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1Abstract—A new model of the actuator is proposed in this 

paper. It considers the nonlinear electromagnetic phenomena 
in the ferromagnetic core, as well as the influence of the 
mechanical load during the plunger movement. According to 
our approach, the entire system that includes the magnetic 
circuit, the electric circuit and the mechanical parts is 
mathematically modeled through a differential algebraic 
equation system (DAE). Therefore, a corresponding analog 
nonlinear electric circuit described by a similar mathematical 
model is conceived and implemented in an electric circuit 
simulation program capable to analyze its behavior in steady 
state or dynamic regimes. The SPICE simulator has been 
chosen as implementation platform and a case study has been 
performed to prove the feasibility and efficiency of our 
approach. The simulation result contains electromagnetic and 
mechanical quantities that were represented as time-domain 
functions. The method is remarkable through an extremely 
short computation time when compared with the classical 
methods based on the discretization of the domain. 
 

Index Terms—actuators, circuit simulation, eddy currents, 
equivalent circuits, nonlinear systems. 

I. INTRODUCTION 

As main components of the mechanical switching devices 
(e.g. electromagnetic contactors and relays) the 
electromagnets are widely used for remote controls and 
control systems [1]. Even if the worldwide trend is to 
replace the mechanical switching with static (electronic) 
switching, many devices and systems with actuators are still 
designed and manufactured for different applications. Thus 
the study of electromagnets continues to interest the 
scientific community that tries to solve a lot of problems 
related to their operation. 

The operation of AC electromagnets in steady state is 
mainly of a theoretical interest. That is why it is studied 
especially to verify some new hypothesis or analysis 
methods [1]–[4]. Consequently the researchers concentrate 
their interest on the more complex problem related to the 
dynamic behavior of the electromagnets. Many research 
groups focused their efforts on the study, analysis and 
improvement of the electromagnetic actuators 
characteristics, aiming the design optimization. The 
dynamic behavior is of most importance, but it is difficult to 
be predicted because of the system nonlinearity. In general 
in order to solve electromagnetic problems one uses 
commercial software programs, as QuickField or FEMM, 
that allow the coupling between the electromagnetic field 

and the supply circuit of the device. More complex software 
programs, as ANSYS, permit also a mechanical analysis of 
the equipment in order to determine the mechanical and/or 
electromagnetic stresses. Many authors used finite-element 
method (FEM) or finite-difference method (FDTD) based 
models to solve this problem, and implemented them in their 
own computing programs [5]–[12]. It is notable the 
approach described in [5], where a complex model coupling 
the electrical, magnetic and mechanical subsystems into the 
FEM program is proposed or the simplified one-dimensional 
model from [6]. Also parametric or axisymmetric device 
models were considered in [8]-[12]. In many works, the 
authors’ attention was focused on the magnetic fluxes 
produced inside the electromagnets, but they neglected the 
influence of the mechanical part of the devices.  
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Most of these software programs require appropriate 
hardware resources to operate properly. And yet they have 
often needed tens of hours to finish a simulation. This 
represents a major inconvenient especially in the design and 
optimization. Modeling and simulation of the 
electromagnetic devices based on equivalent analogical 
circuits largely solve this inconvenience. By choosing an 
appropriate model of the device one can detail those aspects 
of interest in its operation. Moreover an equivalent electric 
circuit based model makes possible its integration in 
complex circuits that could include static converters.         

Our paper proposes a new model of electromagnetic 
actuators applied to AC plunger-type magnets. It has the 
main advantage of modeling the entire electromagnetic 
system (including electric, magnetic and mechanical 
components) using electric circuit elements only. We took 
into account the nonlinear properties of magnetic cores, the 
effect of the eddy currents, but also the time varying 
influence of the mechanical load. The developed model is 
easy to be implemented in any commercial program for 
electric circuit analysis, requiring reasonable hardware 
resources and computing effort. Finally the SPICE software 
has been chosen as simulation tool. 

II. PRINCIPLES OF THE ACTUATOR MODELING 

The main structure of the analyzed plunger-type magnet 
is presented in Fig. 1.  

This type of electromagnet is one of the most used in 
common practice (e.g. in contactors). It consists in a 
movable core with a rectangular cross section (plunger), a 
fixed core, a coil supplied by an AC voltage and a short-
circuit ring. This latter is essential to improve the 
electromagnet operation [1].  
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Figure 1. AC plunger-type magnet. 

The actuator model joins the model of the ferromagnetic 
core as part of the magnetic circuit, the electrical circuit and 
the mechanical phenomena. These main components of the 
model are presented here. 

A new high precision model for nonlinear ferromagnetic 
cores was considered for the AC electromagnet. It takes into 
account the nonlinear phenomena and the eddy current 
effect. These influences are of major importance in the 
transient behavior of the electromagnet. The core model was 
presented in detail in [13]. A scheme of principle is shown 
in Fig.2. 
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Figure 2. Block diagram of a ferromagnetic piece model that considers the 
eddy current losses and the reaction magnetic field of eddy currents. 

This diagram was realized based on the mathematical 
model associated to the piece of ferromagnetic core. It 
considers the magnetization curve and the eddy currents. 
The equations of the model are: 
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In the above relations   is the magnetic flux through the 

ferromagnetic piece; it represents the input variable of the 
model.  is the component of the magnetic voltage drop 

that does not depend on eddy current.  is the equivalent 

eddy current. According to the Ampere’s law, the magnetic 
voltage drop produced by the equivalent eddy current  

(a parasitic component of the final magnetic voltage drop) is 
equal to the eddy current . The magnetic voltage drop 

 is opposite to the component  and thus these two 

magnetic voltages determine the final magnetic voltage drop 

in any moment of time. m ei em,  an fm,  are 

the variables of the system (1) – (4
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The model presented here corresponds to a ferromagnetic 

piece of constant section and a certain length. In the circuit 
equivalent model, the mu  characteristic (corresponding 

to the first-magnetization curve of the ferromagnetic 
material [13]) can be modeled through a voltage-controlled 
nonlinear resistance. The other blocks from the lower side of 
Fig. 2 build a linear network having the role of considering 
the eddy currents effect. The losses produced by these 
currents lead to Joule effects and reaction magnetic fluxes 
that modify the magnetization curve in dynamic regimes. 

We considered an equivalent eddy current  that has the 

same effect as the real current through the ferromagnetic 
piece. It is calculated as function of magnetic flux derivative 
and an equivalent resistance passed by the eddy current, . 

The equivalent resistance of a ferromagnetic piece is 
constant; it depends on the electric conductivity (the 
conductivity can be computed in terms of specific power 
losses p

ei

eR

Fe specified by the manufacturer for a certain 
reference frequency of the magnetic field, assumed as 
sinusoidal, and a certain peak value of the magnetic flux 
density), on the geometrical dimensions of the magnetic 
piece and on the material mass density [13].  

The block diagram presented in Fig. 2 can be entirely 
modeled as an equivalent circuit that includes controlled 
sources [13]. 

The electric circuit accomplishes the voltage equation: 
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represents the sinusoidal supply voltage, R is the 

resistance of the coil, N is the number of the coil turns and 
is the current in the supply circuit. The inductive term 

  is imposed by the actual time-dependent magnetic 

flux. In an equivalent circuit model this derivative can be 
obtained from the magnetic flux by using two controlled 
sources and a unity-inductor [13]. 

The mechanical behavior of the system is influenced by 
the characteristic of the resistance force given in Fig.3. 
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Figure 3. Nonlinear mechanical load Fr (x). 

While the central gap length x decreases, this force 
depends on the weight of the mobile part and the friction 
(here, the vertical section from mm), on the return 
springs and auxiliary contacts forces (linear increasing 
section) and on the force of the main contact strings (here 
the second vertical section from mm and then the 4x
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increasing one) [1]. 
The active magnetic force Fm  is calculated based on the 

Maxwell stress theory [14] applied to the surface related to 
the movable core S: 

 FeFeairair
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Because the air is a linear medium, (6) can be written as 
[15]: 
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The equation that connects the magnetic and the 
mechanical parts of the electromagnetic system includes the 
magnetic force Fm , the resistance (opposite) force Fr  and 
the inertial force. The inertial force depends on the mass of 
the armature m and on the acceleration a. The position of the 
armature in its movement x is used instead of the 
acceleration, so that: 
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All the considerations presented above are included in the 
electromagnet model. 

III. MODEL IMPLEMENTATION AND SYSTEM ANALYSIS 

Our purpose was to realize a dynamic model for the 
actuator based on the precision model presented above. It 
combines magnetic, electric and mechanic components. We 
choose to simulate and to analyze an AC electromagnet of 
380V/50 Hz that is part of an AC contactor.  

The parameters that are necessary to our analysis refer to 
the resistances of the coil and of the short-circuit ring, the 
number of the coil turns and the dimensions and properties 
of the magnetic cores. These data were calculated based on 
the algorithms presented in the literature [1] and were 
introduced in our model. Also the B–H magnetization curve 
and the nonlinear characteristic of the resistance force as 
function of the gap must be known. The magnetization 
curve corresponds to the silicon steel sheets of 0.35 mm [1], 
[4], while the resistance force – gap dependency was 
represented in Fig. 3. 

The AC electromagnet model is based on the equivalent 
model of the magnetic core and on the coupling equations 
presented above. This model is illustrated in Figs. 4–6. 

Fig. 4 (a) represents the supply electric circuit. Here the 
supply voltage, the network parameters and the coil 
resistance are considered as well as the influence of the 
magnetic circuit through the voltage controlled voltage 
source that introduces the induced voltage e. Fig. 4 (b) 
corresponds to the electric circuit of the short-circuit ring, 
where an induced current appears. Here the ring resistance 

 was considered as well as the influence of the 

magnetic flux that crosses the ring, 
ringR

ring, by means of two 
controlled sources. Both the coil and the ring currents are 
considered in the equivalent magnetic circuit from fig. 5. 

The diagram of Fig. 5 corresponds to the equivalent 
magnetic circuit. The reluctances are modeled using 
equivalent electric resistances. For the nonlinear reluctances 
of the cores the model of ferromagnetic piece that was 
explained above was used. The linear resistances correspond 

to the gap or to the leakage (dispersion) reluctances. The 
current controlled voltage sources have the role of 
magnetomotive forces (in case of the coil and of the short-
circuit ring respectively). Because the plunger is moving, 
the reluctances of the movable core RFE_1 and of the central 
gap R are variable depending on the stroke x. By using this 
equivalent circuit, various magnetic fluxes, as magnetic flux 
in the plunger  and the magnetic flux through the ring ring  
can be computed and analyzed. 
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Figure 4. Model of the actuator electric parts. 
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Figure 5. Model of the actuator magnetic core. 

Fig. 6 shows the block diagram of the mechanical part. 
The magnetic flux through the plunger is used to calculate 
the magnetic force based on relation (7). Thus two current 
controlled voltage sources were used to transform the 
quantities into electric potentials. Then some “multiply” and 
“sum” blocks are used to multiply two quantities with a 
given constant K or to subtract one component of the 
magnetic force from the other. Also a “table” block was 
inserted for the B–H nonlinear dependency. Then the inertial 
force Fa is obtained from the magnetic and resistance forces 
through a subtraction. Using the relation (8) we can obtain 
the acceleration a and then the speed v and the stroke x by 
means of the integration blocks. In our mechanical model 
the integration blocks were realized with unity-inductors, 
similar into [13]. The resulted stroke x influences not only 
the value of the resistance force (Fig.3), but also the values 
of the variable reluctances from Fig. 5. 

Thus the equivalent circuits of Figs. 4, 5 and 6 are 
interconnected through the magnetic flux of the plunger, the 
coil current, the ring current and the plunger’s position 
respectively, by means of controlled sources. 
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Figure 6. Block model of the mechanical part of the actuator. 

IV. RESULTS 

The model presented above was implemented in SPICE 
[16],[17] with the aim of analyzing the dynamic behavior 
corresponding to the connecting operation. By solving the 
equivalent circuit, the waveforms of several electro-
magnetic and mechanic quantities were obtained. Some of 
them are presented below. 

Fig. 7 presents the waveforms of the supply voltage and 
of the coil current during the dynamic regime caused by the 
connection. The connection process started at ms. 0t
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Figure 7. Supply voltage (up) and coil current (down) during the connecting 
operation. 

Fig. 8 shows the magnetic flux inside the plunger during 
its movement and after it stops. In the analyzed case one can 
notice that the steady state regime is reached after 120 ms 
(after the free components damping). 
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Figure 8. Magnetic flux inside the movable core during the connecting 
operation 

Fig. 9 shows the magnetization cycle of the movable core 

(magnetic flux  versus magnetic voltage drop) during the 

dynamic regime. One notices that the saturation level is 
reached during the movement, so that the electromagnetic 
quantities have distorted waveforms.  
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Figure 9. Magnetization cycle of the movable core during the dynamic 
regime. 

Fig. 10 shows the current through the short-circuit ring 
during and after the connection. One can see that, when the 
steady-state regime is achieved (after 120 ms), the current 
through the short-circuit ring is distorted and displaced in 
phase by –900 from the magnetic flux and from the control 
coil current. This is in accordance with the electromagnetic 
field theory. 
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Figure 10. Current waveform in the short-circuit ring during the dynamic 
regime. 

Also with respect to Fig. 11 (the steady-state current 
through the short-circuit ring) one remarks the distortion of 
the current. By using the facilities of SPICE software the 
Fast Fourier Transform (FFT) analysis can be done. Thus 
we notice the appearance of the 3rd, 5th and 7th order 
harmonics. 
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Figure 11. FFT analysis of the current in the short-circuit ring, after the 
connection. 

Figs. 12 and 13 show the time variation of the magnetic 
and resistance forces, during and after the connection. After 
the connection the magnetic force has a positive component 
that maintains constantly the position of the plunger. One 
can notice the similarity between the Fr shape from Fig. 3 
and those from Fig. 13, where the variation of the resistance 
force Fr while the plunger is moving (in time) is illustrated. 
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Figure 12. Variation of the magnetic force Fm  during the connecting 
operation 
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Figure 13. Variation of the resistant force Fr during the connecting 
operation. 

The time variation of the plunger position during the 
connection is shown in Fig. 14. The first part of the 
characteristic is nonlinear due to the time variation of the 
speed (depending on acceleration), as it is shown in Fig. 15. 
The simulation results show that the movement ends after 
120 ms, when the speed becomes zero and the position 
remains constant at 10 mm. For this reason Fig. 15 shows 

the speed variation only during the movement of the core. 
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Figure 14. Variation of the movable core position during the dynamic 
regime. 
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Figure 15. Speed variation during the movement of the core. 

In order to validate our equivalent circuit model we chose 
to solve the same problem using a commercial software for 
electromagnetic analysis. The FLUX 2D/3D package was 
used for this purpose. Based on a dynamic regime analysis 
using the finite element method we obtained data 
concerning the magnetic field distribution in the actuator 
and the time variation of certain electric quantities (supply 
voltage and coil current) and mechanical quantities (forces, 
movable core speed, etc.). Some of these results are 
presented below. 
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Figure 16. Coil current variation during the connecting operation; 
comparative presentation of the results obtained using the equivalent circuit 
model (SPICE) and a commercial software for electromagnetic analysis 
(FLUX). 

Fig. 16 presents in a comparative manner the time 
variation of the coil current during the connecting operation 
obtained using the circuit model (that was implemented in 
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