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1Abstract—A fast algorithm for the alignment of the 

displacement of voxel data is presented. In contrast to the 
existing solutions, the proposed algorithm achieves a less 
accurate alignment, but in a much shorter time. The algorithm 
consists of two parts: a translation and a rotation. While the 
translation part of the alignment process is error free, the 
rotation part introduces a small inherent error due to the finite 
arithmetic and discretization. Experimental results based on 
three datasets are presented. 
 

Index Terms—data preprocessing, image matching,  
matching pursuit algorithm, optimal matching, biomedical 
image processing. 

I. INTRODUCTION 

The investigation of an object’s interior is an important 
issue in a variety of disciplines, for example, in the study of 
terrain erosion [1], geographic information systems [2], 
material analysis [3], hydrology [4], photorealistic scene 
reconstruction [5], and even during animation [6]. In the 
commonly used spatial-enumeration representation [7], the 
space of interest, a volume, is divided into discrete parts. 
The smallest discrete entity representing a value on a regular 
grid in three-dimensional space is referred to as a voxel. 
Each voxel has a unique position and an associated scalar 
value representing the characteristics of the material located 
in this voxel. In medicine, for example, this value is defined 
according to the Houndsfield scale [8]. The object’s interior 
is usually obtained as a sequence of parallel cross-sections 
that form a set of 2D images. These images are, therefore, 
considered as slices. Then, to form a volume, the slices are 
combined according to the direction of the cross-sections. 
Various analyses can be performed on such volumes, 
including virtual operations [9]-[11], segmentations [12], or 
structure analyses [13]. In many cases, the volume of 
interest is investigated at different times so as to discover 
possible changes in its interior structure [14]-[15]. This is 
because, during a given time interval, changes in the 
position of the original volume may occur. The two volumes 
(i.e., the original and the translated and/or rotated) need to 
be aligned with each other in order to perform a subsequent 
analysis. In the literature [16], the following alignment 
approaches have been proposed: 
 3D volume registration, which is frequently applied 

in medical imaging, where the medical data obtained 
by different investigation methods have to be aligned 
(for example, 3D UZ and CT images) [17]. Firstly, a 
small number of characteristic voxels is identified 

[18], and after that the smooth deformation fields are 
computed in order to relate these voxels [19]. In [16] 
a method is described that can successfully register 
even very different objects in both volumes. The 
method finds the correspondence for each voxel in 
both volumes based on the voxels’ intensity.  
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 3D morphing, which is used in 3D graphics to 
gradually transform one shape into another [20]. 
Usually, a polyhedral representation of the objects’ 
boundary is used. In practice, the characteristic points 
are selected manually [21], although an automatic 
method has also been reported [22]. However, the 
basic idea can be adapted to volume morphing [23].  

 3D shape matching, which has been applied for 
boundary-represented objects. The solution proposed 
in [24] determines the iso-contures and tries to match 
them using a graph. So-called alpha-shapes, which 
have been originally used for a surface reconstruction 
from scattered points [25], have been proposed in 
[26].   

The volume-registration methods are without doubt the 
best methods available today for matching volume data. 
Unfortunately, however, they are computationally intensive, 
which represents a bottle-neck when processing large 
volume spaces.  

It is this fact that fostered our attempts to develop a new 
method that achieves a less accurate alignment, but in a 
much shorter time. The method supposes that the actual 
objects in the two volumes to be aligned are similar, but 
they may differ in terms of position and/or orientation. The 
method first detects the characteristic voxels automatically, 
and after that calculates a set of geometric transformations 
to match the two volumes.  

The remainder of the paper is organized as follows. In 
Section 2, the proposed algorithm is presented. In order to 
make it easier to understand, the principle of the algorithm is 
described in 2D. The experimental results based on three 
datasets are given in Section 3. Finally, in Section 4, the 
conclusions are drawn. 

II. THE ALGORITHM 

Let us consider volume A with the resolution nx, ny, and 
nz voxels in the x, y, and z directions, respectively. The 
object of interest stored in volume A is described by a set of 
voxels, and all the voxels are described by the same number 
of bits.  

Let us suppose that we have an identical volume B, with 
respect to the resolution and the number of slices. Both 
volumes, A and B, store the same object, but the data may 
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vary due to some minor local modifications and orientation. 
Such changes may occur in practice since the data of the two 
volumes have been collected at different times. We consider 
volume A to be the reference volume and we try to align 
volume B with volume A by determining the corresponding 
translation and rotation factors. 

The algorithm consists of two steps. In the first step, a 
representative sub-volume in volume A is identified and the 
algorithm searches for a similar representative sub-volume 
in volume B. After identifying the corresponding 
representative sub-volume in volume B the rotation 
procedure is performed in order to align the two volumes. In 
the following, the algorithm is described in more detail and 
its performance is demonstrated in a number of 
experimental results. In order to make it easier to understand 
the operation of the algorithm is described in 2D. The 
translation into 3D is trivial.  

Let us now assume that we are dealing with two slices 
that represent the same object, but possibly slightly modified 
and rotated for the second slice. Our goal is to derive an 
algorithm that would be capable of aligning these two slices 
in a very short time, and with an accuracy sufficient for 
most practical applications. Notice, however, that we are not 
striving for a perfect alignment, which would be 
computationally intensive and might result in an excessive 
computation time. It should also be noticed that geometric 
transformations, like rotation or scaling, always result in 
some errors due the finite arithmetic and discrete voxel 
space.   

The algorithm consists of two parts: translation and 
rotation.  

A. Translation 

The translation part is performed first and proceeds as 
follows: 

1. A sub-space in slice A, denoted as chunk CA, is 
selected. The chunk has the form of a square with 
the dimension 1 + 2k, where k is a positive integer. 
The chunk has an odd integer dimension in order to 
facilitate a rotation around its central pixel. 

2. Let k = 1, which means the size of the chunk CA is 
equal to 3 x 3 = 27 pixels. Initially, the chunk is 
positioned in the center of slice A and its contents 
are inspected. If its pixel values diverge sufficiently 
(i.e., the number of pixels with a different pixel 
value is greater than the predefined percentage 
determined experimentally), the same starting point 
is positioned in slice B. If not, a new starting point 
in slice A is selected in the area with x, y 
coordinates within ± ¼ of the slice dimension from 
the center and its contents are inspected. Once the 
suitable chunk CA is found, the counterpart of its 
central point PA is located in slice B and denoted 
by PB

3
. 

k + 1).  

. In slice B, the chunks CB positioned in the area 
within ± ¼ of the slice dimension from PB are 
selected. The chunks CB have a dimension equal to 
1 + 2(k + 1). 

4. Repeat the following actions until there is only a 
single chunk CB left: 

a. Inspect the contents of the chunks CB and 
select those with the highest number of 
pixel values common to chunk CA. The 
rest of the chunks CB are deleted. If the 

number of remaining chunks CB is equal 
to or less than 9, the distances between 
their central points are checked. The 
chunks CB with central points lying within 
the area of 3 x 3 pixels are substituted by a 
single chunk with its central point 
positioned at the average position of 
chunk central points. 

b. If the size of the chunks CB is equal to 
half of slice B, exit the repeat loop; 
otherwise, increase the size of chunk CA 
and the chunks CB (i.e.,  k ← 

According to the experiments, the percentage of different 
pixel values in the chunk CA should be at least 75%.  The 
background of the above estimation is to avoid the 
positioning of chunk CA in the area where the pixel values 
are almost the same. In contrast to chunk CA with the 
dimension 1 + 2k, the chunks CB have a dimension equal to 
1 + 2(k + 1). This precaution is taken to ensure that the area 
in slice A selected by the chunk CA corresponds to the area 
selected by CB in slice B, considering the fact that the slices 
A and B could be arbitrarily rotated.   

The final result of the translation is the difference in the 
coordinates of CA determined in step 2 and the coordinates 
of CB determined in step 4.  

B. Illustrative example 

So as to make it easier to understand, a demonstration 
video is available at [http://gemma.uni-
mb.si/VoxelMatching/].  

Pictures of some of the individual steps are included in the 
paper in order to illustrate the operation of the algorithm. 
For this, the pixel size was artificially increased. The first 
set of pictures illustrates the translation part of the 
algorithm. Individual steps are briefly described below. 

The red square in Figure 1 represents the area that is 
inspected in order to find the initial chunk CA. (with the 
dimension 3 x 3 pixels) whose pixel values diverge 
sufficiently. The green square indicates the selected chunk 
CA.  

The corresponding search area in slice B is shown in 
Figure 2 together with the set of chunks CB with the highest 
number of pixel values common to chunk CA. Notice that 
their dimension is 5x5 pixels. 

 
 

 
Figure 1. Inspected area and the selected chunk in slice A 
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Figure 2. Search area and the set of chunks in slice B 

 

 
Figure 3. Increased chunk CA   in slice A 

 

 
Figure 4. Increased chunks CB  in slice B 

 
Next, the size of chunk CA (Figure 3) and the chunks CB 

(Figure 4) are increased and again the chunks CB with the 
highest number of pixel values common to chunk CA are 
selected (the yellow squares in Figure 4). The number of 
yellow squares is less than 9; hence, we check their central 
points. The central points are not positioned within the area 
of 3 x 3 pixels; therefore, the process continues.  

In the last step (Figure 5 and Figure 6) the yellow square 
has the highest number of pixel values common to chunk CA 
and represents the result of the translation. 

 
Figure 5. Increased chunk CA   in slice A  

 

     
Figure 6. Increased chunks CB  in slice B, the yellow chunk represents the 
result of the translation 

 

C. Rotation 

The rotation part is performed next and proceeds as 
follows: 

1. Compute the shortest distance from PA to the edge 
of the slice. Generate a circle with its center at PA 
and a radius r equal to 80% of the shortest distance 
to the edge of the examined object. Like in the 
translation part, chunks with the dimension 1 + 2k 
are considered. 

2. Let k = 1, which gives the size of the chunk CA 
equal to 3 x 3 = 9 pixels. Inspect all the chunks CA 
with the center points on the circle and select a 
chunk with pixel values that mostly diverge.  

3. In the slice B, the chunks CB  with the center points 
positioned in the ring within r ± 1 are selected. The 
chunks CB have a dimension equal to 1 + 2(k + 1). 

4. Repeat the following actions until there is only a 
single chunk CB left: 

a. Inspect the contents of the chunks CB and 
select those with the highest number of 
pixel values common to the chunk CA. 
The rest of the chunks CB are deleted. If 
the number of remaining chunks CB  is 
equal to or less than 9, the distances 
between their central points are checked. 
The chunks CB with central points lying 
within the area of 3 x 3 are substituted by 
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a single chunk with its central point 
positioned at the average position of 
chunk central points. 

b. If the size of the chunks CB is equal to 
half of the slice B, exit the repeat loop; 
otherwise, increase the size of chunk CA 
and the chunks CB  (i.e.,  k ← k + 1). For 
those chunks CB that overlap the slice 
margin the values of the pixels lying 
outside are set to zero. 

The result of the rotation is the angle between the vectors 

AACP and BBCP . Vector AACP is constructed from the 

central point PA and CA, determined in step 2, and the vector 

BBCP  from the central point PB to CB  determined in step 4. 

D. Illustrative example(continued) 

The next set of pictures illustrates the rotation part of the 
algorithm. The most significant steps of the selection of 
chunks in the slices A and B are presented. 

In Figure 7 the central point PA of the chunk CA from 
Figure 5 is positioned. A circle with a radius of 80% of the 
shortest distance to the edge is shown in yellow. The most 
divergent chunk CA (denoted by yellow) is selected from the 
inspected chunks with the central points on the circuit.  

 

 
Figure 7. A circle with a radius of 80% of the shortest distance to the edge 
in slice A 

 
In slice B we draw a circle from the central point of the 

chunk CB, as positioned in Figure 6. The chunks CB in the 
ring within r ± 1 are inspected. Those with the largest 
number of pixel values common to chunk CA are shown in 
yellow.  

Similar steps are carried out until a single chunk CB with 
the highest number of pixel values common to chunk CA 
(shown in yellow in Figure 10) is left. 

E. General remark 

The actual implementation of the algorithm in 3D 
assumes voxels instead of pixels, and the chunks are cubes 
with dimensions 1 + 2k in the case of CA, and 1 + 2(k + 1) in 
the case of CB. The concept of the algorithm is basically the 
same as shown above. 

Experimental results on 3D objects are presented in the 
following section. 

 

 
Figure 8. In slice B chunks CB  in the ring within r ± 1 from the central 
point are inspected 

 

 
Figure 9. Repeated step in slice A 

 

 
Figure 10. A single remaining chunk CB  (shown in yellow) with the highest 
number of pixel values common to chunk CA   
 

III. RESULTS 

The algorithm was tested on three datasets (head, foot, 
bonsai) of resolution 256  256  256 voxels, downloaded 
from [27]. Each voxel space was rotated by five different 
angles and the required CPU time for the alignment was 
measured. While a short computation time is an important 
issue, an analysis of the associated errors should be 
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performed in order to establish the actual validity of the 
developed solutions. For this reason we first explored the 
inherent error due to the finite arithmetic and discretization. 
In the next step, the computation error of the proposed 
algorithm was addressed. 

 
TABLE I. MEAN-SQUARED-ERROR (MSE) AFTER ROTATING  THE 

VOXEL SPACE  
αO MSE(Head) MSE(Foot) MSE(Bonsai) 
1 1.58 2.28 2.87 

2 2.21 3.22 4.13 
3 2.75 3.99 5.08 
4 3.12 4.49 5.80 
5 3.48 4.95 6.42 
6 3.77 5.32 6.95 
7 4.05 5.69 7.42 
8 4.28 5.96 7.75 
9 4.48 6.23 8.12 
10 4.69 6.44 8.37 

 
Table 1 refers to the case where the voxel space was 

rotated around the z coordinate axis for an angle α followed 
by a rotation of – α. The content of the obtained voxel space 
was compared with the original voxel space and the mean-
squared-error MSE was calculated.  

Next, we performed operations in which the computation 
error of the proposed algorithm is demonstrated. We rotated 
the original voxel space for a given angle α and applied our 
method to determine the angle of rotation and to align the 
voxel space. The calculated angles of rotation are presented 
in Table 2.  

 
TABLE II. CALCULATED ANGLE OF ROTATION 

αO α (Head) α (Foot) α (Bonsai) 
1 1.28 1.14 0.91 
2 2.01 2.11 2.04 
3 3.03 2.86 3.13 
4 4.11 4.01 4.07 
5 5.03 5.15 5.01 
6 5.86 5.84 6.11 
7 7.28 6.96 7.01 
8 8.22 8.11 8.09 
9 9.03 9.08 9.06 
10 10.21 9.97 10.06 

 
In Table 3, the resulting MSEM of the voxel values 

between the original and the rotated voxel spaces are given. 
 

TABLE III. THE RESULTING MSEM 
αO MSEM(Head) MSEM(Foot) MSEM(Bonsai) 
1 4.53 4.66 3.96 
2 2.24 5.18 4.52 
3 3.03 5.74 6.06 
4 4.01 4.54 6.22 
5 3.62 6.47 6.42 
6 4.66 6.78 7.5 
7 5.67 5.86 7.4 
8 5.5 6.79 8.07 
9 4.54 6.71 8.25 
10 5.71 6.51 8.47 

 
The ratio between the mean-squared-error caused 

exclusively by the finite arithmetic and the one obtained 
with the proposed algorithm is given in Table 4.  

 
 
 
 

TABLE IV. THE RATIO MSE/ MSEM 
αO MSE/MSEM(Head) MSE/MSEM(Foot) MSE/MSEM(Bonsai) 
1 0.348 0.489 0.724 
2 0.986 0.621 0.913 
3 0.907 0.695 0.838 
4 0.778 0.988 0.932 
5 0.961 0.765 1.000 
6 0.809 0.784 0.926 
7 0.714 0.970 1.002 
8 0.778 0.877 0.960 
9 0.986 0.928 0.984 
10 0.821 0.989 0.988 

 
It is clear that the additional error introduced by our 

method is small. Notice that the above error analysis has 
been intentionally performed on examples including only 
rotation, because the translation part of the alignment 
process is error free. 

 
TABLE V. CPU RUN TIME 

Dataset Resolution α CPU time (s) 
1 4.5 
3 4.5 
5 4.5 
8 4.5 

Head 256  256  256 

10 4.6 

1 3.9 
3 4.0 
5 4.0 
8 3.9 

Foot 256  256  256 

10 3.7 
1 5.1 
3 5.3 
5 5.5 
8 5.3 

Bonsai 256  256  256 

10 5.2 

 
Table 5 summarizes the CPU run time when applying our 

method in the cases of the head, foot and bonsai datasets for 
aligning the voxel data at various angles. A system with an 
Intel Core2 Quad Q6600 2.40-GHz processor with 4.00 GB 
of RAM running under the Windows 7 64-bit operating 
system was employed. The prototype application was 
implemented in C#. The run time of the algorithm is two 
orders of magnitude smaller than the one reported in [16]. 

IV. CONCLUSION 

     This paper presents a new algorithm for the alignment of 
voxel data. In contrast to the existing solutions, we do not 
strive for perfect alignment, but prefer a short execution 
time at the expense of a reasonably small alignment error. 
The proposed approach is, by two orders of magnitude, 
faster than [16] and can be efficiently applied in practice in 
cases where precise adjustments are not imperative (for 
example, in the compression of time-varying voxel spaces 
[28]). Furthermore, the proposed algorithm can precede 
other more exact algorithms for a rough adjustment in order 
to cut down the time for a precise alignment. 
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