
Advances in Electrical and Computer Engineering Volume 13, Number 3, 2013

Building a Module for Inserting Microformats
into Moodle

Iasmina ERMALAI, Bogdan DRAGULESCU, Andrei TERNAUCIUC, Radu VASIU
Politehnica University of Timisoara, 300006, Romania

Multimedia Centre, Faculty of Electronics and Telecommunications, Timisoara, 300223,Romania
iasmina.ermalai@cm.upt.ro

1Abstract—Information found nowadays on the World Wide

Web is generally regarded as limitless. Hence emerged the need
to find methods for organizing data in order to get better
information retrieval. Organizing web content does not
implicitly mean structuring data by attaching meaning to the
information published on the web – at least not yet. For
instance, content management systems (CMS) are tools that
provide means of organizing web data. Nevertheless only a
handful of CMSs have a semantic layer. The following paper
offers an in-depth description of the logic and the
implementation behind the method used to integrate
microformats – also known as the “lower-case semantic web”–
into the widely known learning content management system
Moodle, personalized to suit the needs of students attending the
Politehnica University of Timisoara. It is an easy to use, easy
to integrate solution that does not require any changes in the
core of Moodle and, moreover, it does not overrun the server,
as the decision block runs on the users’ computer.

Index Terms—content management, electronic learning,
Information representation, semantic Web, Web services.

I. INTRODUCTION

The use of intelligent applications aims to offer methods
of collecting information from various web resources,
processing it, and exchanging results between them, all
these in order to facilitate and enhance the user experience.
Yet, all these processes rely heavily on the particular
methods through which information is published on the web.
Information should receive a well defined meaning, a
structure that would allow a better communication between
machines and software, therefore enhancing interactions
between humans and computers. Since the information and
applications available nowadays on the World Wide Web
are countless, a complete WWW reconstruction appears at
this time, at best, a herculean task. The easier, more feasible
alternative would be to add a semantic layer to the
information, in order to extend functionalities of existing
applications. This extension of the current web is known as
the Semantic Web, as envisioned by Sir Timothy Berners-
Lee [1]. Semantic web publishing tools, context modelling
tools, and semantic search engines are all technologies and
tools which are already in use.

Although built with the same goals as the Semantic Web
– to structure the web content, to “support decentralized
knowledge management”– microformats vary in several

aspects: they “do not address implicit knowledge
representation, ontological analysis, or logical inference”,
though they can “encode explicit information to aid machine
readability” [2]; they “are for human consumption first,
machine readability second”, as they imply “incorporating
markup into existing web documents over the creation of
new formats (e.g. OWL, RDF)” [3]. Microformats are
simple, yet structured methods, based on existing standards
(HTML and CSS), used for adding more meaning to web
pages, in order to better indicate people, companies, events,
reviews, tags, and so on [4] [5].

1This paper was supported by the project "Development and support of

multidisciplinary postdoctoral programmes in major technical areas of
national strategy of Research - Development - Innovation" 4D-POSTDOC,
contract no. POSDRU/89/1.5/S/52603, project co-funded by the European
Social Fund through Sectorial Operational Programme Human Resources
Development 2007-2013.

Content management systems or CMSs are different
methods of organizing content on the web, most of them
lacking a semantic layer. They are widely used in various
fields, from eLearning to eCommerce, from eHealth to
eGovernment.

One of the most used CMSs in education (currently
around 68,000 registered sites, from 220 countries [6]) is
Moodle, an open source online learning system, which
allows universities to manage content, students and
activities. The initiatives to include Semantic Web
technologies into Moodle have been rather scarce, difficult
and mostly in a prototype phase, thus not available to the
community of users.

In 2009, the “Politehnica” University of Timisoara made
the first steps towards adding semantics into the online
portal used at that time for managing the pedagogical
activity [7]. Seeing that, in 2010, the University, first
partially and then completely replaced the mentioned portal
with Moodle (two separate instances: Virtual Campus -
http://cv.upt.ro/ and ViCaDiS – Virtual Campus for Digital
Students - http://www.vicadis.net/campus/), the focus
switched towards adding microformats into the well known
LCMS, initiative started in 2011 [8]. This paper presents an
insight into the logic and implementation behind the latest
version of microformats’ integration into Moodle. The
novelty resides in the easy to integrate module that does not
affect the core of Moodle and does not overload the server.

The present paper is organized as it follows: first, issues
related to intelligent Web, also known as the Semantic Web,
and to learning content management systems are addressed.
Second, the paper formulates the problem we are trying to
solve, followed by the proposed solution, described in the
third section. The fourth section presents the discussions
related to the suggested approach, while the last section
offers a few future perspectives of the current work.

 23
1582-7445 © 2013 AECE

Digital Object Identifier 10.4316/AECE.2013.03004

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 07:25:04 (UTC) by 54.208.135.174. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 3, 2013

II. FORMULATING THE PROBLEM

Moodle is one of the most used learning content
management systems. Even if open source, it offers a fair
amount of built-in tools that provide online
interaction/collaboration between students and tutors, course
delivery, and activity management. There is also a
considerable amount of modules and blocks developed by
the Moodle community.

The fact that the support offered for open source solutions
was rather poor and extra features, customized for particular
needs, had to be developed in-house, were issues often
arisen when using Moodle. Furthermore, attempts to attach
semantic reasoning to Moodle were rather scarce and were
mostly focused on metadata, adding an additional semantic
layer, and data mining, which usually generate results in the
RDF (Resource Description Framework) format [9] [10].
Moodle 2.0 was also used for creating the Social Semantic
Web for Lifelong Learners, a “a dynamically personalized
learning environment for the lifelong learner” [11]. A
different Semantic approach to Moodle consisted of creating
a plug-in that allowed “semantic recovery of tweets and
resources from external repositories” [12]. Other initiatives
used intelligent agents to process the information previously
labeled using various ontologies, found in the Moodle
semantic layer. [13]

mEducator 3.02 is a contemporary, more complex project
that aims at using Semantic Web to add a structure to
existing medical standards and materials. It is “is a sharing
tool for medical educational content, based on the principles
of open linked data” [14] and it includes solutions based on
Elgg, Drupal, Semantic Media Wiki and Moodle. [15] The
prototype module developed for Moodle intended to offer
users the possibility to “search, retrieve, reuse and repurpose
medical resources with the minimum of extra effort”. The
user could also “retrieve and incorporate the intended digital
resource into his course, easily and without leaving the
LCMS” [16].

The purpose of this paper is to describe a simple, easy to
use solution, for integrating microformats into Moodle. Its
aim is not to enhance learning, but merely to offer the user
an alternative solution to deal with administrative tasks
related to contacts and schedule. The only extra
requirements, necessary in order to be able to use
microformats for their administrative feature, are the
installation of a browser plug-in and some skills in
configuring and using it.

Furthermore, there is an important additional advantage,
that should not be overlooked, namely the ever increasing
use of open standard like RDFa, Microformats and
Microdata [17] by search engines like Google, in order to
display Rich Snippets [18]. Rich Snippets are “a new
presentation of snippets”, that rely on markup formats and
Google algorithms, to “give users convenient summary
information about their search results at a glance” [19]. This
significant feature made available through microformats and
search engines’ algorithms, had a considerable weight in our
decision to publish parts of the web information from
Moodle learning system using hCard (for tutor and student
contact information) and hCalendar (for events).

III. PROPOSING A SOLUTION

The insertion of microformats inside the pre-existing
HTML structure (provided by the platform) is done with
minimal intervention upon Moodle’s core code. Thanks to
its signature modular make-up, we were able to create a
custom block inside its file structure, containing all the
necessary scripts, which would not be overwritten in the
case of a system update. Additionally, since the theme used
for our Moodle installation is also custom-made, the script
called on each page load is also safe from tampering by the
update process. The relation between the different types of
scripts is described in Fig. 1.

As shown in the block diagram, it all begins with a
decision block. This is a small script written with the aid of
the popular JavaScript library jQuery and inserted into the
header file of the template. This means that, for each and
every page Moodle produces, these few lines of code will
also be loaded. This is the only modification of code outside
of the Moodle block we specifically created, but is essential
in order to ensure that microformats are created for all users,
regardless of their privileges, capabilities or customizations.

Figure. 1: Block diagram of the microformats’ creation algorithm

What this block does is to check the URL of the current

page and extract two pieces of information. The first is the
name of the actual page that was loaded. This way the
algorithm checks which Moodle section the user is
accessing and decides whether one or the other microformat
needs to be inserted into the page. For instance, if the user is
checking the calendar, the block extracts the
“calendar/view.php” part of the URL and decides to call the
hCard injection algorithm. If this first piece of information
does not correspond to any of the predefined cases in which

 24

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 07:25:04 (UTC) by 54.208.135.174. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 3, 2013

 25

the microformats are needed, the script does nothing. view=month - this means that the controller needs to get
the events from a whole month; The second piece of information extracted from the url

are the parameters that customize the view. In the above
example, these parameters decide if the user is accessing a
whole month or only the events from one day, and also,
which month and which day. This is essential for the
algorithm, since we need to provide the users with only the
events from the desired period, and not all of the events in
the database.

 course=1 - this is the ID of the Moodle course (in this
case, the whole site, but it can differ according to where
the user calls the calendar from);

 cal_d=1 - this is the day of the month to be viewed; in
“month view”, this will always be 1, but in “day view”,
it differs accordingly;

 cal_m=05 - the month to be shown is the month of May;
 cal_y=2011 - this is the year of the requested events.

The controller interprets all this information and
establishes the period of time for which it must search inside
the database for events. For this, it uses Moodle’s own
functions to get the records from the database, also
benefiting from the internal roles-capabilities system which
insures that users can access only the events they are
allowed to view.

Once the data is retrieved, the controller calls upon the
appropriate class and provides it with the information from
Moodle. In return, it will get the generated microformat, in
its final form.

This microformat will then be returned to the Ajax call,
where the initial script, the one from the header, will inject it
into the DOM.

And that is pretty much it.
The pictures below show the front end of the functionality

added to Moodle and described above:

As stated above, this code snippet is called in each page
of the platform. This may seem like an “overkill” and a
strain on resources, but since this is JavaScript, all the
necessary computing power comes from the user’s
computer, and not from the server. Secondly, if the decision
taken by the code is not to call on any microformat, the
execution of the script ends here, with a minimal execution
time and processing. The advantages of this approach (the
fact that we didn’t modify the main code of Moodle, and in
doing this, we insured a greater portability and flexibility in
further developing the scripts) far outweigh the few extra
milliseconds needed to load each page.

Once the decision to insert a microformat has been taken,
the script will make an Ajax call to an API located inside the
custom block in Moodle. This call includes, aside from the
correct target (each of the two microformats implemented
here have their own controllers), the parameters from the
URL. By using jQuery, this Ajax call has been reduced to a
couple of lines of code, greatly improving the compatibility
and also the efficiency of the process.

The API will return the code that needs to be injected into
the page. This code represents the microformat backbone, a
simple HTML code with specific classes and structure that
will then be read by the microformat interpreter which the
users need to have installed on their computers. For testing
purposes, we have used the Mozilla Firefox add-on
Operator.

The code is inserted using jQuery’s extensive DOM
manipulation capabilities. In order not to interfere with the
existing code, we have created a dummy container, in
essence a DIV tag that we positioned outside of the visible
area of the document, and which is removed a short time
after. This delay and the fact that we didn’t just use an
invisible container (with “display:none;” in the style
section) instead of positioning it outside the page, were
necessary for the microformats interpreter, which needs a
little time in order to “scan” the page for the required code.

Figure. 2: Operator plug-in detecting contact information published with
hCard

This functionality (the appropriate Ajax calls and the
insertion of the code returned by these calls) adds a few
lines to the script inside the header of the template. This
brings the total to a mere 20 lines of code to be added to the
template header.

The rest of the code is found in the custom block we
created inside the “blocks” section of Moodle’s files. There
are two controllers, two classes and two template files, one
for each microformat.

Inside the API, the controller gets the parameters
provided by the Ajax script and splits them into chunks it
can understand. For instance:

Figure. 3: Operator plug-in detecting events published with hCalendar
classes

?view=month&course=1&cal_d=1&cal_m=05&cal_y=201
1
becomes:

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 07:25:04 (UTC) by 54.208.135.174. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 3, 2013

IV. DISCUSSIONS

We are not debating here the pros and cons of
microformats. Despite their relative maturity as a concept,
they have failed to catch on as a mainstream “must have”
technology. For instance, all the major browsers include in
their latest versions RSS readers. For microformats, you
need to install add-ons. But for those who do use them, they
provide an easy to use and easy to integrate solution for
standard, everyday information.

The method we are proposing here is customized to fit
our needs with the existing e-learning platform based on
Moodle.

These needs include regular security updates from
Moodle, intensive use of the calendar feature to schedule
events and so on.

For these reasons, the fact that the central core of Moodle
remains unscathed is a very big plus. It means that we don’t
need to be mindful of small hacks, and where they need to
go, after each update. It also means that in case we need to
migrate, or to integrate this solution into another Moodle
instance, we can do it as simply as installing a new plug-in.
And the fact that the decision block only runs on the users’
machines and that it only calls the server in very specific
conditions means that the server is not “bothered” with
requests that can overrun it, even if most of the almost 5000
existing users are logged in at the same time.

Adding 20 lines of code into the template header, out of
which maybe 5 are run on each Moodle page, doesn’t seem
like an unfair trade.

V. FUTURE PERSPECTIVES

As stated by Graham [20], “the dialectic between the
imaginations of supply side educationalists and
technologists on one hand, and the desires, beliefs and
aspirations of potential learners on the other”, meaning that
we can develop, adapt and integrate a variety of tools, but
only students can offer a real measure of their usefulness.
Thus arises the need to have student evaluate the module in
the near future.

As for future developments, we are considering
publishing the information contained in microformats in
RDFa (Resource Description Framework in attributes [21]),
using existing vocabularies in their creation. A detailed
comparison of microformats versus RDFa from the
standpoint of applications for educational needs and also
technological and semantic properties is presented in [22].
The main advantage of the RDFa publishing method is that
it allows software agents to merge data from multiple
sources, provided that they are described using the same
vocabularies. By means of such queries, simultaneously run
on multiple data sources, additional information could be
obtained, information that otherwise, through simple source
queries, would not be available. In order to reach this goal,
the metadata could be converted into the RDF format,
either by using scrapers / converters that extract
information from microformats, or by using a tool that
directly converts the information found in the database
(D2RQ Platform – “system for accessing relational

databases as virtual, read-only RDF graphs” [23]).
We also intend to release the final microformats plug-in

into the Moodle community, once we are content with the
functionality and the robustness of the code.

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic Web," in

Scientific American New York, 2001.
[2] R. Khare and T. Çelik, "Microformats: a pragmatic path to the

semantic web," in Proceedings of the 15th international conference
on World Wide Web, Edinburgh, Scotland, 2006, pp. 865 - 866

[3] J. Hebeler, M. Fisher, R. Blace, and A. Perez-Lopez, Semantic Web
Programming: Wiley Publishing, Inc., 2009.

[4] E. Lewis, Microformats Made Simple. Berkeley, 2009.
[5] T. Çelik, "Microformats, Building Blocks, and You," 2007.
[6] Moodle.org, "Moodle Statistics." vol. 2012.
[7] I. Ermalai, M. Mocofan, M. Onita, and R. Vasiu, "Adding Semantics

to Online Learning Environments," in 5th International Symposium
on Applied Computational Intelligence and Informatics – SACI2009,
Timisoara, Romania, 2009, pp. 569-573.

[8] B. Dragulescu, I. Ermalai, M. Bucos, and M. Mocofan, "Using
hCard and vCard for improving usability in Moodle," in 6th IEEE
International Symposium on Applied Computational Intelligence and
Informatics (SACI 2011), Timisoara, Romania, 2011, pp. 463-476.

[9] S. Lukichev, I.-M. Diaconescu, and A. Giurca, "Empowering
Moodle with Rules and Semantics," in SFSW, 2007.

[10] O. Mustapasa, D. Karahoca, A. Karahoca, A. Yücel, and H.
Uzunboylu, "Implementation of Semantic Web Mining on E-
Learning," Procedia - Social and Behavioral Sciences, vol. 2, pp.
5820-5823, 2010.

[11] S. Leone, "Characterisation of a Personal Learning Environment as a
lifelong learning tool," Università Politecnica delle Marche,
Extended summary 2011.

[12] R. R. d. Oliveira, "Use of Twitter and Semantic Resource Recovery
in the Educational Context," in 2012 IEEE 21st International
Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, Toulouse, Cedex 04, France, 2012, pp.
468-473.

[13] A. Rodríguez-Rodríguez, L. Cruz-García, C. Hernández-Guerra, and
F. Quintana-Domínguez, "How Semantics can Improve e-Learning
Tools," in IADIS International Conference WWW/Internet,
MURCIA, SPAIN, 2006, pp. 364-366.

[14] M. Hendrix, A. Protopsaltis, I. Dunwell, S. de Freitas, P. Petridis, S.
Arnab, N. Dovrolis, E. Kaldoudi, D. Taibi, and E. Mitsopoulou,
"Technical Evaluation of The mEducator 3.0 Linked Data-based
Environment for Sharing Medical Educational Resources," 2011.

[15] C. Bratsas, P. Bamidis, A. Dimou, I. Antoniou, and L. Ioannidis,
"Semantic CMS and Wikis as Platforms for Linked Learning," in
World Wide Web Lyon, France, 2012.

[16] P. D. Bamidis, S. T. Konstantinidis, C. Bratsas, and M. S. Iyengar,
"Federating learning management systems for medical education: A
persuasive technologies perspective," in Computer-Based Medical
Systems (CBMS), 2011 24th International Symposium on, 2011, pp.
1-6.

[17] I. Hickson, "HTML Microdata - W3C Working Draft 29 March
2012," W3C, 2012.

[18] Tomas Steiner, Raphael Troncy, and Michael Hausenblas, "How
Google is using Linked Data Today and Vision For Tomorrow," in
Linked Data in the Future Internet, Ghent, Belgium, 2010.

[19] K. Goel, R. V. Guha, and O. Hansson, "Introducing Rich Snippets,"
G. W. C. Blog, Ed., 2009.

[20] G. Graham, "E-learning: a philosophical enquiry," Education +
Training, vol. 46, pp. 308 - 314, 2004.

[21] W. C. W. Group, "RDFa 1.1 Primer Rich Structured Data Markup
for Web Documents," 2012.

[22] V. Tomberg and M. Laanpere, "RDFa versus Microformats:
Exploring the Potential for Semantic Interoperability of Mash-up
Personal Learning Environments," in Second International
Workshop on Mashup Personal Learning Environments
(MUPPLE09), Nice, France, 2009.

[23] C. Bizer, "D2RQ - Accessing Relational Databases as Virtual RDF
Graphs."

 26

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 07:25:04 (UTC) by 54.208.135.174. Redistribution subject to AECE license or copyright.]

