
Advances in Electrical and Computer Engineering Volume 14, Number 1, 2014

Visibility-based Planners for Mobile Robots
Capable to Handle Path Existence Queries in

Temporal Logic

Mihai POMARLAN
Politehnica University of Timişoara, 300006, Romania

mihai.pomirlan@etc.upt.ro

1Abstract—Over the past few years, sampling based planner

algorithms have been applied to planning queries formulated
in path existence temporal logic, a formal system that allows
more complex specifications on a solution path and is useful for
task planning for mobile robots or synthesizing controllers for
dynamical systems. In this paper, we extend the visibility
heuristic to planners capable to handle finite path existence
temporal logic queries. Our interest is justified by the visibility
heuristic's ability to construct small roadmaps that are fast to
search. We find that the visibility heuristic must be amended so
that it can reliably handle temporal logic queries and we
propose a suitable modification of the heuristic. We then
present a method to extract a solution path from a roadmap, if
such a solution exists. Finally, we show how the planner can be
used to generate looping paths by augmenting it with a gap
reduction step.

Index Terms—collision avoidance, computational efficiency,
mobile robots, motion planning, reachability analysis, robot
motion.

I. INTRODUCTION

The motion planning problem for a robotic system (like a
manipulator arm or a mobile robot) is typically formulated
as the requirement to find a path between a start and a goal
configuration, such that following the path does not result in
the robot colliding with obstacles in its work environment.
We'll thereafter refer to such problems as point-to-point
planning queries, and the methods used to solve them as
point-to-point planners. However, the tasks a robot may be
asked to perform, especially if it aims for some degree of
autonomy, are often more complex than simple point-to-
point queries and involve sequences of actions, each with
different constraints [1]. For example, a robot might need to
carry a glass of water to a sink; while carrying the glass, it
should keep it upright and move slowly enough to prevent
spilling, however once it reaches a point above the sink it
would be allowed to tip it over. As another example, a
robotic vehicle may be required to visit several waypoints in
sequence, using a path that allows a fallback to a safety
region; inertia and non-holonomic constraints limit which
directions the robot can take and how fast it can move and
still have a quick retreat trajectory.

Temporal logic [2-4] has been researched in recent years
as an elegant way to describe and reason about tasks more
complicated than simple point-to-point queries for mobile
robots [5-7]. A temporal logic is a formal system capable to

describe (say what is) or specify (say what should be) the
behavior of a time-varying system, and it uses the operators
of propositional calculus (AND, OR, NOT) together with
some temporal operators, depending on the particular
system of temporal logic, to do so. Originally, temporal
logic was proposed as a means for computer program
verification; it has recently been applied to motion planning
for mobile robots because it allows more robust handling of
tasks [5], as well as eases integration of control
considerations into planning [6-7]. The cited papers provide
examples of planners capable of handling problems
formulated as temporal logic statements, not just point-to-
point queries.

1This work was partially supported by the strategic grant POSDRU

107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the
European Social Fund – Investing in People.

Exact algorithms for motion planning are known to be
computationally intractable [8], and as a result the state of
the art in the field is represented by the so called sampling-
based algorithms. These generate a usually random
collection of points in the robot's state space, called samples,
which they then attempt to link via simple trajectories
generated by a local planner procedure that ignores
obstacles. The samples and connections that do not collide
with obstacles are kept in a graph called a roadmap, which is
an approximate representation of the connectivity of the
robot's state space. Sampling-based planners do not
guarantee a plan will always be found if a feasible path
exists in the state space; the path might not be in the
roadmap. However, another guarantee, called probabilistic
completeness, is usually offered. Probabilistic completeness
means that, as the number of samples in the roadmap goes to
infinity, the chance of finding a plan if one exists goes to
one. This means that, almost surely, a solution will be
eventually found if the sampling process is continued for
long enough.

In this paper we propose and verify through simulation a
motion planner capable to handle queries expressed as
temporal logic statements, which can solve such queries
even though it keeps a smaller roadmap than previous
algorithms. Our interest in reducing the size of a planner's
roadmap is two-fold. First, the smaller the roadmap, the
faster it is to query and produce a plan. Second, should some
further processing be needed on its contents (because, for
example, the environment has changed), this processing is
faster if the roadmap is small. Obviously, the roadmap
cannot be too small or else it ceases to be useful, because it
doesn't capture the connectivity of the configuration space.

Our starting point is the visibility heuristic [9-10] and
related sparse planners [11-12], which keep a new sample

 55
1582-7445 © 2014 AECE

Digital Object Identifier 10.4316/AECE.2014.01009

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:39:57 (UTC) by 18.212.102.174. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 1, 2014

only if it improves coverage (the new sample cannot be
connected by non-colliding simple trajectories to any
roadmap sample) or if it improves connectivity (the new
sample can be connected to roadmap samples from different
connected components); as a result, few random samples are
kept and roadmaps constructed by visibility planners tend to
be very small. The visibility heuristic was formulated for
point-to-point planners and is probabilistically complete in
that context. However, in general it will not be
probabilistically complete for specifications in temporal
logic. For example, suppose we want to reach the goal by a
path that is either completely inside a region "p" or
completely inside a region "q" of the free space. The
visibility heuristic guarantees we can find a path to the goal
through free space, but does not guarantee we'll find a path
with the required property because it uses no information
about the regions p and q. In this paper we present an
adapted version of the visibility heuristic for path existence
temporal logic queries.

The visibility heuristic as originally proposed in [9] and
[10] and the visibility heuristic proposed here for temporal
logic queries do not guarantee optimality of paths. Visibility
heuristics can be "softened", ie. made to allow more samples
in the roadmap if some path length improvement condition
holds, which has been done for the classic visibility heuristic
for point-to-point planning queries [13], but this is beyond
the scope of this paper. We aim here to present a base
visibility heuristic that can handle temporal logic queries.
Augmenting the heuristic with asymptotic near-optimality
considerations is left for future work.

Point-to-point planning algorithms use a shortest path
graph search algorithm like Dijkstra or A* to find a solution
to a simple, start to goal planning query in a roadmap. For a
problem specification in temporal logic, shortest path
algorithms are in general not applicable. Consider again the
task of getting from a start region to a goal, via a path that
stays inside some region "p" of the state space; there is no
reason to expect this would be the shortest path. In general,
previous planners for temporal logic specifications [5-6]
have used model checkers like the ones described in [14],
[15] to find a plan from the roadmap. We propose a simpler
procedure here, tailored to the temporal logic fragment we
study.

We limit discussion to a path-existence fragment of a
temporal logic system known as LTL [2]. A statement
expressible in this temporal logic requires a finite path with
some given property to exist. We restrict to path existence
under the assumption that if a solution exists, then the robot
is free to choose it. Note, while path existence LTL can only
specify finite trajectories, it is possible to instruct the
planner to close a path into a loop, if one is required, for
example in the case of a robot that needs to patrol through
several regions. We show here how to use an adapted
visibility planner for path existence LTL specifications
together with a gap reduction step to generate loops.

In summary the contributions of this paper are as follows:
a visibility heuristic adapted to path existence LTL, a way to
estimate how well a robot's state space is covered, a
procedure to extract a plan from a roadmap, and a procedure
to generate looping paths.

The paper is organized as follows. Section II offers

theoretical background on graph theory, sampling-based
planners, and temporal logic. In section III we describe the
visibility heuristic adapted for path existence LTL, indicate
how coverage can be estimated, describe a procedure to
extract plans from the roadmap, and show how the planner
can be used to create paths containing loops. In section IV
we compare our method to previously existing algorithms in
the literature: PRM, the classical visibility method, and
RRG [7], using both shortest path search (Dijsktra) and the
path search we propose here, and show our method can
drastically reduce the number of samples needed in the
roadmap. Finally, section V presents conclusions and future
work.

II. THEORETICAL BACKGROUND

A. Graphs and roadmaps for planning

A graph G is a mathematical structure consisting of two
sets: G = {V, E V V} where V is referred to as the vertex
set and E, the edge set, is a set of ordered pairs of vertices.
Graphs have many applications in computer science and
engineering but in this paper we focus on two of them,
roadmaps for planning and graphs of strongly connected
components.

The graph as defined above is a directed graph, in that if
(v1, v2)  E it doesn't follow that (v2, v1)  E. The
significance of an edge is that one can "go" from one end to
the other directly by "moving along" that edge. Unless an
edge in the opposite direction exists, one cannot move
backwards directly.

A path from one vertex v1 to a vertex vn is a sequence of
vertices starting with v1 and ending with vn, and such that for
any vk, vk+1 consecutive vertices in the sequence, one finds
that (vk, vk+1)  E. Paths that begin and end at the same
vertex are called cycles.

Some oriented graphs contain no cycles and are called
acyclic (any unoriented graph with at least one edge
contains cycles). On acyclic graphs one can define a partial
order relation, the topological sort <, defined by requiring
that, if an edge (v1, v2) exists, then it must be the case that v1
< v2. Algorithms for the topological sort of directed acyclic
graphs (DAGs) exist [16], including versions that can
efficiently redo the sorting as changes happen to the graph,
without resorting to recomputing the sort from scratch [17].

A subgraph of a graph is a subset of its vertices U  V,
together with a subset of the edges that connect vertices
from U.

Figure 1. Directed graph (left) with maximal strongly connected
components circled. Graph of SCCs of the original graph (right).

 56

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:39:57 (UTC) by 18.212.102.174. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 1, 2014

A strongly connected component S of a graph is a non-
empty subset of the vertex set V, along with all edges from
the graph that are between vertices in S, which has the
following two properties: (connectivity) between any two
vertices v1, v2  S, there exists cycles using only vertices
from S; and (maximality) for any v1  S and any v2  V-S,
there is no cycle between them in G.

A graph may have several strongly connected
components, and it may be the case that there are paths
linking a vertex from one to a vertex from the other. In this
case one says that the components are linked by some
connection, therefore one can define a graph of the strongly
connected components of some graph G (see Fig. 1). Denote
this graph by SCC(G). Since each strongly connected
component of G has at least a vertex, the size of SCC(G) is
less than that of G. SCC(G) is also a directed graph, and one
finds that, if two vertices from SCC(G) have paths between
them in both directions, or in other words if a cycle exists,
then the strongly connected components that they represent
can in fact be merged into a single one. Updating SCC(G) as
G is changed can be done by applying algorithms based on
topological sort methods [17].

For motion planning, two kinds of graphs are important.
One is referred to as "the roadmap" of the free space, and its
vertices are allowed configurations (or subspaces of allowed
configurations) while its edges correspond to non-obstacle-
colliding trajectories between these configurations generated
by some "local planning" procedure. The other kind of graph
important for visibility based planners is the strongly
connected component graph of the roadmap or its
subgraphs.

B. Sample-based planners

Sampling planners construct a graph called a roadmap to
represent the connectivity of the manipulator or mobile
robot's free space (the part of configuration space without
obstacle overlaps) by running a sequence of sample-and-
connect steps [18]. Each step involves generating a random,
usually uniformly distributed, sample in the free space of the
robot, then attempting to connect it to samples already
existing in a graph called the roadmap by some "simple"
local planner procedure. Here, "simple" means the local
planner is not mindful of obstacles when generating
trajectories [19-20]. These simple trajectories are included
in the roadmap only if they are free of obstacle collisions.
Several variations of the above framework exist; several
sampling [21-22], and connection heuristics [23-24] have
been proposed. Once a roadmap for the configuration space
is constructed, solving point-to-point planning problems
reduces to a path search in the roadmap: the planner first
attempts to connect the start and goal configurations to the
roadmap via simple trajectories, then searches for a path
between the two new vertices.

Note that there is a difference between a planning
problem having solutions and the planning problem having
solutions in a roadmap. A planning problem has solutions if
there exist paths in free space between the start and goal; it
may be the case that none of these paths are also in the
roadmap however. Therefore sampling based planners do
not guarantee that, if a planning problem has solutions, the
planner will find one of them. However, they offer a weaker

guarantee called probabilistic completeness: as the number
of samples and connections stored in the roadmap increases
to infinity, then if a planning problem has solutions in free
space, the chance it also has a solution in the roadmap goes
to one.

In practice, roadmaps can offer a good chance to find
solutions even when a small number of samples is stored. In
particular, the visibility heuristic of [9-10] is efficient at
keeping roadmaps small as well as capable to solve planning
queries. The heuristic works by filtering which samples
generated in the sample-and-connect steps are stored in the
roadmap; a new sample is kept only if it cannot be
connected to other samples in the roadmap, therefore it has
been placed in a region previously invisible to the roadmap
and improves its coverage, or if it is a bridge between
samples in different maximally connected components of
the roadmap and improves connectivity. Therefore, the
probability that a sample is accepted is related to the volume
of free space that is either invisible to the roadmap or at the
overlap of several connected components in the roadmap,
which represents regions where the roadmap 'should' know
of a path but doesn't yet. As the number of samples in the
roadmap increases, this volume decreases to zero. One can
use the rate at which samples are rejected to estimate the
volume of freespace covered by the roadmap, and its overall
chance to solve planning queries. As a consequence, the
visibility heuristic is probabilistically complete for simple
point-to-point queries [9], which here means that as the
number of sample-and-connect steps used to build the
roadmap increases to infinity, so does the chance to solve a
planning query increase to one.

C. Temporal logic

Temporal logic is a catch-all term for formal languages
designed to describe specifications about the behavior, in
time, of dynamic systems. Several such logics exist, of
varying expressive power. Computational Tree Logic,
Linear Temporal Logic [2], and their superset CTL* [3] are
examples of temporal logics, and so is the stronger μ-
calculus [4]. Temporal logic first appeared for program
verification [2], where it allowed one to reason about, and
sometimes check whether certain properties hold, like a
program eventually reaching some state, or avoiding dead-
lock, or obtaining some useful property infinitely often. In
this paper we will focus on a fragment of Linear Temporal
Logic (LTL) that allows statements about path existence.

As with any formal language, LTL and its path existence
fragment have an alphabet of symbols, syntactic rules for
combining the symbols, and semantics to interpret them.
The alphabet of symbols contains parenthesis, "true" and
"false" symbols, the logical operators "" (NOT), ""
(AND), "" (OR) and "U" (UNTIL), and atomic
propositions which we will denote by small Latin letters.
Atomic propositions are interpreted in a motion planning
context as regions in space. For example, we might say
region "p" is the region of configuration space where the
robot touches a particular table. We will denote the set of all
atomic propositions by . What this set contains may vary
by application, depending on what regions of interest need
to be defined in the robot's environment.

The syntax of path existence LTL is recursively defined

 57

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:39:57 (UTC) by 18.212.102.174. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 1, 2014

as follows. An atomic proposition is a statement in path
existence LTL, and so is its negation. The AND operator
applied to two statements is a statement, and the same goes
for OR and UNTIL. In Backus-Naur Form [25] this is
described as:

 Uppfalsetrue ||||||::  (1)

where p is some element of . Since the syntactic
structures above are defined recursively, one can use them
to construct a syntactic tree for a statement, in which each
node is a subformula (another statement in LTL). The root is
the statement itself, and children of a node are the two
subformulas appearing to the left and right of an operator. If
a node is an atomic proposition it has no children, i.e. it is a
leaf node.

Note that we only allow negation to appear in front of
atomic propositions. As will become clear from the operator
semantics, this limits the possible statements to that
describing path existence, which is not uncommon in a
planning context [7], for otherwise one could write
statements that impose conditions on all possible paths from
a state. However, if only one agent, the planner, is doing the
choosing, then it only makes sense to talk about path
existence since if a path exists, the planner may choose it
and solve the problem.

Figure 2. Syntactic tree of an LTL formula where each node represents a
subformula. The tree is grown until the locally checkable subformulas are
reached as leaves.

We will now describe how to interpret statements in path

existence LTL as describing trajectories of a robot in its
configuration space. We will say a statement  holds at a
point x in configuration space, and denote this by {}@x, if
there is a path starting at x over which the property
described by the statement  is true. The statement "true"
holds at any point; the statement "false" holds nowhere.

An atomic propositions holds at points inside the region
associated to it. For example, if p represents the surface of a
table, for any point x on that table's surface we will have
{p}@x. Conversely, for any point not on that table's surface
we will have {p}@x. The AND and OR operators have
their usual meaning from propositional calculus; given two
statements 1, 2 in LTL, then {12}@x if both {1}@x
and {2}@x, and {12}@x if either {1}@x or {2}@x.
If a formula does not contain the UNTIL operator, then it is
locally checkable: it can be determined whether it holds at a
point in configuration space just by knowing the position of
that point.

The interpretation of the UNTIL operator requires
thinking about possible paths, not just positions in space. Let
then 1 and 2 be statements in path existence LTL, and let
W be the set of points in configuration space at which 2
holds. Then, {1U2}@x if there exists a path starting at x

and ending at some point in W, such that at every location
along the path (including therefore x itself) 1 is true.

As an example, consider the atomic proposition q as
representing an obstacle region, and g as representing a goal
region. Then, the basic planning query of reaching the goal
while avoiding the obstacles is given by (q)U(g), and
finding whether a starting point x can reach the goal
becomes determining whether {(q)U(g)}@x. This
statement is not locally checkable because it cannot be
verified just by knowing the position of x; it also needs
information about how the regions in configuration space
are connected.

Except for locally checkable statements, a planner will
not have access to exact representations of the regions where
a statement is true. Instead, it must construct approximate
representations by building a roadmap, as well as keep track
of what statements hold at the vertices and connections in its
roadmap. There exists a tangible benefit for restricting to
path existence specifications we refer to as the "More isn't
less" lemma, encountered for example in [7] (lemma III.1 in
that text). Intuitively, the lemma states that as we improve
our knowledge of the dynamics of a system and the
environment it inhabits by adding more samples to a
roadmap, then the set of path existence LTL statements that
hold at a sample in the roadmap will not decrease; or,
conversely, the set of roadmap samples at which a path
existence LTL statement holds will never decrease as we
add more samples to a roadmap. The lemma is useful in
establishing why a planner which explores more of the
configuration space will only become more able to solve
planning queries, not less, at least as long as the queries are
of the path existence type. We refer to [7] for its exact
statement and a proof which easily translates to path
existence LTL.

III. PLANNER ALGORITHM

A. Algorithm description

The visibility heuristic [9-10] accepts a new sample into a
roadmap M if doing so will change the graph of connected
components of the roadmap. If x is the new sample, and
Mx is the roadmap after x and its possible connections is
added to M, let us state the visibility heuristic symbolically
by saying a sample x is accepted if SCC(M) and SCC(Mx)
are different: either the number of connected components
increases by one, because the new sample cannot be
connected to other roadmap samples, or decreases by at least
one, because the new sample allows cycles between vertices
in different connected components, or a new one-way
connection appears between two previously unconnected
components. As stated in the Introduction section, this
heuristic is not enough for handling queries in temporal
logic because it does not use information about the regions
represented by atomic propositions.

We therefore amend the visibility heuristic to consider not
just the connected components of the roadmap as a whole,
but also the connected components of subgraphs of the
roadmap, where each subgraph is associated to a temporal
logic statement. Let [](M) be the subgraph of M that
contains all vertices at which  holds, and all edges for
which  holds at every point. Our heuristic then is: given a

 58

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:39:57 (UTC) by 18.212.102.174. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 1, 2014

set of temporal logic statements L and a roadmap M, a new
sample x is added to the roadmap if there exists L such
that SCC([](M)) and SCC([](Mx)) are different. We
will next show how to construct [](M).

Suppose we have an LTL statement  for which we want
to design a planner. The planner should construct a roadmap
for the environment and then, when given a query point x,
find a path that starts at x and satisfies the formula , if such
a path exists. We first construct the syntactic tree of
subformulas of ; and in order to minimize the tree size, we
allow locally checkable formulas to be leaves. Then, the set
L contains the nodes in the syntactic tree. Belonging to a
subgraph can be flagged by a binary value and does not
require several copies of the roadmap to exist. We will
denote by Llocal the subset of L which contains locally
checkable formulas.

We also need to define how to construct [](M) for some
statement . In the case of vertices and locally checkable
formulas, this is obvious as by definition locally checkable
formulas are made of conjunctions and disjunctions of
atomic propositions, which can be verified knowing only a
position in configuration space. Verification of locally
checkable formulas along an edge is analogous to collision
checks along the edge in usual planners. If all along an edge,
the same locally checkable formulas hold, then that edge is
also a member of whatever locally checkable subgraphs its
endpoints are members of. If instead one finds that along an
edge there are regions where different locally checkable
formulas hold, then one can cut it by either generating new
vertices at the points of contact between regions, or inside
each region. The resulting edges will then be bridge edges
between locally checkable subgraphs.

Figure 3. Roadmap and subgraphs associated to subformulas of a
specification. The roadmap in its entirety corresponds to the "true" formula.
Nodes are generated at the interface of the p and q regions, and the edge
between them is "between" subgraphs.

Suppose then that 1 holds at a vertex, or respectively

along an edge. Then that vertex, or respectively edge, is
added to [1  2](M) formula (if it exists in L).

Supposing that both 1 and 2 hold at a vertex, or along
an edge, then that vertex (or edge) is added to [1  2](M)
(if it exists in L).

If 2 holds at a vertex or all along an edge, then that
vertex (or edge) is added to [1U2](M), if it exists in L.
Then, one can recursively add vertices from [1](M) to
[1U2](M), if they connect via an edge where 1 holds
everywhere (except maybe in a region around the
destination where 2 holds) to a vertex already in
[1U2](M); the edges used for connection are also added to
the [1U2](M).

An observation should be made here. The entire roadmap
M is not the set of samples at which the top level
specification  holds. Rather, one would say that M is
[true](M), the set of vertices and edges of M at which "true"
holds.

Similar to the classic visibility heuristic [9], our proposed
version allows an estimation of the coverage of the subspace
corresponding to a statement . By definition of uniform
sampling over a space, we have that the probability to place
a sample in some region A of a space S is

)(

)(
)(

Svol

Avol
Ap  (2)

where vol(A) is the volume of A (or, in general, some
suitable measure function). However, we also have

)(

)(
)(

Sn

An
Ap  (3)

where n(A) is the number of samples taken in region A.
Suppose then that, at some point during execution, we

wish to estimate the volume not yet covered by the roadmap
for some subformula . For the purpose of this estimation,
we set n() to 0 and increment it for each new sample that
we generate in the  subspace during sample-and-connect
steps. If the heuristic decides the sample is worth keeping,
then we also increment n(u), the number of samples taken
outside the current coverage of the roadmap. After several
sample and connect steps, we may say that

)(

)(

)(

)(







n

n

vol

vol uu  (4)

or in other words that the ratio of the uncovered volume
to the total volume is similar to the ratio of samples accepted
to the roadmap to the total number of samples taken.

While not something that can be verified to mathematical
certainty, this estimation does have an intuitive justification.
If the volume not yet covered by the roadmap is, for
example, a quarter of the total volume of space, then one
would expect that a quarter of a number of random
uniformly distributed samples would be in the uncovered
volume. The visibility heuristic would be able to determine
whether a sample is inside the covered volume or not,
because a sample that's inside the covered volume is
connectable to samples already in the roadmap.

Such estimations of coverage are useful especially when
several regions of space are considered, as is the case for
LTL formulas. If one finds that the uncovered volume of
some regions is large, then one can prioritize sampling to
those regions, to speed up roadmap construction.

It will often be the case that sets of points where formulas
hold are compact [26]. This is a property describing how

 59

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:39:57 (UTC) by 18.212.102.174. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 1, 2014

well-behaved sets are, from a topological standpoint, and
implies that a set can be covered by a finite collection of
open sets. This is necessary so that we can have a finite
roadmap covering the configuration space.

B. Changing the start configuration

In the previous section, we considered that the start
configuration is known from the start and added to the
roadmap. Should we desire to change it however, one
simply adds the new start configuration to the roadmap, and
thereafter proceeds with sample-and-connect steps, using the
algorithm described before. If the new start is inside the
subspace corresponding to the specification, it will
eventually be added to the subgraph corresponding to that
subspace of Cfree.

C. Extracting a plan from the roadmap

Checking that a plan exists is made very easy by the
process of roadmap construction. If the starting vertex is
inside the subgraph corresponding to the specification, then
a plan exists; otherwise, it does not.

Once a roadmap is constructed, the issue remains to
extract a plan from it, if one exists, that meets a given
specification. Tools for general LTL formulas exist, like
NuSMV [14] and SPIN [15], which have also been used in a
planning context [5]. They check a formula by providing a
counter-example to its negation, if such a counter-example
can be found, and if it can be, the counter-example is the
sought after plan.

SPIN and NuSMV are capable of handling general LTL
formulas, outside the subset of interest to this paper.
Restricting to the subset of "existence of paths" formulas
allows one to work with a formula directly, instead of
requiring its negation, so we present a plan finding
procedure specialized to this subset of LTL and which
makes use of the auxiliary structures maintained by the
planning algorithm.

The basic planning query, (true)Uq where q is some
locally checkable statement, is typically done with a
Dijkstra's shortest paths algorithm or A*, which provides a
distance map over the vertices in the roadmap. Each vertex
has associated with it the smallest cost required to reach it
from some given starting vertex. Based on the distance map,
the shortest path between the given starting vertex, and any
other vertex in the graph, can be obtained. Note that the path
search algorithms are applicable to a planning problem only
after a roadmap has been constructed, for example by a
visibility heuristic. Also, for more general queries in
temporal logic, shortest path search algorithms may not be
sufficient. If we require the path to pass through a certain
region of the configuration space, it is not necessarily the
shortest path between start and goal.

We can however construct a path that obeys some given
temporal logic statement  by concatenating segments
produced by shortest path searches in subgraphs of the form
[](M) where  is some statement in L, the set of statements
known by the planner which includes the statement  and all
its subformulas. For example, to solve a query of the form
pUq, the planner will run a shortest path search inside
[p](M), where the destinations are samples that are also in

[pq](M). Of the samples in [pq](M), those which are
connected to the starting vertex by short paths that do not go
through other samples in [pq](M) are called a "front".

We can now define a function, FindFront, which takes as
input a start configuration, and an LTL formula representing
a specification on paths. It will return a list of front vertices
and the paths to them from the starting vertex. We will now
specify the behavior of FindFront in more detail.

If the starting vertex is not in the subgraph corresponding
to the LTL formula, then the function returns one path,
containing just the starting vertex, which is said to have
infinite cost. We therefore have a quick test to check
whether searching for a plan is fruitless because none exists.

If the LTL formula is locally checkable, and is obeyed at
the starting vertex, then FindFront returns a path containing
just the starting vertex, of cost 0.

If the LTL formula is of the 1U2 type, then the function
will restrict itself to [1U2](M). Assuming the starting
vertex can be found in this subgraph (or else, an infinite cost
path containing just the start vertex would have been
returned), FindFront will run a Dijkstra algorithm and locate
the 2 front vertices and the paths toward them. After that,
for each front vertex y, a new instance of FindFront is
called, with y as start vertex and 2 as the formula. The
return value of the upper level of the recursion is then the set
of paths obtained by concatenating, to the paths to each front
vertex y, the paths obtained for that vertex by the lower
level of the FindFront recursion.

If the LTL formula is of the 12 type, where one of the
formulas, say 1, is locally checkable, then FindFront first
checks that the starting vertex is inside [12](M). If it is
(which implies that 1 also holds at it), then another instance
of FindFront is called with the same starting vertex and 2 as
the formula. The return value for the upper level of the
recursion is then the return value from the lower level one.

If the LTL formula is of the 12 type, where neither
formula is locally checkable, then one should first use
rewrite rules to bring it to a form in which the  operator
always has at least one locally checkable formula as
operand. Some useful rewriting rules are summarized in
Table I; notice that the rewrite rules tend to shorten the
formulas appearing as operands to the  operator, and
therefore eventually we will only apply it to operands out of
which at least one is locally checkable.

TABLE I: SOME LTL FORMULA REWRITE RULES. FORMULAS ON THE RIGHT

SIMPLIFY THE OPERANDS OF THE CONJUNCTION OPERATORS.
LTL Formula Equivalent rewrite

321)( )()(3231  

)(121  U 1

)(121  U)(12  U

)(211  UU)(21 U

))(()(

))(()(

21431

43231


)()(4321  UU 


UU

UU






Finally, if the LTL formula is of the 12 type, then two

 60

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:39:57 (UTC) by 18.212.102.174. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 1, 2014

instances of FindFront are called, both with the same start
vertex, but one with the 1 and the other with the 2
formula. The return value of the upper level recursion is the
union of the return values of the lower level recursion.

Looking for a plan then requires that a FindFront be
called, with the starting vertex and plan specification. From
the resulting set of paths, one can pick the lowest cost one as
the plan to follow when solving the planning specification.

The above is also given in pseudocode in Fig. 4. For ease
of illustration, some simple auxiliary functions are invoked.
LastInPath takes a path as an argument and returns the last
vertex in the path. Count is a function that takes a path and
an LTL formula  as parameters, and returns how many
vertices from the path are also flagged as belonging to
[](M). MergePaths takes two paths as parameters and
returns the path which results from appending the second to
the first. Finally, DijkstraPaths takes a starting vertex q, a
subgraph [1U2](M) and a formula  as parameters, and
returns the shortest paths that start at q, end on a vertex
inside [](M), and use only vertices and edges in
[1U2](M).

Figure 4. The FindFront function.

IV. SIMULATION VERIFICATION

In this section we present two tests for the new planning
method. The first compares it to previously existing
algorithms like PRM [19], the classical visibility heuristic

[9], and RRG [7] on a constrained path finding problem for
a mobile robot; we present the problem and the results in
subsections A and B. We then apply our method to a loop
finding problem that was used in [7] to showcase RRG; we
present the problem, customize our heuristic for loop
creation, and present the results in the following subsections
C, D, and E.

A. Constrained path: problem specification

The problem is to navigate a point robot between two
configurations in a maze shown in Fig. 5 a). However, two
regions are defined in this maze: a region 'p' shown in Fig. 5
b), and a region 'q' shown in Fig. 5 c).

Figure 5. Problem environment for the constrained path problem (a); the 'p'
region, marked in gray (b); the 'q' region, marked in gray (c).

The problem is to find a path between the two points

marked with crosses in Fig. 5 a); however, the path is
required to stay inside either the p or the q region until the
destination is reached. Let 'd' be a region associated to the
destination, then the LTL specification for the problem is

)()(qUdpUd  (5)

B. Constrained path: simulation results

 We compare our algorithm to RRG [7] (another
algorithm capable to handle LTL specifications) as well as
to classical planners like PRM [19] and the first visibility
heuristic [9]. We run each algorithm for 1000 times until the
roadmap produced by the algorithm contains a path in free
space (the union of p and q regions) from source to
destination, which is easy to check using a connected
components structure using Tarjan's set union algorithm [16]
which runs in 'almost constant' time (running time
proportional to inverse Ackermann function of the number
of vertices, and therefore grows very slowly).

 Once an algorithm produces a roadmap where some path
exists between source and destination, we run a Dijkstra
shortest path algorithm to find the shortest path between
source and destination, and we then check whether that path
always stays inside the p, or always inside the q region; as
expected, a shortest path search will not find a path that
answers the posed problem. We also run path searches on
the subformula subgraphs to see whether a planning

TABLE II: SOLUTION STATISTICS FOR 1000 RUNS ON THE CONSTRAINED PATH SEARCH PROBLEM.

Planner
Avg. time

(s)
Stdev time

(s)
Avg. vertices Stdev vertices

Successes
(Dijkstra path search)

Successes
(subgraph path

search)

PRM 0.001 0.0011 28.02 16.67 0 38

Visibility 0.0007 0.0005 9.82 2.1 0 0

RRG 0.0058 0.0038 77.61 24.82 0 1000

Our method 0.003 0.0015 18.99 2.74 0 1000

 61

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:39:57 (UTC) by 18.212.102.174. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 1, 2014

algorithm produced a roadmap that does contain a path
which answers the posed problem, even if a simple path
search was not able to find it.

We collect execution times, sample counts, and success
rates for the planners and path search methods, which we
summarize in Table II.

As can be seen from the table, both the classical visibility
planner and our own method are able to connect the source
and destination faster and with fewer vertices kept in the
roadmap. However, the roadmap produced by the classical
visibility planner doesn't contain a path that is either all
inside the p region or all inside the q region, which strongly
suggests the classical visibility heuristic would not be
capable to handle general path-existence LTL specifications
for mobile robots since it cannot handle even a fairly simple
one as in this test case. The classical visibility heuristic
aggressively prunes the samples accepted in a roadmap, and
only consider the connectivity of the entire configuration
space, not that of regions of it.

Searching for a path that answers the posed problem
cannot be done with a simple shortest path search; the
search needs to be informed of the subgraph structure
induced by the problem specification, which is what we
propose in this paper, or else the path search is not actually
aware of the problem specification. If the path search does
use the structure we propose, then it is always successful for
roadmaps produced either by RRG or by our method.
However, our method is twice as fast as RRG and produces
roadmaps with about a quarter of the vertices needed by
RRG.

A roadmap with fewer vertices that nonetheless manages
to capture the connectivity of the environment is useful
because it allows faster queries, as well as faster post-
processing of the roadmap, should the environment change.
Several schemes have been proposed in the literature to
handle changing environments, for example vertex
displacements that mimic a network of elastic bands pushed
away by the moving obstacles [27] or vertex cost
adjustments when obstacles are detected near roadmap
vertices [28]. Having fewer vertices to consider for such
processing is an advantage.

It should be noted that a path search on subgraphs will
sometimes succeed for roadmaps produced by PRM,
because PRM tends to use 'more samples' than necessary to
connect two vertices and may, by chance, capture the
connectivity of one of the regions p or q, including an entire
path inside one of these regions. However, the rate of
success is very low (less than 5% for our test case) which
suggests that for LTL task specifications, one needs to use
special planning algorithms like RRG or the method we
proposed here.

C. Loop construction: problem specification

We apply the planner to the problem used for simulation
verification of RRG in [7], which asks for a discrete time
linear dynamic system in a two-dimensional configuration
space to be steered towards a looping trajectory that passes
through two specified regions while avoiding a third. The
system is characterized by the following equations of state
(a kinematic model, as no inertia is present):
































k

k

k

k

k

k

v

u

y

x

y

x
BA

1

1 (6)

where








 


95.0049.0

029.0019.1
A (7)








 


098.00025.0

0015.0101.0
B (8)

from which it is straightforward to define a local steering
procedure between arbitrary positions. The local steering
procedure will assume obstacles are not in the way, and the
trajectories it produces must be checked for validity, as is
typical for sampling based planners. Valid trajectories are
kept in the roadmap. Note further that the system is fully
reversible so we can use an unoriented graph for the
roadmap.

Figure 6. Left, the problem environment with special regions marked in
gray. The specification and its syntactic tree are shown on the right.

The environment is shown in Fig. 6. The system starts at

(0, 0), on the edge of the s region. We require that it reach
the p region, then the q region while avoiding s, then the p
region again while avoiding s. We then formulate the LTL
specification:

)))()((()(qUspUtrue  (9)

Note that, while the specification above produces a finite
path, the problem in [7] requires a loop to be formed
between p and q, which avoids s. To close the loop, notice
that the system's reversibility allows the s-free path from p
to q to be used in reverse. Were this not the case, then a
different LTL specification would have required a path from
p to q, then from q to p, and a gap reduction step would have
been necessary to close the loop by linking the path
endpoints in p.

We compare our planner's performance in terms of
roadmap size and execution speed with that reported in [7]
for the RRG algorithm. The reason we compare to RRG in
this test is the fact that it, like our planner, is capable to
handle queries in temporal logic. Point-to-point planners
like PRM or RRT would not be able to solve such problems
and are not fit for comparison. It should also be said that
path search algorithms like A* or Dijsktra are not good
comparisons either; a path search algorithm needs to have a
graph to search, and the construction of that graph is the
domain of the planner heuristic we propose here. Also,
shortest path search algorithms on their own cannot find
paths that obey temporal logic statements because such

 62

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:39:57 (UTC) by 18.212.102.174. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 1, 2014

paths are not necessarily the shortest in the roadmap; such
algorithms must be deployed in a FindFront procedure as
described in section III.D to search among those paths that
obey a temporal logic statement, as was shown in
subsections IV-A and IV-B .

D. Loop construction: customized visibility heuristic

We will first make an inventory of the distinct formulas
that we need to track for the given specification: true, p, q,
s, (s)U(q), p((s)U(q)), and finally the specification
itself, (true)U(p((s)U(q))). Each of these will have a
subgraph in the roadmap to represent it; vertices and edges
inside [](M) satisfy , meaning a path exists which starts at
the vertex, or the point on the edge, and satisfies , where 
is some formula in the list given above.

We maintain connected components for each [](M)
using Tarjan's set union algorithm [16]. If a new sample
changes the graphs of strongly connected components or the
connections between formula subgraphs, it is kept in the
roadmap. Sampling for this problem will be uniform on the
problem area.

E. Loop construction: simulation results

We run our tests on an Intel Pentium 4 processor with
3.6GHz clock frequency; we use a single thread for program
execution (no parallelism). One thousand runs of the
algorithm are performed, and statistics on final roadmap size
and rejected sample counts are shown in Table III. As can
be seen, the size of the roadmap is reliably small, as an
average of nine samples is sufficient to find a suitable path.
In comparison, RRG used more than 1000 samples for the
same problem [7]. We compare with RRG because it, like
our planner, is capable to handle queries in temporal logic,
whereas point-to-point planners like PRM or the classical
visibility are not.

One notices that the average number of rejected samples
is around the same order of magnitude as the number of
samples used by the RRG, suggesting that a uniformly
sampling planner needs a few hundred attempts in order to
pick some samples useful for a solution for the test problem
considered here. The visibility based planner however can
determine that most of the random samples taken do not
improve the roadmap's ability to solve the problem, and
instead only selects a much smaller set to keep for future
use. In this test, the roadmap used by our method is about
thirty-six times smaller than that used by RRG.

In terms of time spent, whereas RRG requires several
seconds (3.5s on average) [7], our visibility based planner
needs an average of 0.33s. Although roughly the same
number of sample and connect steps are made, the fact that
the roadmap is kept dramatically smaller makes each of
these steps much less expensive as near-neighbor queries
and other auxiliary steps for sample based planners will
require less time.

TABLE III: STATISTICS FOR THE KEPT AND REJECTED SAMPLE COUNTS OVER

1000 RUNS.
Samples Avg. StdDev. Max. Min.

Kept 8.84 1.63 12 5
Rejected 368.6 257.43 1445 5

V. CONCLUSIONS AND FUTURE WORK

We have presented an extension of the visibility heuristic
which is applicable to planning problems given as
specifications in a path-existence subset of temporal logic,
and defined a planning method to handle such specifications
by using our proposed heuristic. These kinds of planning
problems are relevant in task specifications for mobile
robots and manipulators, as they allow a tighter integration
between a symbolic level of task planning and the geometric
level where motion planning actually occurs. Temporal
logic capable motion planners can reason about geometric
feasibility of subsequence tasks directly, and thus allow
easier handling of branching and sequencing, and
verification of candidate sequences of tasks.

It should be noted that while the kinds of specifications
our method can natively handle are about existence of finite
and open paths, it may also be useful in some cases where
the existence of an infinite loop is sought. To form a loop,
one would need to get a path from some starting point, to a
destination, then back inside the region of the starting point,
and then use some gap closing procedure to close the loop,
if the system that planning is done for has non-reversible
maneuvers. For a system with reversible maneuvers,
producing loops is trivial.

The formulation of the planning problem used here
assumed perfect actuation of the mobile robot. Probabilistic
temporal logics exist which account for errors in motion
[29-30], and it may be possible to extend the strategies
presented here for planning specifications written in such
formal systems. Other methods for obtaining sparse
roadmaps besides visibility exist, in particular methods
which soften the visibility heuristic and aim for some
guarantee of partial optimality [11-13]. It may be fruitful to
apply the subgraph constructions presented here to such
methods, so that asymptotically near optimal, sparse
roadmaps are made possible for general path existence
temporal logics specifications, which would be useful in
contexts like grasping, manipulation, and task planning.
Both of the previous topics are left for future work.

ACKNOWLEDGMENT

I would like to thank my thesis supervisor, prof. dr. ing.
Virgil Tiponuţ, for his help and guidance during the entirety
of my doctoral studies at the Politehnica University of
Timişoara.

REFERENCES
[1] I. A. Sucan, S. Chitta, “Motion planning with constraints using

configuration space approximations”, in proceedings of the IEEE
International Conference on Robotics Systems (IROS), 2012, doi:
10.1109/IROS.2012.6386092.

[2] A. Pnueli, “The temporal logic of programs”, in proceedings of the
18th Annual Symposium on Foundations of Computer Science
(FOCS), 1977, doi: 10.1109/SFCS.1977.32 .

[3] E. A. Emerson, J. Y. Halpern, “'sometimes' and 'not never' revisited:
on branching versus linear time temporal logic”, journal of the ACM,
vol. 33 nr. 1, pg. 151–178, 1986, doi: 10.1145/4904.4999.

[4] D. Kozen, “Results on the propositional μ-calculus”, in proceedings
of the 9th Colloquium on Automata, Languages and Programming,
pg. 348–359, 1982, doi: 10.1016/0304-3975(82)90125-6.

[5] G. E. Fainekos, H. Kress-gazit, G. J. Pappas, “Temporal logic motion
planning for mobile robots”, in proceedings of the 2005 IEEE

 63

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:39:57 (UTC) by 18.212.102.174. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 1, 2014

 64

International Conference on Robotics and Automation (ICRA), pg.
2020–2025, 2005, doi: 10.1109/ROBOT.2005.1570410.

[6] G. E. Fainekos, H. Kress-gazit, “Hybrid controllers for path planning:
A temporal logic approach”, in proceedings of the IEEE Conference
on Decision and Control (CDC), pg. 4885-4890, 2005, doi:
10.1109/CDC.2005.1582935 .

[7] S. Karaman, E. Frazzoli, “Sampling-based motion planning with
deterministic μ-calculus specifications”, in proceedings of the IEEE
Conference on Decision and Control (CDC), 2009, doi:
10.1109/CDC.2009.5400278 .

[8] John F. Canny, “The complexity of robot motion planning”, PhD
thesis, MIT Press, pp. 1-20, 1987, ISBN: 9780262031363.

[9] C. Nissoux, “Visibilité et méthodes probabilistes pour la planification
de mouvement en robotique” (PhD thesis), University Paul Sabatier
Toulouse, 1999.

[10] T. Simeon, J.-P. Laumond, C. Nissoux, “Visibility-based probabilistic
roadmaps”, in proceedings of the IEEE/RSJ International Conference
on Robots and Systems (IROS), 1999, doi:
10.1109/IROS.1999.811662.

[11] J. D. Marble, K. Bekris, “Computing spanners of asymptotically
optimal probabilistic roadmaps”, in proceedings of the IEEE/RSJ
International Conference on Robots and Systems (IROS), 2011, doi:
10.1109/IROS.2011.6095070.

[12] J. D. Marble, K. Bekris, “Asymptotically near-optimal is good enough
for motion planning”, in proceedings of the International Symposium
of Robotics Research (ISRR), 2011, doi:
10.1109/IROS.2011.6095070 .

[13] D. Nieuwenhuisen and M. H. Overmars, “Useful cycles in
probabilistic roadmap graphs”, in proceedings of IEEE International
Conference on Robotics and Automation (ICRA), 2004, doi:
10.1109/ROBOT.2004.1307190 .

[14] A Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, A. Tacchella, “NuSMV 2: an OpenSource
tool for symbolic model checking”, in proceedings of International
Conference on Computer-Aided Verification (CAV), 2002, doi:
10.1007/3-540-45657-0_29.

[15] G.J. Holzmann, “The SPIN model checker primer and reference
manual”, Addison-Wesley, pp. 167-190, 2004, ISBN: 978-
0321773715.

[16] R. E. Tarjan, “Edge-disjoint spanning trees and depth-first search”,
Acta Informatica, vol. 6 nr. 2, pg. 171–185, 1976, doi:
10.1007/BF00268499.

[17] B. Haeupler, T. Kavitha, R. Mathew, S. Sen, R. E. Tarjan,
“Incremental cycle detection, topological ordering, and strong
component maintenance”, ACM Transactions on Algorithms, vol. 8
nr. 1, 2012, doi: 10.1145/2071379.2071382.

[18] S. M. LaValle, “Planning Algorithms”, Cambridge University Press,
pp. 185-247, 2006. Available online at: http://planning.cs.uiuc.edu/

[19] L. E. Kavraki, P. Svestka, J.-C. Latombe, M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configurations spaces”, IEEE Transactions on Robotics and
Automation, vol. 12, nr. 4, 1996, doi: 10.1109/70.508439 .

[20] J. J. Kuffner, S. M. LaValle, “RRT-connect: an efficient approach to
single-query path planning”, in proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2000, doi:
10.1109/ROBOT.2000.844730 .

[21] A. Yershova, L. Jaillet, T. Simeon, S. M. LaValle, “Dynamic domain
RRTs: efficient exploration by controlling the sampling domain”, in
proceedings of IEEE International Conference on Robotics and
Automation (ICRA), 2005, doi: 10.1109/ROBOT.2005.1570709 .

[22] S. R. Lindemann, S. M. LaValle, “Steps toward derandomizing
RRTs”, in proceedings of the 4th International Workshop on Robot
Motion and Control (RoMoCon), 2004, doi:
10.1109/ROMOCO.2004.240739 .

[23] Sertac Karaman, Emilio Frazzoli, “Incremental sampling-based
algorithms for optimal motion planning”, in proceedings of Robotics:
Science and Systems (RSS), 2010. Available online at:
http://www.roboticsproceedings.org/rss06/p34.pdf

[24] Sertac Karaman, Emilio Frazzoli, “Incremental sampling-based
algorithms for motion planning”, 2010. Available online at:
http://arxiv.org/abs/1005.0416

[25] D. Grune, C. J. H. Jacobs, “Parsing techniques- a practical guide”,
Springer, pp. 5-60, 2008, ISBN: 978-0387202488.

[26] Andrew H. Wallace, “An Introduction to Algebraic Topology”, Dover
Books on Mathematics, Dover Publications, pp. 50-54, 2007, ISBN:
978-0486457864.

[27] R. Gayle, A. Sud, M. C. Lin, D. Manocha, “Reactive deformation
roadmaps: motion planning of multiple robots in dynamic
environments”, in proceedings of the IEEE/RSJ International
Conference on Robots and Systems (IROS), 2007, doi:
10.1109/IROS.2007.4399287.

[28] M. Pomarlan, I. A. Sucan, “Motion planning for manipulators in
dynamically changing environments using real-time mapping of free
space”, in proceedings of the 14th IEEE International Symposium on
Computational Intelligence and Informatics (CINTI), 2013, doi:
10.1109/CINTI.2013.6705245.

[29] M. Lahijanian, J. Wasniewski, S. B. Andersson, C. Belta, “Motion
planning and control from temporal logic specifications with
probabilistic satisfaction guarantees”, in proceedings of IEEE
International Conference on Robotics and Automation (ICRA), 2010,
doi: 10.1109/ROBOT.2010.5509686.

[30] I. Cizelj, C. Belta, “Control of noisy differential-drive vehicles from
time-bounded temporal logic specifications”, CoRR, abs/1209.1139,
2012, available online at http://arxiv.org/pdf/1209.1139v4, doi:
10.1109/ICRA.2013.6630847.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:39:57 (UTC) by 18.212.102.174. Redistribution subject to AECE license or copyright.]

