),
2006.

[14] D. Powell, “Delta-4: A generic architecture for dependable distributed
computing,” in Springer Verlag, 1991.

[15] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group communication
specifications: A comprehensive study,” ACM Computing Surveys
33(4), pp. 1-43, 2001.

[16] F. Cristian, “Fault-tolerance in the Advanced Automation System,”
20th International Conference on Fault-Tolerant Computing,
Newcastle upon Tyne, England, 1990.

[17] S. Mishra, Consul: A Communication Substrate for Fault-tolerant
Distributed Programs. PhD thesis, Dept. of Computer Science, Univ.
of Arizona, Tuscon, Arizona 1992.

[18] N. Elmootazbellah and W. Zwaenepoel, “Replicated distributed
processes,” Proceedings of the Twenty-Second International
Symposium on Fault Tolerant Computing (FTCS-22), 1992, pp. 18-
27.

[19] M. Stollberg and F. Rhomberg, Survey on Goal-driven Architectures.
Technical Report, 2006.

[20] M. Paolucci, D. Kalp, A. Pannu, O. Shehory, and K. Sycara , “A
planning component for RETSINA agents,” Intelligent Agents VI,
LNAI 1757, N. R. Jennings and Y. Lesperance, eds., Springer Verlag,
2000.

[21] O. Shehory, K. Sycara, P. Chalasani, and S. Jha, “Agent cloning: An
approach to agent mobility and resource allocation,” IEEE
Communications, Vol. 36, No. 7, pp. 58-67, 1998.

[22] K. Decker, K. Sycara, and M. Williamson, “Cloning for intelligent
adaptive information agents,” The Second Australian Workshop on
Distributed Artificial Intelligence, Lecture Notes in Computer
Science, Springer Verlag, 1996, pp. 63-75,

[23] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM, Vol.43, No.2, pp. 225-267,
1996.

[24] S. Bora, and O. Dikenelli, “Applying feedback control in adaptive
replication in fault tolerant multi-agent organizations,” Proc. ICSE’06

[25] Fifth International Workshop on Software Engineering for Large-
Scale Multi-Agent Systems (SELMAS’06), ACM. Shangai, China,
2006.

[26] S. Bora and O. Dikenelli, “Experience with feedback control
mechanisms in self-replicating multi-agent systems,” Proceedings of
5th International Central and Eastern European Conference on Multi-
Agent Systems (CEEMAS’07), Lecture Notes in Computer Science,
Springer Verlag, 2007, pp. 133-142.

 122

[Downloaded from www.aece.ro on Friday, July 04, 2025 at 01:32:57 (UTC) by 172.69.6.190. Redistribution subject to AECE license or copyright.]

