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1Abstract—Over the past few years, sampling based planner 

algorithms have been applied to planning queries formulated 
in path existence temporal logic, a formal system that allows 
more complex specifications on a solution path and is useful for 
task planning for mobile robots or synthesizing controllers for 
dynamical systems. In this paper, we extend the visibility 
heuristic to planners capable to handle finite path existence 
temporal logic queries. Our interest is justified by the visibility 
heuristic's ability to construct small roadmaps that are fast to 
search. We find that the visibility heuristic must be amended so 
that it can reliably handle temporal logic queries and we 
propose a suitable modification of the heuristic. We then 
present a method to extract a solution path from a roadmap, if 
such a solution exists. Finally, we show how the planner can be 
used to generate looping paths by augmenting it with a gap 
reduction step. 
 

Index Terms—collision avoidance, computational efficiency, 
mobile robots, motion planning, reachability analysis, robot 
motion. 

I. INTRODUCTION 

The motion planning problem for a robotic system (like a 
manipulator arm or a mobile robot) is typically formulated 
as the requirement to find a path between a start and a goal 
configuration, such that following the path does not result in 
the robot colliding with obstacles in its work environment. 
We'll thereafter refer to such problems as point-to-point 
planning queries, and the methods used to solve them as 
point-to-point planners. However, the tasks a robot may be 
asked to perform, especially if it aims for some degree of 
autonomy, are often more complex than simple point-to-
point queries and involve sequences of actions, each with 
different constraints [1]. For example, a robot might need to 
carry a glass of water to a sink; while carrying the glass, it 
should keep it upright and move slowly enough to prevent 
spilling, however once it reaches a point above the sink it 
would be allowed to tip it over. As another example, a 
robotic vehicle may be required to visit several waypoints in 
sequence, using a path that allows a fallback to a safety 
region; inertia and non-holonomic constraints limit which 
directions the robot can take and how fast it can move and 
still have a quick retreat trajectory. 

Temporal logic [2-4] has been researched in recent years 
as an elegant way to describe and reason about tasks more 
complicated than simple point-to-point queries for mobile 
robots [5-7]. A temporal logic is a formal system capable to 

describe (say what is) or specify (say what should be) the 
behavior of a time-varying system, and it uses the operators 
of propositional calculus (AND, OR, NOT) together with 
some temporal operators, depending on the particular 
system of temporal logic, to do so. Originally, temporal 
logic was proposed as a means for computer program 
verification; it has recently been applied to motion planning 
for mobile robots because it allows more robust handling of 
tasks [5], as well as eases integration of control 
considerations into planning [6-7]. The cited papers provide 
examples of planners capable of handling problems 
formulated as temporal logic statements, not just point-to-
point queries. 

 
1This work was partially supported by the strategic grant POSDRU 

107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the 
European Social Fund – Investing in People. 

Exact algorithms for motion planning are known to be 
computationally intractable [8], and as a result the state of 
the art in the field is represented by the so called sampling-
based algorithms. These generate a usually random 
collection of points in the robot's state space, called samples, 
which they then attempt to link via simple trajectories 
generated by a local planner procedure that ignores 
obstacles. The samples and connections that do not collide 
with obstacles are kept in a graph called a roadmap, which is 
an approximate representation of the connectivity of the 
robot's state space. Sampling-based planners do not 
guarantee a plan will always be found if a feasible path 
exists in the state space; the path might not be in the 
roadmap. However, another guarantee, called probabilistic 
completeness, is usually offered. Probabilistic completeness 
means that, as the number of samples in the roadmap goes to 
infinity, the chance of finding a plan if one exists goes to 
one. This means that, almost surely, a solution will be 
eventually found if the sampling process is continued for 
long enough. 

In this paper we propose and verify through simulation a 
motion planner capable to handle queries expressed as 
temporal logic statements, which can solve such queries 
even though it keeps a smaller roadmap than previous 
algorithms. Our interest in reducing the size of a planner's 
roadmap is two-fold. First, the smaller the roadmap, the 
faster it is to query and produce a plan. Second, should some 
further processing be needed on its contents (because, for 
example, the environment has changed), this processing is 
faster if the roadmap is small. Obviously, the roadmap 
cannot be too small or else it ceases to be useful, because it 
doesn't capture the connectivity of the configuration space.  

Our starting point is the visibility heuristic [9-10] and 
related sparse planners [11-12], which keep a new sample 
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only if it improves coverage (the new sample cannot be 
connected by non-colliding simple trajectories to any 
roadmap sample) or if it improves connectivity (the new 
sample can be connected to roadmap samples from different 
connected components); as a result, few random samples are 
kept and roadmaps constructed by visibility planners tend to 
be very small. The visibility heuristic was formulated for 
point-to-point planners and is probabilistically complete in 
that context. However, in general it will not be 
probabilistically complete for specifications in temporal 
logic. For example, suppose we want to reach the goal by a 
path that is either completely inside a region "p" or 
completely inside a region "q" of the free space. The 
visibility heuristic guarantees we can find a path to the goal 
through free space, but does not guarantee we'll find a path 
with the required property because it uses no information 
about the regions p and q. In this paper we present an 
adapted version of the visibility heuristic for path existence 
temporal logic queries. 

The visibility heuristic as originally proposed in [9] and 
[10] and the visibility heuristic proposed here for temporal 
logic queries do not guarantee optimality of paths. Visibility 
heuristics can be "softened", ie. made to allow more samples 
in the roadmap if some path length improvement condition 
holds, which has been done for the classic visibility heuristic 
for point-to-point planning queries [13], but this is beyond 
the scope of this paper. We aim here to present a base 
visibility heuristic that can handle temporal logic queries. 
Augmenting the heuristic with asymptotic near-optimality 
considerations is left for future work. 

Point-to-point planning algorithms use a shortest path 
graph search algorithm like Dijkstra or A* to find a solution 
to a simple, start to goal planning query in a roadmap. For a 
problem specification in temporal logic, shortest path 
algorithms are in general not applicable. Consider again the 
task of getting from a start region to a goal, via a path that 
stays inside some region "p" of the state space; there is no 
reason to expect this would be the shortest path. In general, 
previous planners for temporal logic specifications [5-6] 
have used model checkers like the ones described in [14], 
[15] to find a plan from the roadmap. We propose a simpler 
procedure here, tailored to the temporal logic fragment we 
study. 

We limit discussion to a path-existence fragment of a 
temporal logic system known as LTL [2]. A statement 
expressible in this temporal logic requires a finite path with 
some given property to exist. We restrict to path existence 
under the assumption that if a solution exists, then the robot 
is free to choose it. Note, while path existence LTL can only 
specify finite trajectories, it is possible to instruct the 
planner to close a path into a loop, if one is required, for 
example in the case of a robot that needs to patrol through 
several regions. We show here how to use an adapted 
visibility planner for path existence LTL specifications 
together with a gap reduction step to generate loops. 

In summary the contributions of this paper are as follows: 
a visibility heuristic adapted to path existence LTL, a way to 
estimate how well a robot's state space is covered, a 
procedure to extract a plan from a roadmap, and a procedure 
to generate looping paths.  

The paper is organized as follows. Section II offers 

theoretical background on graph theory, sampling-based 
planners, and temporal logic. In section III we describe the 
visibility heuristic adapted for path existence LTL, indicate 
how coverage can be estimated, describe a procedure to 
extract plans from the roadmap, and show how the planner 
can be used to create paths containing loops. In section IV 
we compare our method to previously existing algorithms in 
the literature: PRM, the classical visibility method, and 
RRG [7], using both shortest path search (Dijsktra) and the 
path search we propose here, and show our method can 
drastically reduce the number of samples needed in the 
roadmap. Finally, section V presents conclusions and future 
work. 

II. THEORETICAL BACKGROUND 

A. Graphs and roadmaps for planning 

A graph G is a mathematical structure consisting of two 
sets: G = {V, E V V} where V is referred to as the vertex 
set and E, the edge set, is a set of ordered pairs of vertices. 
Graphs have many applications in computer science and 
engineering but in this paper we focus on two of them, 
roadmaps for planning and graphs of strongly connected 
components. 

The graph as defined above is a directed graph, in that if 
(v1, v2)  E it doesn't follow that (v2, v1)  E. The 
significance of an edge is that one can "go" from one end to 
the other directly by "moving along" that edge. Unless an 
edge in the opposite direction exists, one cannot move 
backwards directly. 

A path from one vertex v1 to a vertex vn is a sequence of 
vertices starting with v1 and ending with vn, and such that for 
any vk, vk+1 consecutive vertices in the sequence, one finds 
that (vk, vk+1)  E. Paths that begin and end at the same 
vertex are called cycles. 

Some oriented graphs contain no cycles and are called 
acyclic (any unoriented graph with at least one edge 
contains cycles). On acyclic graphs one can define a partial 
order relation, the topological sort <, defined by requiring 
that, if an edge (v1, v2) exists, then it must be the case that v1 
< v2. Algorithms for the topological sort of directed acyclic 
graphs (DAGs) exist [16], including versions that can 
efficiently redo the sorting as changes happen to the graph, 
without resorting to recomputing the sort from scratch [17]. 

A subgraph of a graph is a subset of its vertices U  V, 
together with a subset of the edges that connect vertices 
from U. 

 

 
Figure 1. Directed graph (left) with maximal strongly connected 
components circled. Graph of SCCs of the original graph (right). 
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A strongly connected component S of a graph is a non-
empty subset of the vertex set V, along with all edges from 
the graph that are between vertices in S, which has the 
following two properties: (connectivity) between any two 
vertices v1, v2  S, there exists cycles using only vertices 
from S; and (maximality) for any v1  S and any v2  V-S, 
there is no cycle between them in G. 

A graph may have several strongly connected 
components, and it may be the case that there are paths 
linking a vertex from one to a vertex from the other. In this 
case one says that the components are linked by some 
connection, therefore one can define a graph of the strongly 
connected components of some graph G (see Fig. 1). Denote 
this graph by SCC(G). Since each strongly connected 
component of G has at least a vertex, the size of SCC(G) is 
less than that of G. SCC(G) is also a directed graph, and one 
finds that, if two vertices from SCC(G) have paths between 
them in both directions, or in other words if a cycle exists, 
then the strongly connected components that they represent 
can in fact be merged into a single one. Updating SCC(G) as 
G is changed can be done by applying algorithms based on 
topological sort methods [17]. 

For motion planning, two kinds of graphs are important. 
One is referred to as "the roadmap" of the free space, and its 
vertices are allowed configurations (or subspaces of allowed 
configurations) while its edges correspond to non-obstacle-
colliding trajectories between these configurations generated 
by some "local planning" procedure. The other kind of graph 
important for visibility based planners is the strongly 
connected component graph of the roadmap or its 
subgraphs. 

B. Sample-based planners 

Sampling planners construct a graph called a roadmap to 
represent the connectivity of the manipulator or mobile 
robot's free space (the part of configuration space without 
obstacle overlaps) by running a sequence of sample-and-
connect steps [18]. Each step involves generating a random, 
usually uniformly distributed, sample in the free space of the 
robot, then attempting to connect it to samples already 
existing in a graph called the roadmap by some "simple" 
local planner procedure. Here, "simple" means the local 
planner is not mindful of obstacles when generating 
trajectories [19-20]. These simple trajectories are included 
in the roadmap only if they are free of obstacle collisions. 
Several variations of the above framework exist; several 
sampling [21-22], and connection heuristics [23-24] have 
been proposed. Once a roadmap for the configuration space 
is constructed, solving point-to-point planning problems 
reduces to a path search in the roadmap: the planner first 
attempts to connect the start and goal configurations to the 
roadmap via simple trajectories, then searches for a path 
between the two new vertices. 

Note that there is a difference between a planning 
problem having solutions and the planning problem having 
solutions in a roadmap. A planning problem has solutions if 
there exist paths in free space between the start and goal; it 
may be the case that none of these paths are also in the 
roadmap however. Therefore sampling based planners do 
not guarantee that, if a planning problem has solutions, the 
planner will find one of them. However, they offer a weaker 

guarantee called probabilistic completeness: as the number 
of samples and connections stored in the roadmap increases 
to infinity, then if a planning problem has solutions in free 
space, the chance it also has a solution in the roadmap goes 
to one. 

In practice, roadmaps can offer a good chance to find 
solutions even when a small number of samples is stored. In 
particular, the visibility heuristic of [9-10] is efficient at 
keeping roadmaps small as well as capable to solve planning 
queries. The heuristic works by filtering which samples 
generated in the sample-and-connect steps are stored in the 
roadmap; a new sample is kept only if it cannot be 
connected to other samples in the roadmap, therefore it has 
been placed in a region previously invisible to the roadmap 
and improves its coverage, or if it is a bridge between 
samples in different maximally connected components of 
the roadmap and improves connectivity. Therefore, the 
probability that a sample is accepted is related to the volume 
of free space that is either invisible to the roadmap or at the 
overlap of several connected components in the roadmap, 
which represents regions where the roadmap 'should' know 
of a path but doesn't yet. As the number of samples in the 
roadmap increases, this volume decreases to zero. One can 
use the rate at which samples are rejected to estimate the 
volume of freespace covered by the roadmap, and its overall 
chance to solve planning queries. As a consequence, the 
visibility heuristic is probabilistically complete for simple 
point-to-point queries [9], which here means that as the 
number of sample-and-connect steps used to build the 
roadmap increases to infinity, so does the chance to solve a 
planning query increase to one. 

C. Temporal logic 

Temporal logic is a catch-all term for formal languages 
designed to describe specifications about the behavior, in 
time, of dynamic systems. Several such logics exist, of 
varying expressive power. Computational Tree Logic, 
Linear Temporal Logic [2], and their superset CTL* [3] are 
examples of temporal logics, and so is the stronger μ-
calculus [4]. Temporal logic first appeared for program 
verification [2], where it allowed one to reason about, and 
sometimes check whether certain properties hold, like a 
program eventually reaching some state, or avoiding dead-
lock, or obtaining some useful property infinitely often. In 
this paper we will focus on a fragment of Linear Temporal 
Logic (LTL) that allows statements about path existence. 

As with any formal language, LTL and its path existence 
fragment have an alphabet of symbols, syntactic rules for 
combining the symbols, and semantics to interpret them. 
The alphabet of symbols contains parenthesis, "true" and 
"false" symbols, the logical operators "" (NOT), "" 
(AND), "" (OR) and "U" (UNTIL), and atomic 
propositions which we will denote by small Latin letters. 
Atomic propositions are interpreted in a motion planning 
context as regions in space. For example, we might say 
region "p" is the region of configuration space where the 
robot touches a particular table. We will denote the set of all 
atomic propositions by . What this set contains may vary 
by application, depending on what regions of interest need 
to be defined in the robot's environment. 

The syntax of path existence LTL is recursively defined 
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as follows. An atomic proposition is a statement in path 
existence LTL, and so is its negation. The AND operator 
applied to two statements is a statement, and the same goes 
for OR and UNTIL. In Backus-Naur Form [25] this is 
described as: 

 Uppfalsetrue ||||||::       (1) 

where p is some element of . Since the syntactic 
structures above are defined recursively, one can use them 
to construct a syntactic tree for a statement, in which each 
node is a subformula (another statement in LTL). The root is 
the statement itself, and children of a node are the two 
subformulas appearing to the left and right of an operator. If 
a node is an atomic proposition it has no children, i.e. it is a 
leaf node. 

Note that we only allow negation to appear in front of 
atomic propositions. As will become clear from the operator 
semantics, this limits the possible statements to that 
describing path existence, which is not uncommon in a 
planning context [7], for otherwise one could write 
statements that impose conditions on all possible paths from 
a state. However, if only one agent, the planner, is doing the 
choosing, then it only makes sense to talk about path 
existence since if a path exists, the planner may choose it 
and solve the problem. 

 

 
Figure 2. Syntactic tree of an LTL formula where each node represents a 
subformula. The tree is grown until the locally checkable subformulas are 
reached as leaves. 

 
We will now describe how to interpret statements in path 

existence LTL as describing trajectories of a robot in its 
configuration space. We will say a statement  holds at a 
point x in configuration space, and denote this by {}@x, if 
there is a path starting at x over which the property 
described by the statement  is true. The statement "true" 
holds at any point; the statement "false" holds nowhere. 

An atomic propositions holds at points inside the region 
associated to it. For example, if p represents the surface of a 
table, for any point x on that table's surface we will have 
{p}@x. Conversely, for any point not on that table's surface 
we will have {p}@x. The AND and OR operators have 
their usual meaning from propositional calculus; given two 
statements 1, 2 in LTL, then {12}@x if both {1}@x 
and {2}@x, and {12}@x if either {1}@x or {2}@x. 
If a formula does not contain the UNTIL operator, then it is 
locally checkable: it can be determined whether it holds at a 
point in configuration space just by knowing the position of 
that point. 

The interpretation of the UNTIL operator requires 
thinking about possible paths, not just positions in space. Let 
then 1 and 2 be statements in path existence LTL, and let 
W be the set of points in configuration space at which 2 
holds. Then, {1U2}@x if there exists a path starting at x 

and ending at some point in W, such that at every location 
along the path (including therefore x itself) 1 is true. 

As an example, consider the atomic proposition q as 
representing an obstacle region, and g as representing a goal 
region. Then, the basic planning query of reaching the goal 
while avoiding the obstacles is given by (q)U(g), and 
finding whether a starting point x can reach the goal 
becomes determining whether {(q)U(g)}@x. This 
statement is not locally checkable because it cannot be 
verified just by knowing the position of x; it also needs 
information about how the regions in configuration space 
are connected. 

Except for locally checkable statements, a planner will 
not have access to exact representations of the regions where 
a statement is true. Instead, it must construct approximate 
representations by building a roadmap, as well as keep track 
of what statements hold at the vertices and connections in its 
roadmap. There exists a tangible benefit for restricting to 
path existence specifications we refer to as the "More isn't 
less" lemma, encountered for example in [7] (lemma III.1 in 
that text). Intuitively, the lemma states that as we improve 
our knowledge of the dynamics of a system and the 
environment it inhabits by adding more samples to a 
roadmap, then the set of path existence LTL statements that 
hold at a sample in the roadmap will not decrease; or, 
conversely, the set of roadmap samples at which a path 
existence LTL statement holds will never decrease as we 
add more samples to a roadmap. The lemma is useful in 
establishing why a planner which explores more of the 
configuration space will only become more able to solve 
planning queries, not less, at least as long as the queries are 
of the path existence type. We refer to [7] for its exact 
statement and a proof which easily translates to path 
existence LTL.  

III. PLANNER ALGORITHM 

A. Algorithm description 

The visibility heuristic [9-10] accepts a new sample into a 
roadmap M if doing so will change the graph of connected 
components of the roadmap. If x is the new sample, and 
Mx is the roadmap after x and its possible connections is 
added to M, let us state the visibility heuristic symbolically 
by saying a sample x is accepted if SCC(M) and SCC(Mx) 
are different: either the number of connected components 
increases by one, because the new sample cannot be 
connected to other roadmap samples, or decreases by at least 
one, because the new sample allows cycles between vertices 
in different connected components, or a new one-way 
connection appears between two previously unconnected 
components. As stated in the Introduction section, this 
heuristic is not enough for handling queries in temporal 
logic because it does not use information about the regions 
represented by atomic propositions. 

We therefore amend the visibility heuristic to consider not 
just the connected components of the roadmap as a whole, 
but also the connected components of subgraphs of the 
roadmap, where each subgraph is associated to a temporal 
logic statement. Let [](M) be the subgraph of M that 
contains all vertices at which  holds, and all edges for 
which  holds at every point. Our heuristic then is: given a 
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set of temporal logic statements L and a roadmap M, a new 
sample x is added to the roadmap if there exists L such 
that SCC([](M)) and SCC([](Mx)) are different. We 
will next show how to construct [](M). 

Suppose we have an LTL statement  for which we want 
to design a planner. The planner should construct a roadmap 
for the environment and then, when given a query point x, 
find a path that starts at x and satisfies the formula , if such 
a path exists. We first construct the syntactic tree of 
subformulas of ; and in order to minimize the tree size, we 
allow locally checkable formulas to be leaves. Then, the set 
L contains the nodes in the syntactic tree. Belonging to a 
subgraph can be flagged by a binary value and does not 
require several copies of the roadmap to exist. We will 
denote by Llocal the subset of L which contains locally 
checkable formulas. 

We also need to define how to construct [](M) for some 
statement . In the case of vertices and locally checkable 
formulas, this is obvious as by definition locally checkable 
formulas are made of conjunctions and disjunctions of 
atomic propositions, which can be verified knowing only a 
position in configuration space. Verification of locally 
checkable formulas along an edge is analogous to collision 
checks along the edge in usual planners. If all along an edge, 
the same locally checkable formulas hold, then that edge is 
also a member of whatever locally checkable subgraphs its 
endpoints are members of. If instead one finds that along an 
edge there are regions where different locally checkable 
formulas hold, then one can cut it by either generating new 
vertices at the points of contact between regions, or inside 
each region. The resulting edges will then be bridge edges 
between locally checkable subgraphs. 

 

 
Figure 3. Roadmap and subgraphs associated to subformulas of a 
specification. The roadmap in its entirety corresponds to the "true" formula. 
Nodes are generated at the interface of the p and q regions, and the edge 
between them is "between" subgraphs. 

 
Suppose then that 1 holds at a vertex, or respectively 

along an edge. Then that vertex, or respectively edge, is 
added to [1  2](M) formula (if it exists in L). 

Supposing that both 1 and 2 hold at a vertex, or along 
an edge, then that vertex (or edge) is added to [1  2](M) 
(if it exists in L). 

If 2 holds at a vertex or all along an edge, then that 
vertex (or edge) is added to [1U2](M), if it exists in L. 
Then, one can recursively add vertices from [1](M) to  
[1U2](M), if they connect via an edge where 1 holds 
everywhere (except maybe in a region around the 
destination where 2 holds) to a vertex already in 
[1U2](M); the edges used for connection are also added to 
the [1U2](M). 

An observation should be made here. The entire roadmap 
M is not the set of samples at which the top level 
specification  holds. Rather, one would say that M is 
[true](M), the set of vertices and edges of M at which "true" 
holds. 

Similar to the classic visibility heuristic [9], our proposed 
version allows an estimation of the coverage of the subspace 
corresponding to a statement . By definition of uniform 
sampling over a space, we have that the probability to place 
a sample in some region A of a space S is 

)(

)(
)(

Svol

Avol
Ap     (2) 

where vol(A) is the volume of A (or, in general, some 
suitable measure function). However, we also have 

)(

)(
)(

Sn

An
Ap     (3) 

where n(A) is the number of samples taken in region A. 
Suppose then that, at some point during execution, we 

wish to estimate the volume not yet covered by the roadmap 
for some subformula . For the purpose of this estimation, 
we set n() to 0 and increment it for each new sample that 
we generate in the  subspace during sample-and-connect 
steps. If the heuristic decides the sample is worth keeping, 
then we also increment n(u), the number of samples taken 
outside the current coverage of the roadmap. After several 
sample and connect steps, we may say that 

)(

)(

)(

)(







n

n

vol

vol uu     (4) 

or in other words that the ratio of the uncovered volume 
to the total volume is similar to the ratio of samples accepted 
to the roadmap to the total number of samples taken.  

While not something that can be verified to mathematical 
certainty, this estimation does have an intuitive justification. 
If the volume not yet covered by the roadmap is, for 
example, a quarter of the total volume of space, then one 
would expect that a quarter of a number of random 
uniformly distributed samples would be in the uncovered 
volume. The visibility heuristic would be able to determine 
whether a sample is inside the covered volume or not, 
because a sample that's inside the covered volume is 
connectable to samples already in the roadmap. 

Such estimations of coverage are useful especially when 
several regions of space are considered, as is the case for 
LTL formulas. If one finds that the uncovered volume of 
some regions is large, then one can prioritize sampling to 
those regions, to speed up roadmap construction. 

It will often be the case that sets of points where formulas 
hold are compact [26]. This is a property describing how 
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well-behaved sets are, from a topological standpoint, and 
implies that a set can be covered by a finite collection of 
open sets. This is necessary so that we can have a finite 
roadmap covering the configuration space. 

 

B. Changing the start configuration 

In the previous section, we considered that the start 
configuration is known from the start and added to the 
roadmap. Should we desire to change it however, one 
simply adds the new start configuration to the roadmap, and 
thereafter proceeds with sample-and-connect steps, using the 
algorithm described before. If the new start is inside the 
subspace corresponding to the specification, it will 
eventually be added to the subgraph corresponding to that 
subspace of Cfree. 

C. Extracting a plan from the roadmap 

Checking that a plan exists is made very easy by the 
process of roadmap construction. If the starting vertex is 
inside the subgraph corresponding to the specification, then 
a plan exists; otherwise, it does not. 

Once a roadmap is constructed, the issue remains to 
extract a plan from it, if one exists, that meets a given 
specification. Tools for general LTL formulas exist, like 
NuSMV [14] and SPIN [15], which have also been used in a 
planning context [5]. They check a formula by providing a 
counter-example to its negation, if such a counter-example 
can be found, and if it can be, the counter-example is the 
sought after plan. 

SPIN and NuSMV are capable of handling general LTL 
formulas, outside the subset of interest to this paper. 
Restricting to the subset of "existence of paths" formulas 
allows one to work with a formula directly, instead of 
requiring its negation, so we present a plan finding 
procedure specialized to this subset of LTL and which 
makes use of the auxiliary structures maintained by the 
planning algorithm. 

The basic planning query, (true)Uq where q is some 
locally checkable statement, is typically done with a 
Dijkstra's shortest paths algorithm or A*, which provides a 
distance map over the vertices in the roadmap. Each vertex 
has associated with it the smallest cost required to reach it 
from some given starting vertex. Based on the distance map, 
the shortest path between the given starting vertex, and any 
other vertex in the graph, can be obtained. Note that the path 
search algorithms are applicable to a planning problem only 
after a roadmap has been constructed, for example by a 
visibility heuristic. Also, for more general queries in 
temporal logic, shortest path search algorithms may not be 
sufficient. If we require the path to pass through a certain 
region of the configuration space, it is not necessarily the 
shortest path between start and goal. 

We can however construct a path that obeys some given 
temporal logic statement  by concatenating segments 
produced by shortest path searches in subgraphs of the form 
[](M) where  is some statement in L, the set of statements 
known by the planner which includes the statement  and all 
its subformulas. For example, to solve a query of the form 
pUq, the planner will run a shortest path search inside  
[p](M), where the destinations are samples that are also in 

[pq](M). Of the samples in [pq](M), those which are 
connected to the starting vertex by short paths that do not go 
through other samples in [pq](M) are called a "front". 

We can now define a function, FindFront, which takes as 
input a start configuration, and an LTL formula representing 
a specification on paths. It will return a list of front vertices 
and the paths to them from the starting vertex. We will now 
specify the behavior of FindFront in more detail. 

If the starting vertex is not in the subgraph corresponding 
to the LTL formula, then the function returns one path, 
containing just the starting vertex, which is said to have 
infinite cost. We therefore have a quick test to check 
whether searching for a plan is fruitless because none exists. 

If the LTL formula is locally checkable, and is obeyed at 
the starting vertex, then FindFront returns a path containing 
just the starting vertex, of cost 0. 

If the LTL formula is of the 1U2 type, then the function 
will restrict itself to [1U2](M). Assuming the starting 
vertex can be found in this subgraph (or else, an infinite cost 
path containing just the start vertex would have been 
returned), FindFront will run a Dijkstra algorithm and locate 
the 2 front vertices and the paths toward them. After that, 
for each front vertex y, a new instance of FindFront is 
called, with y as start vertex and 2 as the formula. The 
return value of the upper level of the recursion is then the set 
of paths obtained by concatenating, to the paths to each front 
vertex y, the paths obtained for that vertex by the lower 
level of the FindFront recursion. 

If the LTL formula is of the 12  type, where one of the 
formulas, say 1, is locally checkable, then FindFront first 
checks that the starting vertex is inside [12](M). If it is 
(which implies that 1 also holds at it), then another instance 
of FindFront is called with the same starting vertex and 2 as 
the formula. The return value for the upper level of the 
recursion is then the return value from the lower level one. 

If the LTL formula is of the 12 type, where neither 
formula is locally checkable, then one should first use 
rewrite rules to bring it to a form in which the  operator 
always has at least one locally checkable formula as 
operand. Some useful rewriting rules are summarized in 
Table I; notice that the rewrite rules tend to shorten the 
formulas appearing as operands to the  operator, and 
therefore eventually we will only apply it to operands out of 
which at least one is locally checkable. 

 
TABLE I: SOME LTL FORMULA REWRITE RULES. FORMULAS ON THE RIGHT 

SIMPLIFY THE OPERANDS OF THE CONJUNCTION OPERATORS. 
LTL Formula Equivalent rewrite  

321 )(    )()( 3231    

)( 121  U  1  

)( 121  U  )( 12  U  

)( 211  UU  )( 21 U  

))(()(

))(()(

21431

43231


)()( 4321  UU 

 


UU

UU




 



 
Finally, if the LTL formula is of the 12 type, then two 
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instances of FindFront are called, both with the same start 
vertex, but one with the 1 and the other with the 2 
formula. The return value of the upper level recursion is the 
union of the return values of the lower level recursion. 

Looking for a plan then requires that a FindFront be 
called, with the starting vertex and plan specification. From 
the resulting set of paths, one can pick the lowest cost one as 
the plan to follow when solving the planning specification. 

The above is also given in pseudocode in Fig. 4. For ease 
of illustration, some simple auxiliary functions are invoked. 
LastInPath takes a path as an argument and returns the last 
vertex in the path. Count is a function that takes a path and 
an LTL formula  as parameters, and returns how many 
vertices from the path are also flagged as belonging to 
[](M). MergePaths takes two paths as parameters and 
returns the path which results from appending the second to 
the first. Finally, DijkstraPaths takes a starting vertex q, a 
subgraph [1U2](M) and a formula  as parameters, and 
returns the shortest paths that start at q, end on a vertex 
inside [](M), and use only vertices and edges in 
[1U2](M). 

 
Figure 4. The FindFront function. 

IV. SIMULATION VERIFICATION 

In this section we present two tests for the new planning 
method. The first compares it to previously existing 
algorithms like PRM [19], the classical visibility heuristic 

[9], and RRG [7] on a constrained path finding problem for 
a mobile robot; we present the problem and the results in 
subsections A and B. We then apply our method to a loop 
finding problem that was used in [7] to showcase RRG; we 
present the problem, customize our heuristic for loop 
creation, and present the results in the following subsections 
C, D, and E. 

 

A. Constrained path: problem specification 

The problem is to navigate a point robot between two 
configurations in a maze shown in Fig. 5 a). However, two 
regions are defined in this maze: a region 'p' shown in Fig. 5 
b), and a region 'q' shown in Fig. 5 c). 

 

 
Figure 5. Problem environment for the constrained path problem (a); the 'p' 
region, marked in gray (b); the 'q' region, marked in gray (c). 

 
The problem is to find a path between the two points 

marked with crosses in Fig. 5 a); however, the path is 
required to stay inside either the p or the q region until the 
destination is reached. Let 'd' be a region associated to the 
destination, then the LTL specification for the problem is 

)()( qUdpUd      (5) 

 

B. Constrained path: simulation results 

 We compare our algorithm to RRG [7] (another 
algorithm capable to handle LTL specifications) as well as 
to classical planners like PRM [19] and the first visibility 
heuristic [9]. We run each algorithm for 1000 times until the 
roadmap produced by the algorithm contains a path in free 
space (the union of p and q regions) from source to 
destination, which is easy to check using a connected 
components structure using Tarjan's set union algorithm [16] 
which runs in 'almost constant' time (running time 
proportional to inverse Ackermann function of the number 
of vertices, and therefore grows very slowly). 

 Once an algorithm produces a roadmap where some path 
exists between source and destination, we run a Dijkstra 
shortest path algorithm to find the shortest path between 
source and destination, and we then check whether that path 
always stays inside the p, or always inside the q region; as 
expected, a shortest path search will not find a path that 
answers the posed problem. We also run path searches on 
the subformula subgraphs to see whether a planning 

 
TABLE II: SOLUTION STATISTICS FOR 1000 RUNS ON THE CONSTRAINED PATH SEARCH PROBLEM. 

Planner 
Avg. time 

(s) 
Stdev time 

(s) 
Avg. vertices Stdev vertices 

Successes 
(Dijkstra path search) 

Successes 
(subgraph path 

search) 

PRM 0.001 0.0011 28.02 16.67 0 38 

Visibility 0.0007 0.0005 9.82 2.1 0 0 

RRG 0.0058 0.0038 77.61 24.82 0 1000 

Our method 0.003 0.0015 18.99 2.74 0 1000 
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algorithm produced a roadmap that does contain a path 
which answers the posed problem, even if a simple path 
search was not able to find it. 

We collect execution times, sample counts, and success 
rates for the planners and path search methods, which we 
summarize in Table II. 

As can be seen from the table, both the classical visibility 
planner and our own method are able to connect the source 
and destination faster and with fewer vertices kept in the 
roadmap. However, the roadmap produced by the classical 
visibility planner doesn't contain a path that is either all 
inside the p region or all inside the q region, which strongly 
suggests the classical visibility heuristic would not be 
capable to handle general path-existence LTL specifications 
for mobile robots since it cannot handle even a fairly simple 
one as in this test case. The classical visibility heuristic 
aggressively prunes the samples accepted in a roadmap, and 
only consider the connectivity of the entire configuration 
space, not that of regions of it. 

Searching for a path that answers the posed problem 
cannot be done with a simple shortest path search; the 
search needs to be informed of the subgraph structure 
induced by the problem specification, which is what we 
propose in this paper, or else the path search is not actually 
aware of the problem specification. If the path search does 
use the structure we propose, then it is always successful for 
roadmaps produced either by RRG or by our method. 
However, our method is twice as fast as RRG and produces 
roadmaps with about a quarter of the vertices needed by 
RRG.  

A roadmap with fewer vertices that nonetheless manages 
to capture the connectivity of the environment is useful 
because it allows faster queries, as well as faster post-
processing of the roadmap, should the environment change. 
Several schemes have been proposed in the literature to 
handle changing environments, for example vertex 
displacements that mimic a network of elastic bands pushed 
away by the moving obstacles [27] or vertex cost 
adjustments when obstacles are detected near roadmap 
vertices [28]. Having fewer vertices to consider for such 
processing is an advantage. 

It should be noted that a path search on subgraphs will 
sometimes succeed for roadmaps produced by PRM, 
because PRM tends to use 'more samples' than necessary to 
connect two vertices and may, by chance, capture the 
connectivity of one of the regions p or q, including an entire 
path inside one of these regions. However, the rate of 
success is very low (less than 5% for our test case) which 
suggests that for LTL task specifications, one needs to use 
special planning algorithms like RRG or the method we 
proposed here. 

 

C. Loop construction: problem specification 

We apply the planner to the problem used for simulation 
verification of RRG in [7], which asks for a discrete time 
linear dynamic system in a two-dimensional configuration 
space to be steered towards a looping trajectory that passes 
through two specified regions while avoiding a third. The 
system is characterized by the following equations of state 
(a kinematic model, as no inertia is present): 


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where 


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95.0049.0
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

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 
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098.00025.0
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from which it is straightforward to define a local steering 
procedure between arbitrary positions. The local steering 
procedure will assume obstacles are not in the way, and the 
trajectories it produces must be checked for validity, as is 
typical for sampling based planners. Valid trajectories are 
kept in the roadmap. Note further that the system is fully 
reversible so we can use an unoriented graph for the 
roadmap. 

 

 
Figure 6. Left, the problem environment with special regions marked in 
gray. The specification and its syntactic tree are shown on the right. 

 
The environment is shown in Fig. 6. The system starts at 

(0, 0), on the edge of the s region. We require that it reach 
the p region, then the q region while avoiding s, then the p 
region again while avoiding s. We then formulate the LTL 
specification: 

)))()((()( qUspUtrue    (9) 

Note that, while the specification above produces a finite 
path, the problem in [7] requires a loop to be formed 
between p and q, which avoids s. To close the loop, notice 
that the system's reversibility allows the s-free path from p 
to q to be used in reverse. Were this not the case, then a 
different LTL specification would have required a path from 
p to q, then from q to p, and a gap reduction step would have 
been necessary to close the loop by linking the path 
endpoints in p. 

We compare our planner's performance in terms of 
roadmap size and execution speed with that reported in [7] 
for the RRG algorithm. The reason we compare to RRG in 
this test is the fact that it, like our planner, is capable to 
handle queries in temporal logic. Point-to-point planners 
like PRM or RRT would not be able to solve such problems 
and are not fit for comparison. It should also be said that 
path search algorithms like A* or Dijsktra are not good 
comparisons either; a path search algorithm needs to have a 
graph to search, and the construction of that graph is the 
domain of the planner heuristic we propose here. Also, 
shortest path search algorithms on their own cannot find 
paths that obey temporal logic statements because such 
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paths are not necessarily the shortest in the roadmap; such 
algorithms must be deployed in a FindFront procedure as 
described in section III.D to search among those paths that 
obey a temporal logic statement, as was shown in  
subsections IV-A and IV-B . 

 

D. Loop construction: customized visibility heuristic 

We will first make an inventory of the distinct formulas 
that we need to track for the given specification: true, p, q, 
s, (s)U(q), p((s)U(q)), and finally the specification 
itself, (true)U(p((s)U(q))). Each of these will have a 
subgraph in the roadmap to represent it; vertices and edges 
inside [](M) satisfy , meaning a path exists which starts at 
the vertex, or the point on the edge, and satisfies , where  
is some formula in the list given above. 

We maintain connected components for each [](M) 
using Tarjan's set union algorithm [16]. If a new sample 
changes the graphs of strongly connected components or the 
connections between formula subgraphs, it is kept in the 
roadmap. Sampling for this problem will be uniform on the 
problem area. 

E. Loop construction: simulation results 

We run our tests on an Intel Pentium 4 processor with 
3.6GHz clock frequency; we use a single thread for program 
execution (no parallelism). One thousand runs of the 
algorithm are performed, and statistics on final roadmap size 
and rejected sample counts are shown in Table III. As can 
be seen, the size of the roadmap is reliably small, as an 
average of nine samples is sufficient to find a suitable path. 
In comparison, RRG used more than 1000 samples for the 
same problem [7]. We compare with RRG because it, like 
our planner, is capable to handle queries in temporal logic, 
whereas point-to-point planners like PRM or the classical 
visibility are not. 

One notices that the average number of rejected samples 
is around the same order of magnitude as the number of 
samples used by the RRG, suggesting that a uniformly 
sampling planner needs a few hundred attempts in order to 
pick some samples useful for a solution for the test problem 
considered here. The visibility based planner however can 
determine that most of the random samples taken do not 
improve the roadmap's ability to solve the problem, and 
instead only selects a much smaller set to keep for future 
use. In this test, the roadmap used by our method is about 
thirty-six times smaller than that used by RRG. 

In terms of time spent, whereas RRG requires several 
seconds (3.5s on average) [7], our visibility based planner 
needs an average of 0.33s. Although roughly the same 
number of sample and connect steps are made, the fact that 
the roadmap is kept dramatically smaller makes each of 
these steps much less expensive as near-neighbor queries 
and other auxiliary steps for sample based planners will 
require less time. 

 
TABLE III: STATISTICS FOR THE KEPT AND REJECTED SAMPLE COUNTS OVER 

1000 RUNS. 
Samples Avg. StdDev. Max. Min. 

Kept 8.84 1.63 12 5 
Rejected 368.6 257.43 1445 5 

   

V. CONCLUSIONS AND FUTURE WORK 

We have presented an extension of the visibility heuristic 
which is applicable to planning problems given as 
specifications in a path-existence subset of temporal logic, 
and defined a planning method to handle such specifications 
by using our proposed heuristic. These kinds of planning 
problems are relevant in task specifications for mobile 
robots and manipulators, as they allow a tighter integration 
between a symbolic level of task planning and the geometric 
level where motion planning actually occurs. Temporal 
logic capable motion planners can reason about geometric 
feasibility of subsequence tasks directly, and thus allow 
easier handling of branching and sequencing, and 
verification of candidate sequences of tasks. 

It should be noted that while the kinds of specifications 
our method can natively handle are about existence of finite 
and open paths, it may also be useful in some cases where 
the existence of an infinite loop is sought. To form a loop, 
one would need to get a path from some starting point, to a 
destination, then back inside the region of the starting point, 
and then use some gap closing procedure to close the loop, 
if the system that planning is done for has non-reversible 
maneuvers. For a system with reversible maneuvers, 
producing loops is trivial. 

The formulation of the planning problem used here 
assumed perfect actuation of the mobile robot. Probabilistic 
temporal logics exist which account for errors in motion 
[29-30], and it may be possible to extend the strategies 
presented here for planning specifications written in such 
formal systems. Other methods for obtaining sparse 
roadmaps besides visibility exist, in particular methods 
which soften the visibility heuristic and aim for some 
guarantee of partial optimality [11-13]. It may be fruitful to 
apply the subgraph constructions presented here to such 
methods, so that asymptotically near optimal, sparse 
roadmaps are made possible for general path existence 
temporal logics specifications, which would be useful in 
contexts like grasping, manipulation, and task planning. 
Both of the previous topics are left for future work. 
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