
Advances in Electrical and Computer Engineering Volume 12, Number 2, 2012

A Fast Method for the Alignment of the
Displacement of Voxel Data

Denis SPELIC1, Franc NOVAK2, Borut ZALIK1
1Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova 17, 2000

Maribor, Slovenia
2Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

 denis.spelic@uni-mb.si

1Abstract—A fast algorithm for the alignment of the

displacement of voxel data is presented. In contrast to the
existing solutions, the proposed algorithm achieves a less
accurate alignment, but in a much shorter time. The algorithm
consists of two parts: a translation and a rotation. While the
translation part of the alignment process is error free, the
rotation part introduces a small inherent error due to the finite
arithmetic and discretization. Experimental results based on
three datasets are presented.

Index Terms—data preprocessing, image matching,
matching pursuit algorithm, optimal matching, biomedical
image processing.

I. INTRODUCTION

The investigation of an object’s interior is an important
issue in a variety of disciplines, for example, in the study of
terrain erosion [1], geographic information systems [2],
material analysis [3], hydrology [4], photorealistic scene
reconstruction [5], and even during animation [6]. In the
commonly used spatial-enumeration representation [7], the
space of interest, a volume, is divided into discrete parts.
The smallest discrete entity representing a value on a regular
grid in three-dimensional space is referred to as a voxel.
Each voxel has a unique position and an associated scalar
value representing the characteristics of the material located
in this voxel. In medicine, for example, this value is defined
according to the Houndsfield scale [8]. The object’s interior
is usually obtained as a sequence of parallel cross-sections
that form a set of 2D images. These images are, therefore,
considered as slices. Then, to form a volume, the slices are
combined according to the direction of the cross-sections.
Various analyses can be performed on such volumes,
including virtual operations [9]-[11], segmentations [12], or
structure analyses [13]. In many cases, the volume of
interest is investigated at different times so as to discover
possible changes in its interior structure [14]-[15]. This is
because, during a given time interval, changes in the
position of the original volume may occur. The two volumes
(i.e., the original and the translated and/or rotated) need to
be aligned with each other in order to perform a subsequent
analysis. In the literature [16], the following alignment
approaches have been proposed:
 3D volume registration, which is frequently applied

in medical imaging, where the medical data obtained
by different investigation methods have to be aligned
(for example, 3D UZ and CT images) [17]. Firstly, a
small number of characteristic voxels is identified

[18], and after that the smooth deformation fields are
computed in order to relate these voxels [19]. In [16]
a method is described that can successfully register
even very different objects in both volumes. The
method finds the correspondence for each voxel in
both volumes based on the voxels’ intensity.

1This work was supported by the Slovenian Research Agency under

grants for research programmes P2-0041 and P2-0098.

 3D morphing, which is used in 3D graphics to
gradually transform one shape into another [20].
Usually, a polyhedral representation of the objects’
boundary is used. In practice, the characteristic points
are selected manually [21], although an automatic
method has also been reported [22]. However, the
basic idea can be adapted to volume morphing [23].

 3D shape matching, which has been applied for
boundary-represented objects. The solution proposed
in [24] determines the iso-contures and tries to match
them using a graph. So-called alpha-shapes, which
have been originally used for a surface reconstruction
from scattered points [25], have been proposed in
[26].

The volume-registration methods are without doubt the
best methods available today for matching volume data.
Unfortunately, however, they are computationally intensive,
which represents a bottle-neck when processing large
volume spaces.

It is this fact that fostered our attempts to develop a new
method that achieves a less accurate alignment, but in a
much shorter time. The method supposes that the actual
objects in the two volumes to be aligned are similar, but
they may differ in terms of position and/or orientation. The
method first detects the characteristic voxels automatically,
and after that calculates a set of geometric transformations
to match the two volumes.

The remainder of the paper is organized as follows. In
Section 2, the proposed algorithm is presented. In order to
make it easier to understand, the principle of the algorithm is
described in 2D. The experimental results based on three
datasets are given in Section 3. Finally, in Section 4, the
conclusions are drawn.

II. THE ALGORITHM

Let us consider volume A with the resolution nx, ny, and
nz voxels in the x, y, and z directions, respectively. The
object of interest stored in volume A is described by a set of
voxels, and all the voxels are described by the same number
of bits.

Let us suppose that we have an identical volume B, with
respect to the resolution and the number of slices. Both
volumes, A and B, store the same object, but the data may

 41
1582-7445 © 2012 AECE

Digital Object Identifier 10.4316/AECE.2012.02007

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:53:27 (UTC) by 44.201.99.133. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 12, Number 2, 2012

vary due to some minor local modifications and orientation.
Such changes may occur in practice since the data of the two
volumes have been collected at different times. We consider
volume A to be the reference volume and we try to align
volume B with volume A by determining the corresponding
translation and rotation factors.

The algorithm consists of two steps. In the first step, a
representative sub-volume in volume A is identified and the
algorithm searches for a similar representative sub-volume
in volume B. After identifying the corresponding
representative sub-volume in volume B the rotation
procedure is performed in order to align the two volumes. In
the following, the algorithm is described in more detail and
its performance is demonstrated in a number of
experimental results. In order to make it easier to understand
the operation of the algorithm is described in 2D. The
translation into 3D is trivial.

Let us now assume that we are dealing with two slices
that represent the same object, but possibly slightly modified
and rotated for the second slice. Our goal is to derive an
algorithm that would be capable of aligning these two slices
in a very short time, and with an accuracy sufficient for
most practical applications. Notice, however, that we are not
striving for a perfect alignment, which would be
computationally intensive and might result in an excessive
computation time. It should also be noticed that geometric
transformations, like rotation or scaling, always result in
some errors due the finite arithmetic and discrete voxel
space.

The algorithm consists of two parts: translation and
rotation.

A. Translation

The translation part is performed first and proceeds as
follows:

1. A sub-space in slice A, denoted as chunk CA, is
selected. The chunk has the form of a square with
the dimension 1 + 2k, where k is a positive integer.
The chunk has an odd integer dimension in order to
facilitate a rotation around its central pixel.

2. Let k = 1, which means the size of the chunk CA is
equal to 3 x 3 = 27 pixels. Initially, the chunk is
positioned in the center of slice A and its contents
are inspected. If its pixel values diverge sufficiently
(i.e., the number of pixels with a different pixel
value is greater than the predefined percentage
determined experimentally), the same starting point
is positioned in slice B. If not, a new starting point
in slice A is selected in the area with x, y
coordinates within ± ¼ of the slice dimension from
the center and its contents are inspected. Once the
suitable chunk CA is found, the counterpart of its
central point PA is located in slice B and denoted
by PB

3
.

k + 1).

. In slice B, the chunks CB positioned in the area
within ± ¼ of the slice dimension from PB are
selected. The chunks CB have a dimension equal to
1 + 2(k + 1).

4. Repeat the following actions until there is only a
single chunk CB left:

a. Inspect the contents of the chunks CB and
select those with the highest number of
pixel values common to chunk CA. The
rest of the chunks CB are deleted. If the

number of remaining chunks CB is equal
to or less than 9, the distances between
their central points are checked. The
chunks CB with central points lying within
the area of 3 x 3 pixels are substituted by a
single chunk with its central point
positioned at the average position of
chunk central points.

b. If the size of the chunks CB is equal to
half of slice B, exit the repeat loop;
otherwise, increase the size of chunk CA
and the chunks CB (i.e., k ←

According to the experiments, the percentage of different
pixel values in the chunk CA should be at least 75%. The
background of the above estimation is to avoid the
positioning of chunk CA in the area where the pixel values
are almost the same. In contrast to chunk CA with the
dimension 1 + 2k, the chunks CB have a dimension equal to
1 + 2(k + 1). This precaution is taken to ensure that the area
in slice A selected by the chunk CA corresponds to the area
selected by CB in slice B, considering the fact that the slices
A and B could be arbitrarily rotated.

The final result of the translation is the difference in the
coordinates of CA determined in step 2 and the coordinates
of CB determined in step 4.

B. Illustrative example

So as to make it easier to understand, a demonstration
video is available at [http://gemma.uni-
mb.si/VoxelMatching/].

Pictures of some of the individual steps are included in the
paper in order to illustrate the operation of the algorithm.
For this, the pixel size was artificially increased. The first
set of pictures illustrates the translation part of the
algorithm. Individual steps are briefly described below.

The red square in Figure 1 represents the area that is
inspected in order to find the initial chunk CA. (with the
dimension 3 x 3 pixels) whose pixel values diverge
sufficiently. The green square indicates the selected chunk
CA.

The corresponding search area in slice B is shown in
Figure 2 together with the set of chunks CB with the highest
number of pixel values common to chunk CA. Notice that
their dimension is 5x5 pixels.

Figure 1. Inspected area and the selected chunk in slice A

 42

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:53:27 (UTC) by 44.201.99.133. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 12, Number 2, 2012

Figure 2. Search area and the set of chunks in slice B

Figure 3. Increased chunk CA in slice A

Figure 4. Increased chunks CB in slice B

Next, the size of chunk CA (Figure 3) and the chunks CB

(Figure 4) are increased and again the chunks CB with the
highest number of pixel values common to chunk CA are
selected (the yellow squares in Figure 4). The number of
yellow squares is less than 9; hence, we check their central
points. The central points are not positioned within the area
of 3 x 3 pixels; therefore, the process continues.

In the last step (Figure 5 and Figure 6) the yellow square
has the highest number of pixel values common to chunk CA
and represents the result of the translation.

Figure 5. Increased chunk CA in slice A

Figure 6. Increased chunks CB in slice B, the yellow chunk represents the
result of the translation

C. Rotation

The rotation part is performed next and proceeds as
follows:

1. Compute the shortest distance from PA to the edge
of the slice. Generate a circle with its center at PA
and a radius r equal to 80% of the shortest distance
to the edge of the examined object. Like in the
translation part, chunks with the dimension 1 + 2k
are considered.

2. Let k = 1, which gives the size of the chunk CA
equal to 3 x 3 = 9 pixels. Inspect all the chunks CA
with the center points on the circle and select a
chunk with pixel values that mostly diverge.

3. In the slice B, the chunks CB with the center points
positioned in the ring within r ± 1 are selected. The
chunks CB have a dimension equal to 1 + 2(k + 1).

4. Repeat the following actions until there is only a
single chunk CB left:

a. Inspect the contents of the chunks CB and
select those with the highest number of
pixel values common to the chunk CA.
The rest of the chunks CB are deleted. If
the number of remaining chunks CB is
equal to or less than 9, the distances
between their central points are checked.
The chunks CB with central points lying
within the area of 3 x 3 are substituted by

 43

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:53:27 (UTC) by 44.201.99.133. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 12, Number 2, 2012

a single chunk with its central point
positioned at the average position of
chunk central points.

b. If the size of the chunks CB is equal to
half of the slice B, exit the repeat loop;
otherwise, increase the size of chunk CA
and the chunks CB (i.e., k ← k + 1). For
those chunks CB that overlap the slice
margin the values of the pixels lying
outside are set to zero.

The result of the rotation is the angle between the vectors

AACP and BBCP . Vector AACP is constructed from the

central point PA and CA, determined in step 2, and the vector

BBCP from the central point PB to CB determined in step 4.

D. Illustrative example(continued)

The next set of pictures illustrates the rotation part of the
algorithm. The most significant steps of the selection of
chunks in the slices A and B are presented.

In Figure 7 the central point PA of the chunk CA from
Figure 5 is positioned. A circle with a radius of 80% of the
shortest distance to the edge is shown in yellow. The most
divergent chunk CA (denoted by yellow) is selected from the
inspected chunks with the central points on the circuit.

Figure 7. A circle with a radius of 80% of the shortest distance to the edge
in slice A

In slice B we draw a circle from the central point of the

chunk CB, as positioned in Figure 6. The chunks CB in the
ring within r ± 1 are inspected. Those with the largest
number of pixel values common to chunk CA are shown in
yellow.

Similar steps are carried out until a single chunk CB with
the highest number of pixel values common to chunk CA
(shown in yellow in Figure 10) is left.

E. General remark

The actual implementation of the algorithm in 3D
assumes voxels instead of pixels, and the chunks are cubes
with dimensions 1 + 2k in the case of CA, and 1 + 2(k + 1) in
the case of CB. The concept of the algorithm is basically the
same as shown above.

Experimental results on 3D objects are presented in the
following section.

Figure 8. In slice B chunks CB in the ring within r ± 1 from the central
point are inspected

Figure 9. Repeated step in slice A

Figure 10. A single remaining chunk CB (shown in yellow) with the highest
number of pixel values common to chunk CA

III. RESULTS

The algorithm was tested on three datasets (head, foot,
bonsai) of resolution 256 256 256 voxels, downloaded
from [27]. Each voxel space was rotated by five different
angles and the required CPU time for the alignment was
measured. While a short computation time is an important
issue, an analysis of the associated errors should be

 44

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:53:27 (UTC) by 44.201.99.133. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 12, Number 2, 2012

performed in order to establish the actual validity of the
developed solutions. For this reason we first explored the
inherent error due to the finite arithmetic and discretization.
In the next step, the computation error of the proposed
algorithm was addressed.

TABLE I. MEAN-SQUARED-ERROR (MSE) AFTER ROTATING THE

VOXEL SPACE
αO MSE(Head) MSE(Foot) MSE(Bonsai)
1 1.58 2.28 2.87

2 2.21 3.22 4.13
3 2.75 3.99 5.08
4 3.12 4.49 5.80
5 3.48 4.95 6.42
6 3.77 5.32 6.95
7 4.05 5.69 7.42
8 4.28 5.96 7.75
9 4.48 6.23 8.12
10 4.69 6.44 8.37

Table 1 refers to the case where the voxel space was

rotated around the z coordinate axis for an angle α followed
by a rotation of – α. The content of the obtained voxel space
was compared with the original voxel space and the mean-
squared-error MSE was calculated.

Next, we performed operations in which the computation
error of the proposed algorithm is demonstrated. We rotated
the original voxel space for a given angle α and applied our
method to determine the angle of rotation and to align the
voxel space. The calculated angles of rotation are presented
in Table 2.

TABLE II. CALCULATED ANGLE OF ROTATION

αO α (Head) α (Foot) α (Bonsai)
1 1.28 1.14 0.91
2 2.01 2.11 2.04
3 3.03 2.86 3.13
4 4.11 4.01 4.07
5 5.03 5.15 5.01
6 5.86 5.84 6.11
7 7.28 6.96 7.01
8 8.22 8.11 8.09
9 9.03 9.08 9.06
10 10.21 9.97 10.06

In Table 3, the resulting MSEM of the voxel values

between the original and the rotated voxel spaces are given.

TABLE III. THE RESULTING MSEM
αO MSEM(Head) MSEM(Foot) MSEM(Bonsai)
1 4.53 4.66 3.96
2 2.24 5.18 4.52
3 3.03 5.74 6.06
4 4.01 4.54 6.22
5 3.62 6.47 6.42
6 4.66 6.78 7.5
7 5.67 5.86 7.4
8 5.5 6.79 8.07
9 4.54 6.71 8.25
10 5.71 6.51 8.47

The ratio between the mean-squared-error caused

exclusively by the finite arithmetic and the one obtained
with the proposed algorithm is given in Table 4.

TABLE IV. THE RATIO MSE/ MSEM
αO MSE/MSEM(Head) MSE/MSEM(Foot) MSE/MSEM(Bonsai)
1 0.348 0.489 0.724
2 0.986 0.621 0.913
3 0.907 0.695 0.838
4 0.778 0.988 0.932
5 0.961 0.765 1.000
6 0.809 0.784 0.926
7 0.714 0.970 1.002
8 0.778 0.877 0.960
9 0.986 0.928 0.984
10 0.821 0.989 0.988

It is clear that the additional error introduced by our

method is small. Notice that the above error analysis has
been intentionally performed on examples including only
rotation, because the translation part of the alignment
process is error free.

TABLE V. CPU RUN TIME

Dataset Resolution α CPU time (s)
1 4.5
3 4.5
5 4.5
8 4.5

Head 256 256 256

10 4.6

1 3.9
3 4.0
5 4.0
8 3.9

Foot 256 256 256

10 3.7
1 5.1
3 5.3
5 5.5
8 5.3

Bonsai 256 256 256

10 5.2

Table 5 summarizes the CPU run time when applying our

method in the cases of the head, foot and bonsai datasets for
aligning the voxel data at various angles. A system with an
Intel Core2 Quad Q6600 2.40-GHz processor with 4.00 GB
of RAM running under the Windows 7 64-bit operating
system was employed. The prototype application was
implemented in C#. The run time of the algorithm is two
orders of magnitude smaller than the one reported in [16].

IV. CONCLUSION

 This paper presents a new algorithm for the alignment of
voxel data. In contrast to the existing solutions, we do not
strive for perfect alignment, but prefer a short execution
time at the expense of a reasonably small alignment error.
The proposed approach is, by two orders of magnitude,
faster than [16] and can be efficiently applied in practice in
cases where precise adjustments are not imperative (for
example, in the compression of time-varying voxel spaces
[28]). Furthermore, the proposed algorithm can precede
other more exact algorithms for a rough adjustment in order
to cut down the time for a precise alignment.

REFERENCES
[1] B. Benes and R. Forsbach, “Layered Data Representation for Visual

Simulation of Terrain Erosion,” Proceedings of the 17th Spring
conference on Computer graphics, 2001, pp. 80-86.

[2] J. Stoker, “Volumetric Visualization of Multiple-return Lidar Data:
Using Voxels,” Photogrammetric Engineering & Remote Sensing;
2009, pp. 109-112.

[3] T. Shinohara, J. Takayama, S. Ohyama and A. Kobayashi, “Analysis
of Knit Fabric Structure with its Voxel Data,” ICCAS2003, Gyeongju,
KOREA, 2003.

 45

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:53:27 (UTC) by 44.201.99.133. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 12, Number 2, 2012

 46

[4] S. Venkataraman and K. O. Asante, “Voxel-Based Analysis and
Visualization of Rainfall Data,” Global Priorities in Land Remote
Sensing, 2005.

[5] S. M. Seitz and C. R. Dyer, “Photorealistic Scene Reconstruction by
Voxel Coloring,” Int. Journal of Computer Vision, vol. 35, no. 2,
1999.

[6] Y. Sun, M. Bray, A. Thayananthan, B. Yuan and P.H.S. Torr,
“Regression-Based Human Motion Capture From Voxel Data,”
Proceedings of BMVC06, 2006, pp 109-112.

[7] M. E. Mortenson, “Geometric Modeling,”. John Wiley & Sons Inc,
1985.

[8] G. Dougherty, “Digital Image Processing for Medical Applications,”
New York: United States of America by Cambridge University Press,
2009.

[9] B. Li, Z. Wang, E. Smouha, D. Chen and Z. Liang, “Accelerating
Virtual Surgery Simulation for Congenital Aural Atresia,”
Proceedings of SPIE Vol. 5367, Bellingham, 2004.

[10] F. Dong, G.J.Clapworthy, M. Krokos, “Volume rendering of fine
details within medical data”, Proceedings of the conference on
Visualization’01, 2001, pp. 387-394.

[11] M. Zemek, J. Skála, I. Kolingerová, P. Medek, J. Sochor, “Fast
Method for Computation of Channels in Dynamic Proteins”, 13th
International Fall Workshop Vision, Modeling and Visualization
2008, 2008, pp.333-342.

[12] A. S. M. Houston and S. Napel, “Fast Volume Segmentation With
Simultaneous Visualization Using Programmable Graphics
Hardware,” IEEE Visualization, 2003, pp. 171-176.

[13] S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E.J.
Behrens, H. Johansen-Berg, P. R. Bannister, M. De Luca, I. Drobnjak,
D. E. Flitney, R. K. Niazy, J. Saunders, J. Vickers, Y. Zhang, N. De
Stefano, J. M. Brady and P. M. Matthews, “Advances in functional
and structural MR image analysis and implementation as FSL,”
NeuroImage 23, 2004, pp. 208–219.

[14] K-L. Ma, “Visualizing time-varying volume data,” Computing in
Science and Engineering, vol. 5, no. 2, 2003, pp. 34–42.

[15] H. Akiba, K-L Ma and J. Clyne, “End-to-end data reduction and
hardware accelerated rendering techniques for visualizing time-
varying non-uniform grid volume data,” Proceedings of the 4th
international workshop volume graphics, 2005. pp. 31–39.

[16] G. Guetat, M. Maitre, L. Joly, S. Lai, T. Lee and Y. Shinagawa,
“Automatic 3-D Grayscale Volume Matching and Shape Analysis,“
IEEE Transactions On Information Technology In Biomedicine, vol.
10, no. 2, 2006.

[17] A. Roche, X. Pennec, G. Malandain and N. Ayache, “Rigid
registraion of 3-D ultrasound with MR images: A new approach
combining intensity and gradient information,” IEEE Trans.Med.
Imag., vol. 20, no. 10, 2001, pp. 1038–1049.

[18] E. Guest, E. Berry, R. Baldock, M. Fidrich and M. Smith, “Robust
point correspondence applied to two- and three-dimensional image
registration,” IEEE Trans. Pattern Anal.Mach. Intell., vol. 23, no. 2,
2001, pp. 165–179.

[19] R. Bajcsy and S. Kovacic, “Multiresolution elastic matching,”
Comput. Vis. Graph. Image Underst., vol. 46, no. 1, 1989, pp. 1–21.

[20] R. Urtasun, M. Salzmann and P. Fua, “3D Morphing without User
Interaction,” Eurographics Symposium on Geometry Processing,
2004.

[21] T-Y. Lee, C-H. Lin and H-Y. Lin, “Computer-aided prototype system
for nose surgery (rhinoplasty),” IEEE Trans. Inf. Technol. Biomed.,
vol. 5, no. 4, 2001, pp. 271–278.

[22] J. Parus, I. Kolingerova and M. Malkova, “Multimorphing: A tool for
shape synthesis and analysis,” Advances in Engineering Software,
vol.40, 2009, pp.323–333.

[23] T. He, S. Wang and A. Kaufman, “Wavelet-Based Volume
Morphing,” Proceedings of Visualization ’94; Washington D.C.,
1994, pp. 85–92.

[24] M. Hilaga,Y. Shinagawa, T. Komura and T. L. Kunii, “Topology
matching for full automatic similarity estimation of 3D,” Proc.
SIGGRAPH 2001, Los Angeles, CA, 2001, pp. 203–212.

[25] N. Amenta, M. W. Bern, M. K. Kamvysselisand A.Crust, “A new
Voronoi-based surface reconstruction algorithm,” Proceedings of the
25th Annual Conference on Computer Graphics and Interactive
Techniques, 1998, pp. 415–422.

[26] H. Edelsbrunner, “The union of balls and its dual shape,” Proc. 9th
Annu. ACM Symp. Discrete and Computational Geometry, vol. 13,
1995, pp. 415–440.

[27] http://www9.informatik.uni-erlangen.de/External/vollib/
[28] K-L. Ma, D. Smith, M.-Y. Shih and H.-W. Shen, “Efficient Encoding

and Rendering of Time-Varying Volume Data,” ICASE report ; no.
98-22,1998.

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:53:27 (UTC) by 44.201.99.133. Redistribution subject to AECE license or copyright.]

