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1Abstract—The control of anti-lock braking system is a great 

challenge, because of the nonlinear and complex characteristics 
of braking dynamics, unknown parameters of vehicle 
environment and system parameter variations. Using some of 
robust control methods, such as sliding mode control, can be a 
right solution for these problems. In this paper, we introduce a 
novel approach to design of ABS controllers, which is based on 
digital sliding mode control with only input/output 
measurements. The relay term of the proposed digital sliding 
mode control is filtered through digital integrator, reducing the 
chattering phenomenon in that way, and the additional signal 
of estimated modelling error is introduced into control 
algorithm to enhance the system steady-state accuracy. The 
given solution was verified in real experimental framework and 
the obtained results were compared with the results of 
implementation of two other digital sliding mode control 
algorithms. It is shown that it gives better system response, 
higher steady-state accuracy and smaller chattering. 
 

Index Terms—anti-lock braking system, discrete-time 
nonlinear model, modelling error estimation, quasi-sliding 
mode, wheel slip control. 

I. INTRODUCTION 

Anti-lock braking system (ABS) is an electronic system, 
whose main goal is to prevent locking of wheels due to 
suddenly braking, ensuring the best wheel to road surface 
adhesion, and to provide better steering of vehicle in that 
way. These systems have been used since 1964, and they are 
standard equipment in the most of modern vehicles. 

The adhesion between wheel and road surface is usually 
specified by a coefficient of road adhesion μ, representing 
the coefficient of proportion between the friction force and 
the normal load of the vehicle. It depends on a wheel slip λ - 
a relative difference between the speeds of the wheel and the 
vehicle. The wheel slip should be set to the constant value 
by a controller, so that the coefficient of road adhesion has a 
maximum value. According to [1], the optimal values of 
wheel slip are between 0.08 and 0.3. Another approach is to 
estimate the value of wheel slip in real time, for which the 
road friction curve has its maximum [2]. 

ABS mathematical model is strongly nonlinear because of 
nonlinear characteristics of braking dynamics with unknown 
parameters of vehicle environment. Furthermore, due to 
components deterioration, the known system parameters 
also vary, and many external disturbances, acting on ABS, 
cannot be predicted in advance. The survey of control 

approaches used in design of ABS is given in [3]. 
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The design of linear PI, gain-scheduling, and fuzzy 
control based on linearized ABS models is discussed in [4], 
by using the results obtained in the similar experimental 
framework as in this paper. A genetic fuzzy self-tuning PID 
control of ABS is developed in [5]. An interpolative and 
Takagi-Sugeno fuzzy controllers are presented in [6] for slip 
control. Two original model-based fuzzy control solutions, 
dedicated to the slip control of ABS laboratory equipment, 
are given in [7]. 

In order to cope with ABS non-linearity and parameter 
uncertainties, robust non-linear control algorithms should be 
used. The integration of the non-linear ABS control and the 
active suspension system would provide further 
enhancement of the system performance [8]. Sliding mode 
control (SMC) algorithms [9-10] could be the good choice 
in ABS control applications, as well.  

SMC belongs to one class of nonlinear discontinuous 
control algorithms. Sliding mode (SM) exists when the 
control ensures system state motion along predefined sliding 
hyper-surface, defined by switching function. When in SM, 
a system is robust to parameter variations and external 
disturbances. This is of great importance in control of 
nonlinear systems such as ABS. The high-frequency nature 
of SMC signal is the main drawback of this control method, 
because the control can excite non-modelled system 
dynamics and wear out ABS mechanical parts. This 
phenomenon is known as a chattering. Fuzzy control 
techniques, usually implemented to suppress the chattering 
problem, can be used to cope with modelling uncertainties 
of nonlinear system, parameter perturbations and external 
disturbances, as well [11-12]. 

There are many papers dealing with the implementation 
of SMC in ABS. In [13], SMC is enhanced by a grey system 
theory and implemented in ABS control. The engine torque 
is used to control wheel slip in [14], where the existence of 
sliding motion is ensured by moving sliding surface. To 
cope with chattering phenomenon, the integral switching 
function is treated in [15]. The traditional SMC of magneto 
rheological brake system is presented in [16]. In [17], the 
hydraulic brake dynamics is included in design of ABS with 
conventional SMC. The combination of SMC and sliding 
mode observer is elaborated in [18]. The adaptive SMC 
method is discussed in [19], where only the difference 
between vehicle and wheel speeds is used instead of the 
wheel slip. The SMC with the neural networks and the 
moving sliding surface is considered in [20]. The 
combination of SMC and pulse width modulation (PWM) 
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method, is treated in [21-22]. In [23], the novel nonlinear 
control with integral feedback is compared with SMC. In 
order to provide overall vehicle stability, SMC is 
implemented for wheel slip control, and the linear quadratic 
regulator is used as a yaw moment controller [24]. The 
combination of SMC and fuzzy control (FC) is elaborated in 
[25]. The fuzzy blocks of FC are utilized to calculate the 
parameters of the constant plus proportional rate reaching 
law of SMC [26]. A comparative analysis of several 
continuous-time SMCs of ABS is presented in [27], both 
with a brief overview of existing SMC concepts in 
continuous-time domain. In this paper, we propose the novel 
approach in design of ABS control based on the digital 
SMC. 

SMC implementation on microcontrollers requires the 
discretization process of SMC, resulting in the quasi-sliding 
motion [28] and producing chattering in the O(T) vicinity of 
a sliding hyper-surface, where T is a sampling period. The 
overview of digital SMC systems is presented in [29]. The 
control approach for ABS, proposed in this paper, belongs to 
the group of input/output based digital SMC algorithms. 
There are two possible solutions to digital SM controller 
design of nonlinear plant. The first one is based on discrete-
time representation of linearized plant model [30] and the 
use of (generalized) minimum variance control in 
combination with digital SMC [31-33]. This method should 
be superior in comparison to the traditional linear control 
techniques. The second solution uses the input/output 
discrete-time nonlinear plant models in digital SMC design 
[34]. Such an approach is implemented in control of ABS in 
[35]. The control algorithm for ABS, proposed and 
implemented in this paper, combines the solution presented 
in [33] for linear plants with the control law given in [34]. 
The result is the robust control law that could suppress the 
chattering phenomenon, thanks to filtering of the sliding 
mode relay control component [35-37], and, at the same 
time, provide high system steady-state accuracy by 
introducing estimated modelling error signal into the 
control. 

The paper is organized as follows. In Section II, the 
basics of proposed digital SMC algorithm, implemented in 
ABS, are presented. Section III describes ABS experimental 
framework. The continuous- and discrete-time models of 
ABS are given in Section IV. In Section V, the novel digital 
SMC algorithm is adjusted and applied on ABS. The 
experimental results are presented and discussed in Section 
VI. Concluding remarks are given in Section VII. 

II. DIGITAL SMC BASED ON NONLINEAR PLANT MODEL 

Let us consider a single-input-single-output nonlinear 
plant in the following form: 
   1 , , , ,k k k n k k n  ky f y y g y y u    

n

, (1) 

where  represents a plant output,  is a control output, n 

is a positive integer number determining plant order, 

whereas  and 

ky ku

 , ,k kf y y  , ,k ky  ng y  represent 

smooth nonlinear functions of plant output and its past 
values. Notice that the plant model is linear in relation to the 
control input . ku

In further text we will use the abbreviations 

 , ,k k kf f y y   n n and , where  , ,k k kg g y y   kg  is 

a strictly positive and limited function away from zero. Due 
to uncertainties and variations of plant parameters, the 
nominal plant model: 

    1
ˆ ˆ, , , ,k k k n k k ny f y y g y y    ku

n

, (2) 

is used in design process, where  and  ˆ ˆ , ,k k kf f y y  

 ˆ ˆ , ,k k kg g y y   n  denote nominal functions of kf  and 

kg , respectively, whereas ˆkg  retains the assumed 

characteristics of kg , previously mentioned. In that case, 

there is a modelling error determined by: 

 , (3)  1 1 1
ˆˆk k k k k k ky y f f g g u         ˆ k

which is upper bounded:  
 max ,k E k   . (4) 

Suppose that reference input signal is a priori known as 
an output of reference system defined as:  
 1 0 0k k n k n k m kr a r a r b b m          , (5) 

where  and  represent coefficients of 

stable polynomials 

0 , , na a 0 , , mb b

 1 1
0 1

n
nA z a a z a z    +   and 

  0 1b b z1 1B z m
mb z   z  

1z

+ , respectively,  is a 

complex variable,   denotes a unit delay (delay operator), 
and k  is an input of reference system. Tracking error is 

now defined as:  
 k ke y rk  . (6) 

Taking into account (3), the plant model (1) can be 
rewritten as: 

 1 1
ˆ ˆk k k k ky f g u    . (7) 

The main goal of control design is to find a digital SMC, 
which can provide a zero value of switching function:  
 0 1 1k k k n k ns c e c e c e     , (8) 

where  are coefficients of the polynomial 0 , , nc  c

 1 1
0 1c c z n

nC z c z   +

0k

 

s

, with roots inside the unit 

disk in the z-plane. Notice that the tracking error  will 

converge to zero asymptotically if quasi-sliding mode exists 
in a system, i.e., 

ke

 . 

In order to achieve the control design objective, we 
propose a digital SMC algorithm in the following form: 

 
 

 
0 1 1

0 1 01

ˆ
1
ˆ sgn

1

k k k

k
k n k n k k

c f r c e
u Tc g c e s c

z

 



  

    
       
 





, (9) 

where   is a positive real constant parameter, T  is a 
sampling period (as a part of discrete-time integrator 

), and 1)z/(1T  k  is an output of one-step delayed 

modelling error estimator defined as:  

 1 1
ˆ ˆk k k k k 1y f g u      . (10) 

Notice that the chattering is significantly reduced since 
the high-frequency relay component of the control signal is 
passed through the digital integrator acting as a low-pass 
filter. Substituting (9) in (7) yields the equation of switching 
function dynamics as:  
   1 0 1sgn 2k k k k k ks s T s c        1  . (11) 
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To provide stable switching function dynamics, the value 
of parameter   should be chosen according to the 
following Theorem 1. 
Theorem 1: If the parameter   is chosen to satisfy the 
following inequality:  

  0 1 1max 2k k kT E c        , (12) 

where  is positive real number, then, for every initial 

state 

E

0s , there exists an integer number  0 0 0K K s , such 

that for every , system phase trajectory, described by 

(11) and (12), enters the domain  defined by:  

0k K

 S T

    :k kS T s s T     , (13) 

and remains in it for every 0k K m  , where  is a 

random positive integer number. 

m

Proof: See Appendix A. 
The overall system stability is ensured if and only if the 

conditions of the next Theorem are fulfilled. 
Theorem 2: System described by (7), (8) and (9) is stable if 
and only if: 

1) inequality (12) is satisfied for every k , i.e., quasi-
sliding mode exists in the system, and 

2) polynomial  1C z  has its roots inside the unit 

disk in z-plane. 
Proof: If the parameter   is chosen to satisfy inequality 
(12), then, according to Theorem 1, the quasi-sliding mode 

exists in the domain . Now, we can see from (8) that 

 will converge to the reference input signal  if and only 

if the polynomial  is stable. 

 



S T

 1C z

ky kr

System steady-state accuracy directly depends on the 
difference , as  0 1 12k k kc       1e s C   according 

to (8), and T  is chosen to be slightly greater than E , 

i.e.,  0 1 1max 2k k k    c  . Since a non-linear plant 

model is originally continuous-time before discretization, 
the outputs of plant y  and its nominal model  as well as 

the modelling error 

ŷ

ŷy   are also considered 

continuous. Suppose that   is twice differentiable on the 

interval . Then, it is possible to show that 

 has 

 ,T

k k  

kT kT T

 0 1 12 k  c 2O T  accuracy by using the 

Lagrange’s theorem in the following manner:  

    

   
1

1,

1 1

1

2

,

k k

k k

k k k

t kT t kT T

k k t kT

T t T t

T T t







  

 

  




 

    

  

  

 

  

 



  (14) 

where  1, 0,k k T   ,  1, 0,k k T   and 1k k T    . 

Accordingly, if   const. t   , then:  

 , (15)  2
1 12k k k T O T         2

and the accuracies of ks  and  are determined by ke  2O T  

and    2 1O T C , respectively. It is obvious that they are 

smaller than the accuracies obtained by the control 
algorithm given in [34-37]. 

III. ABS FRAMEWORK 

Practical ABS framework, used in experiments performed 
in this paper, is made by Inteco, Poland [38]. It contains two 
wheels, where the upper one represents a wheel of the 
vehicle, while the lower one animates relative road motion 
and it can be covered with some material to simulate road 
surface (ice, snow, rain etc.). The braking mechanism, 
mounted on the upper wheel, is connected to the brake lever 
via hydraulic coupling. A small DC motor drives the brake 
lever via steel cord and tightening pulley. This steel cord 
introduces an additional nonlinearity in system and limits 
the control input signal on 50% of its maximum nominal 
value. A large DC motor drives and accelerates the lower 
wheel in the acceleration phase, while its power supply is 
turned off in the braking phase. 

The encoders, used as angular position sensors, measure 
angles with 0.175° precision and they are installed on both 
wheels. The wheel angular velocities are estimated by using 
the Euler formula with 0.5 ms sampling time period. The 
described mechanism is connected to PC via hardware 
interface corresponding to control unit of standard ABS. The 
purpose of this interface is to amplify control signals and to 
convert the encoders pulse signals to the digital 16-bit 
number. The whole logic is configured in the Xilinx® chip 
of the RT-DAC4/USB board and all board functions can be 
accessed from the ABS Toolbox, operating in 
MATLAB®/Simulink® and RTWT toolbox environment. 

IV. ABS MATHEMATICAL MODELS 

Graphical representation of ABS for quarter vehicle is 
presented in Fig. 1. The given ABS model considers only 
the longitudinal motion of vehicle and the rotation of wheel. 
The interaction of wheels is not taken into account, as well. 
This simplified model does not represent full complexity of 
the real system but it determines system dynamics 
adequately enough. 

As it can be seen from Fig. 1, the vehicle (wheel) velocity 
is equal to the angular velocity of the lower (upper) wheel 
multiplied by its radius. Three torques act on the upper 
wheel: the friction torque in the upper bearing, the friction 
torque among the wheels, and the brake torque 1M .  

On the other side, there are two friction torques acting on 
the lower wheel - in the lower bearing and among the 
wheels. The gravity force of the upper wheel and the 
pressing force of the suspension also affect the lower wheel. 

 
Figure 1. ABS graphical model 
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Having in mind the previous system description and the 
graphical representation of ABS depicted in Fig. 1, we 
derive the ABS dynamical model. 

A. Continuous-time ABS model 

The upper wheel dynamics can be described as:  
  1 1 1 1 1 1 10 1 1nJ x F r s d x s M s M     , (16) 

where 1J  is a moment of inertia,  is a viscous friction 

coefficient and 
1d

10M  is a static friction of the upper wheel, 

 1 12 2sgns r x r x  ,  1 sgn 1s x , and 1x  and 2x  are 

angular velocities of upper and lower wheel, respectively 
and ,  are their radius. 1r 2r nF  represents normal force and 

    is coefficient of proportion called the coefficient of 

road adhesion, as we mentioned earlier. 
The lower wheel dynamics is defined as:  

  2 2 2 2 2 2 20nJ x F r s d x s M     , (17) 

where 2J  is a moment of inertia,  is a coefficient of 

viscous friction, 
2d

20M  is a static friction of the lower wheel, 

and  2 2sgns x . The equations (16) and (17) completely 

determine the dynamics of the quarter vehicle model given 
in Fig. 1. 

The normal force nF  is supposed to have a constant value 

in many papers and its perturbations are treated as a non-
modelled dynamics. As we do not use such modelling 
approach, we should derive the normal force nF  from the 

sum of torques acting at the point A (see Fig. 1) in the 
following form:  

 


 



1 1 1 10 1 1

sin cos

g

n

M s M s M d x
F

L s   

  



, (18) 

where gM  represents torque acting on the balance lever 

(point A in Fig. 1), L  is a distance between the contact 
point of the wheels and point A and   is the angle between 

the normal in the contact point and the line L . 
The angular velocity of the wheel and the forward 

velocity of the vehicle match each to other in the normal 
operating conditions, whereas in the braking and the 
acceleration phases, they differ one from another. This 
relative difference of velocities is called a wheel slip  . The 
wheel slip is defined in [38] for all operating conditions of 
the quarter vehicle model.  

The coefficient of road adhesion   is in nonlinear 

dependence on the wheel slip  , and one of its possible 
models is given by:  

   3 24
3 2 1

p

p

w
w w w

a


   


   


 , (19) 

where , p and , a iw 1, 4i  , are the real constants given in 

[38]. 
By replacing (18) in (16) and (17), we can define ABS 

model in the following form:  

 

  
    
  
   

1 1 2 11 1 12 13 1 14

15 1 2 16 1 1 1

2 1 2 21 1 22 23 1 24

25 1 2 1 1 1

, ,

, , ,

, ,

, , ,

x S x x c x c c x c

c S x x c s x M

x S x x c x c c x c

c S x x s x M









    

 

   





 
 (20) 

where         sin cosS s L s        , 

 11 1 1 1c r d J ,   12 1 10 1 1gc s M M r J  , 13 1 1c d J  , 

 14 1 10 1c s M J  , 15 1 1c r J , 16 11c J  , 

 21 2 1 2c r d J     , 22 1 10 2 2gc s M M r   J , 

23 2 2c d J ,  24 2 20 2c s M J  , 25 2 2c r J  . 

The braking phase starts after acceleration, when the 
lower wheel is speed up to 70 km/h. The wheel speed 
decreases and the force acting on the wheel causes the 
slippage between the road surface and the tire. The wheel 
speed is less than vehicle speed, i.e., , , 

, and wheel slip is defined by:  
2 2 1 1r x r x 1 0x 

2 0x 

 2 2 1 1

2 2

r x r x

r x



 . (21) 

If the wheel slip has a zero value, the wheel is not rotating 
and there is no motion of the vehicle. The wheels will be 
skidding on the road surface if the slip is equal to one. The 
consequence is that the vehicle is no steerable anymore. 

ABS controller should be designed to regulate the wheel 
slip at a preset reference value, so that the coefficient of 
road adhesion has maximum value. Therefore, we should 
determine ABS model with wheel slip as a controlled 
variable. By differentiating (21) and by putting (20) in the 
obtained result, someone gets:  

    2 2 1 2, , ,    f x g x M x   0   , (22) 

where 

        

       

1
2 11 13 12

2 2

2
21 23 2 22 24

2 1

, 1

1
1 ,

r
f x S c c S c c

r x

r
S c c x S c c

x r

   


  

 
14      

 

   
         

 



 (23) 

 

 

      1 2
2 15 16 25

2 2 1

, 1
r r

g x c S c c S
r x r

        
 

. 

  (24) 

gi

 discrete-time model of (22) is 
to

 

The final continuous-time mathematical model of ABS is 
ven by (22). In order to design the closed loop system 

dynamics with digital SMC, we should obtain the 
appropriate ABS model in discrete time. 

B. Discrete-time ABS model 

The simplest way to obtain
 use the Euler’s forward method where the first time-

derivative is approximated by       1k k

d. Then, the model (22

k

d dt T    , 

with T  denoting a sampling perio ) 
can be rewritten as:  
 1 1

d d
k k kf g M    , (25) 

here w  2,d
k k kf Tf x   ,  2,d

k kg Tg x , and kf , kg , 

 36 

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 21:53:15 (UTC) by 3.238.142.134. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 13, Number 1, 2013 

and 1kM  are sampled valu  of es f , g  and 1M  a tim -

insta k . d
k

t e

nt f  and d
kg  represen smooth nonlinear 

function an  that the function d
k

t  

s, d it is assumed g  is strictly 

positive and bounded away from zero. The system must 
have stable and convergent zero dynamics, as well [39]. 
Notice that the plant model is linear in relation to the control 
input 1kM . 

V. ATI IGIT A HM ON 

due to 
pa

1

 IMPLE

As in t

MENT

e gene

ON OF D AL 

ate

k

SMC 

d in Secti

k

LGORIT

on II), 

ABS 

ral case (elaborh
rameter uncertainties, we use the nominal model of ABS 

in design of digital SMC:  

 1
ˆˆ ˆd d

k kf g M    , (26) 

ithw  ˆ d
kf  and ˆ d

kg  deno nomiting nal values of the functions 
d

kf  and d
kg , respectively. The modelling error is defined 

  

 ˆˆ d d

by:

1k 1 1k k 1k ˆk k
d d

k kf f g

 can

k

g M

ewri

  

atisfie

 

Equa

1 1k k

     , (27) 

nd s s (4). tion  be

1k

a tten now it also (25)

k

 r
as:  

 ˆ ˆd df g M

r, th

    

l is of the firs

. (28) 

S m

re

As AB ode t orde e signal error ke  

presents the switching function ks  at the same time, i.e.:

 ref
k k k ks e

  

 
 of t

   . (29) 

ide a zer ue
.e

In order to prov o val he switching function, 
i . the error signal, the proposed control law, given by (9), 
is modified in the case of ABS and it becomes:  

  1 1 1

1 ˆ sgnd ref
k k k kd

T
M f s


ˆk 1 kg z

 

 

 

      


, (30) 

the control 



as we considewhere 

of
1 con 

e or-typ

st. ,
 

e, a

ref


 r

ref
k k 

gulat

r

system nd k  is an output of one-step 

delayed modelling error estimator:  

 1
ˆ ˆd d

k k k kf g      1 1kM

 is 
1 . (31) 

 fu dynaThe switching nction mics defined by (11), 
whereas the control parameter   is selected in accordance 
with (12). 

VI. E MEN R LTS

Th practically 
ve

XPERI TAL ESU  

e proposed digital SMC algorithm is 
rified on the experimental ABS setup described earlier, 

which enables users to check their control algorithms in 
MATLAB and Simulink environment. The experimental 
results of ABS with the proposed digital SMC are compared 
with the results obtained by implementation of two other 
control laws. The first one is taken from [34] and slightly 
modified as:  

  k k ˆ
ˆ

d ref
d
k

1

1
k k 1 sgnkM f s 

nami

s ,

orm

g    (32)

 p w g fu dy e f

 

cs in th

 

itchin



nction 

 

to  of:  rovide s
  1 0 1sgnk k k ks s s c     , (33) 

ho il nd, co uentl sw liding motion is se stab ity a nseq y, quasi-
ensured if:  
 0 1max c k  . (34) 

Thanks t



o the introduced modifications of control 
lgorithm, the system stability proo

si
a f can be obtained in 

milar way as it is given in Theorems 1 and 2. System 
steady-state accuracy is now determined by the value of 

0 1max kc  . Therefore, we can expect worse results in 

comparison to the proposed digital SMC. 
nd control law used in experimental validation is 

a digital SMC algorithm (30) witho
modelling er

The seco
ut the one-step 

ror estimator: 

  1 1 1

1 ˆ sgn
ˆ

d ref
k k k kd

k

T

1
M f s

g

  

     


, (35) 
z 

ielding switching function dynamics:  

1

y
    1 0sgnk k k k ks s T s c       . (36) 


Quasi-sliding mode exists if:  

 0 1max k kT c    , (37) 

an accuracy depends on d system steady-state 

 0 1k kc  max   . The control (35) pr

than the control la

sents the onse wit
) eter 

ovides the better 

accuracy than the control algorithm (32), but the worse one 
w (30). Theorems 1 and 2 could also be 

used in the altered version to prove the stability of system 
with (35) in quasi-sliding mode. 

The Figs. 2-5 present the wheel slip responses, obtained 
by using above mentioned control algorithms. The reference 
w refheel slip is 1 0.2k  , except in Fig. 5 where 1 0.3ref

k  . 

The sampling period T  is 0.005 s. 
Fig. 2 repre  results of wheel slip resp h 

control algorithm (32 . The param   is equal to 0.1, 

and, as one can notice, corresponds to T  in remaining 
control algorithms. This produces n able oscillations 
around the reference wheel slip and wider quasi-sliding 
manifold. 

ot

 
Figure 2. Wheel slip response with control (32) 
 

The implementation of (35) in control of ABS gives
ffects of chattering 

e

 
response shown in Fig. 3. Besides the e
r duction, enabled by filtering of relay control term through 
digital integrator, this digital SMC provides quasi-sliding 
motion with smaller control signal efforts. Namely, the 
parameter   is chosen to be 1. Unfortunately, although 
system steady-state accuracy should be theoretically within 

35 1T 0   boundaries, due to noise and un-modelled 
dynamics it is in a wider range. However, the error signal is 

n the previous case when control (32) is 
applied on ABS. 

The best wheel slip response is obtained by using the 
novel digital SMC proposed herein. The results are 

pr

smaller than i

esented in Fig. 4 and Fig. 5 for 1 0.2ref
k   and 1 0.3ref

k  , 
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respectively. The parameter   is taken to be 10 times 
smaller than in the previous control law, i.e., 0.1 , and 

consequently 45 10T   . 

 
Figure 3. Wh 35) 
 

 thanks to t g o
ital The 

n

eel slip response with contr

The chattering is also alleviated

ol (

he filterin
 integrator. 

f 
t
i
he relay control term by the dig
troduction of one-step delayed modelling error estimator 

signal in control law has the same effect as an 
implementation of one additional integrator in control [32]. 
This causes better system steady-state accuracy than with 
the implementation of two previously discussed algorithms. 

 
Figure 4. Wh oposed control (

 

eel slip response with the pr 30) for 1
ref
k   0.2  

 
Figure 5. Wh oposed control (

This pape proach in gn of 
digital sliding ck br stem 
(A

APPENDIX A 

First, we will prove 

eel slip response with the pr

r deals with a n

30) for 1
ref
k  

 the desi
aking sy

0.3  

VII. CONCLUSION 

ew ap
mode control for anti-lo

BS). The proposed digital sliding mode control (SMC) is 
based on the input/output discrete-time non-linear model of 
the plant. It is characterized by alleviated chattering 
phenomenon, since digital integrator filters the relay control 
component. The introduction of one-step delayed modelling 
error estimator additionally enlarges the system accuracy. 
The continuous- and discrete-time mathematical models of 
ABS are derived first, and, then, the proposed digital SMC 
is accommodated to cope with the obtained discrete-time 
ABS model. Finally, the control algorithm is compared with 
two other digital SMC laws through real experiment. 

Experimental results confirmed good performances of the 
given control and its superiority over the existing digital 
SMC solutions. 

that ks  enters  S T the domain  in 

finite time, and, then, show that ks  remains in that

Suppose that

 area. 

 ks , defined by (11), is a positive sequence. 

The proof is s ar when imil  ks  is negative sequence. Then:  

 
 1 1 12k k k k ks s T     

0 ,
oc

T

      
 (A1) 

    

is 1k ks s  valid if (12) is satisfied, i.e.  and:  

 10 ks

s
 1k
k

q  . (A 2) 

There exists a positive number   s
inequality:  

atisfying the following 

 
1k

1 0
0

( 1)k k i k
i

s s s q q 
 




   
 
 , (A3) 

as 
1

0

1
k

i
i

q




  and 1kq  . Therefore, based on Cauchy’s 

theo seque onvergence, we conclude that rem of 
sequence 

nce c

 ks  is convergent. The convergence domain of 

sequence  ks  is:  

   :k ks s TS T     . (A4) 

Namely 10 1k ks s   implies 

    1 10 s 2k o k k ks c  gn 1kT s    

giving (A4) for both positive and negative seq

  , directly 

uence  ks . 

Let us show that system trajectory enters domain  S T  

in finite time. Sequence  ks  converges into  

domain

 the

 S T , so it is limited, i m k
k

.e.: li s s
 . Assume that 

0s T    is satisfied. According


1

0 1 1
0

2
k

i i i
i

s T c   


 


    

 to (11):  

  . (A5) 

Suppose that 

k os

ks  never enters the domain  S T . 

Whe tain straightforward from (
fo : 

n k   , we can ob A5) the 
llowing inequality  

   
0

2o i
i

T c s T    


1 1 0i i



        , (A6) 

im   is plying that the series   1 1
0

2o i i i
i

T c


 


     

its general elemconvergent, and ent 

 2T c  1 1o i i i     converges to zero as i  , i.e.:  

   1 1lim 2o i i ic      , (A7) 
i

T




which is opposite to the co heorem 1. 
T

ndition (12) of T
herefore, the assumption that ks  never enters the domain 

 S T  is false. The proof is similar for 0s T    . 

More  enters the in doma    at 0k KS T  , over, ks
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determined by  

     0int 1K s T T     . 

We will now

0    (A8) 

 show that for every 0k K , ks  remains in 

e domain



 (11), we have:  

 

th  S T . 

Let   
0

: 0K k ks S T s s T     . Then, 

according to



 
0 0

0

1

1 (12) (12)
2

K

Ks T









   

     
 (A9) 

0 0 1(12)
2

,

K o K KT s T c       

and ks  do not leave domain  S T

: 0s 

. This is also true

k  since:  

 

 when 

   
0K kT s T    s S 

 
0

0 0 0 0

1

1 1 (12)
2K o K K Ks T c

(12) (12)
2 KT s

T .



   



 

 

      

    


(A10) 

The case when  and 
0 1 0Ks    

0 1Ks S T   for 

00 , Ks s T    is not 

 
1

 (A

The case whe  and 

possible as:  

 


0 0 0 0 0

0 0 0
0 .

o K K

o K K K

c

c

 

   
1 1

1 1

2

2

K K Ks s T  

  

 

 

   

 
11) 

n
0 1 0Ks    

0 1Ks S T   for 

00 , Ks s T     can n as we

 
1

 (A

Therefore, we have proven that 

not happe ll, since: 

 
0

0 0 0

o K

o K K K

T c

c

  

    
0 0 0 01 1

1 1

2

2 0 .

K K K Ks s   

  

 

 

  

  
12) 

 
0 1Ks S T   and, by 

using the mathematical induction method, we can gene
it to: 
 

ralize 

 
0K ms S T  , (A13) 

for every m , representing randomly selected positive 
integer number. Having demonstrated that (

 (12) is valid, the proof ends. 
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