
Advances in Electrical and Computer Engineering Volume 11, Number 4, 2011

A Neuron Model for FPGA Spiking Neuronal
Network Implementation

Liviu ŢIGĂERU, Gabriel BONTEANU
Gheorghe Asachi Technical University of Iasi, 700506, Romania

ltigaeru@etti.tuiasi.ro, gbonteanu@etti.tuiasi.ro

Abstract—We propose a neuron model, able to reproduce

the basic elements of the neuronal dynamics, optimized for
digital implementation of Spiking Neural Networks. Its
architecture is structured in two major blocks, a datapath and
a control unit. The datapath consists of a membrane potential
circuit, which emulates the neuronal dynamics at the soma
level, and a synaptic circuit used to update the synaptic weight
according to the spike timing dependent plasticity (STDP)
mechanism. The proposed model is implemented into a
Cyclone II-Altera FPGA device. Our results indicate the
neuron model can be used to build up 1K Spiking Neural
Networks on reconfigurable logic suport, to explore various
network topologies.

Index Terms—spiking neural network, neuromorphics,
biological system modeling, field programmable gate arrays,
very large scale integration.

I. 1INTRODUCTION

Biological neurons are complex structures that
communicate each other by means of 1ms voltage pulses,
called spikes. Each neuron transforms the spatio-temporal
patterns applied to presynaptic inputs into output spike
trains that are distributed along the axons to other neurons,
where they evoke postsynaptic responses. If a postsynaptic
neuron receives spikes from several presynaptic neurons
within a narrow time window, its membrane potential
increases and may reach a critical threshold, firing a
postsynaptic spike [1].

The Spiking Neural Networks (SNNs) are a relatively
recent class of artificial neural networks [2], more
biologically plausible than the conventional rate-coded
counterpart, built up with complex computational units that
mimics the biological neuron dynamics. Consequently, the
SNNs can generate and reproduce behaviors similar to
biological neural systems, being appropriate in experiments
to model the operational functionality of the brain and
engineering applications requiring the brain peculiar
abilities, respectively.

Cortical neurons show a wide variety of soma and
synaptic responses to their synaptic input signals. The
neuroscientists have developed various neuron models that
vary in complexity between very detailed and computational
expensive models to simpler and computational effective
models. Among these, the most complex model, capable to
reproduce the rich neuronal dynamics is the one developed
by Hodgking–Huxley in the 50th [3-7]. Despite its
impressive repertoire of spiking behavior, the Hodgking–
Huxley model is described by a set of complex nonlinear

differential equations that make it inappropriate for silicon
implementations.

This work was supported by the CNCSIS-UEFISCU Romania, under
Grants PN II-IDEI 740/2008 and PN II-IDEI 1552/2008.

1A good compromise between computational cost and
repertoire of spiking is the neuron model proposed by
Izhikevich [8]. The neuron model is described by means of a
two differential equations system, describing the evolution
of a membrane potential variable and a slow variable,
together with a reset mechanism.

One of the most popular neuron model is the integrate-&-
fire (I&F) neuron model [9]. The simplicity of the I&F
neuron model allows to implement large, massively parallel
network of spiking neurons, where de computational
expenditure is a challenging design issue, at the cost of a
rough repertoire of spiking behavior.

In the recent years much research has been devoted to the
silicon implementation of biologically inspired SNNs.
Attractive analogue circuits where reported for Hodgking–
Huxley [10], Izhikevich [11] and I&F [12] neuron model
implementations. The analog approach provides compact
solutions, which lead to low silicon area and electrical
power consumption, allowing silicon implementations for
large parallel neuronal architectures that speed up the
information processing. However, the analogue solutions
have some important inconveniences. The most important
ones consist of the poor flexibility, the lack of effective
analogue circuits for storing elements and low accuracy. The
analogue solutions are usually applied to silicon
implementations of application specific SNNs architectures,
but are inappropriate as hardware support for applications
that intend the neural network topologies exploration.

Digital technology solve the drawbacks of the analogue
circuits and may serves as an effective solution for
reconfigurable logic platform implementation, appropriate
for neural network topologies exploration. Digital circuits
were reported for I&F [13] and Izhikevich [14] neuron
model implementations. Because of the main goal of the
scientists is to build up powerful computational platform
based on large SNNs, one of the major concerns is the logic
resource expenditure required for hardware
implementations.

In the present paper, we propose a neuron circuit that
captures the basic elements of the biological neuron
dynamics, suitable for digital implementations of
reconfigurable SNNs. The neuron model consists of a soma
circuit, that reproduces the neuronal membrane potential
dynamics and a synaptic circuit that implements the learning
rule, based on the spike timing dependent plasticity (STDP)
mechanism [15], a class of spike driven learning rule, well
suited for VLSI implementation.

We describe in detail the mathematical model of the

 29

Digital Object Identifier 10.4316/AECE.2011.04005

1582-7445 © 2011 AECE

[Downloaded from www.aece.ro on Saturday, July 05, 2025 at 23:59:01 (UTC) by 108.162.241.24. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 4, 2011

proposed neuron model in section II and its circuit
architecture development in the section III, respectively.
Section IV-V presents the implementation of the neuron
circuit into a Cyclone II-Altera FPGA device and simulation
results respectively. Finally, some concluding remarks are
drawn in the section VI.

II. THE NEURON MATHEMATICAL MODEL

The proposed neuron model reproduces the basic
behavior of the biological neuron, observed at the soma
level and synaptic inputs respectively. The soma dynamics
behave as follows: in the absence of the presynaptic spikes,
the neuron is in the resting state (RST state), during its
membrane potential has a constant value called the resting
potential. The presence of the presynaptic spikes at the
synaptic terminals of the neuron leads to its depolarization
(DEP state). During this state, the membrane potential
increases directly proportional to the presynaptic activity,
recorded at the synaptic input terminals. The cease of the
presynaptic activity leads to the return of the membrane
potential back to the resting potential, the neuron keep
waiting in the resting state, to receive new presynaptic
spikes. On the other hand, if the presynaptic activity is
intense, the depolarization of the neuron can become
sufficiently large to reach a critical threshold, causing the
neuron to fire a postsynaptic spike. A postsynaptic spike
firing is followed by a hyperpolarization phase, during the
membrane potential goes under the resting potential. The
hyperpolarization starts with an absolute refractory period
(ARP state), during the membrane potential is kept to a
minimum value, the neuron being completely insensitive to
any presynaptic activity. The hyperpolarization follows with
a relative refractory period (RRP state), during the
membrane potential slowly returns back to the resting
potential, the neuron being less sensitive to the presynaptic
activity, compared to the depolarization state.

The membrane potential dynamics is described by a set of
four elementary equations:







1

0
)1()1()1()(

N

i
iiiMM tStwktvtv  (1)

if then and (2) TM Vtv )(1)(tS j MINM Vtv )(










RRPk

ARP

DEPk

k

R

D

0 (3)












RRP

ARP

DEP

αi

1

0

1

 (4)

where:
vM = the membrane potential,
Si = the presynaptic spike,
wi = the synaptic weight,
N = the number of the synaptic inputs,
t = the current iteration,
VT = the firing threshold,
VMIN = the minimum value of the membrane potential,
k = the change factor of the membrane potential in the

absence of the presynaptic activity,
 i = the sensitivity coefficient of the neuron, that

modulates the synaptic activity depending on the neuron
state,

Sj = postsynaptic spike.
The synaptic behavior is modeled by means of a

multiplicative operator, applied to the presynaptic spike and
the synaptic weight, which is updated according to the
equation,

)t(w)t(w)t(w iii  1 (5)

where wi represents the change of the synaptic weight.
The proposed neuron model uses the STDP mechanism as

learning rule, a large used method for learning
implementation in SNNs, based on the Hebb rule of the
synaptic efficacy adaptation [16]. According to this learning
rule, the variation of the synaptic efficacy (synaptic weight)
is modified according to the time interval between the
moment that a postsynaptic spike is fired, denoted tPOST, and
to the moment that a presynaptic spike is detected at the
synaptic terminal, denoted tPRE, as is shown in Fig.1.

Figure 1. The STDP mechanism.

If a presynaptic spike arrives at the synaptic input, within

a critical time window called learning window, before a
postsynaptic spike is emitted, it is considered that the
postsynaptic spike was fired because of the presynaptic
activity. In this case, the synaptic efficacy is facilitated.
Conversely, if the postsynaptic spike is emitted soon before
the presynaptic spike arrives, it is considered that the
presynaptic activity has not any effect on the postsynaptic
neuron activity. In this case, the synaptic efficacy is
depressed. In the proposed model, the STDP mechanism is
introduced by means of the equation,

 ijFijRi wLWτwτ)t(w  (6)

which describes the updating rule of the synaptic weight.
In (6) R is the rising time of the synaptic efficacy and F is
the falling time of the synaptic efficacy, respectively. The
LW parameter is the learning window and wij is a variable
that depends on the number of iterations elapsed between
the arrival moment of a presynaptic spike at a synaptic
terminal of a neuron, and the firing moment of the
postsynaptic spike at the same neuron. If the postsynaptic
spike is fired on the next iteration after the presynaptic spike
detection, the wij variable has a maximum value. Otherwise,
wij value decreases in time, in proportion as the number of
iterations counted between the moment of the presynaptic
spike detection and the moment of the postsynaptic spike
firing, increases. When wij reaches 0 value, the learning
window has finished and the wij value remains locked at this
value until a new presynaptic spike is detected.

 30

[Downloaded from www.aece.ro on Saturday, July 05, 2025 at 23:59:01 (UTC) by 108.162.241.24. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 4, 2011

III. THE NEURON ARCHITECTURE

A. THE OPTIMIZATION PROCEDURE

The calculation of the equation (1) involves 2N
multiplications and N+1 additions, requiring a lot of logic
resources for hardware implementation. Because of the
neuron model is intended to be used as a computational unit
for large SNNs, it is a demanding design issue to optimize it
for an effective silicon implementation.

The equation (1) may be sequentially computed in N+1
clock cycles, by means of an adder-accumulator structure. In
addition, the accumulator may be used to cancel the sum (1),
during the absolute refractory period (ARP state). The
multiplications within the terms of the sum  iwiSi in the
equation (1) may be completely elliminated by conveniently
choosing the sensitivity coefficients values and turning to
advantage the fact that any spike takes only two binary
values {0,1}. Thus, because of the membrane potential
dynamics is solely handled by the accumulator during the
ARP state, the  i values does not need to be explicitly
specified in this stage. According to this,  i may be defined
as:







 RRP

DEP
αi

2

1
1

 (7)

Consequently, the multiplications of synaptic weights wi
with the sensitivity coefficients  i may be reduced to the
choice between two synaptic values, wi and wi/2
respectively, according to the neuron state. This procedure
may be described by the equation,

state_neuron)t(wstate_neuron)t(w ii  1
2

1
11 (8)

where the “neuron_state” signal control delivers the
neuron state, being ‘0’ logic during the RRP state, and ‘1’
logic during the DEP state. The division by 2 of the synaptic
weight wi may be performed by a 1 bit right shift operation
of the wi value. This procedure does not necessary requires
a distinct shift register and may be simplified by
implementing it at the layout level, by the wire
concatenation between the layout ground (’0’ logic) with the
[msb ,…, lsb+1] wi field, the new wi value resulting as [0,
msb ,.., lsb+1].

Similarly, because of a spike takes only binary values, the
multiplication of the presynaptic spikes Si with the  i·wi
terms may be reduced to the choice between ‘0’ logic and
 i·wi value, according of the presynaptic spike value. Thus,
any term of the sum  i·wi·Si in the equation (1) could be
obtained by a procedure described as:

iiii SS)t(wα  01 (9)

 Both relations, (8) and (9) respectively, match the
generic equation,

seldseldoy  1 (10)

which represents the operating equation of a two data
input multiplexer. Consequently, two small 2 data input
multiplexers could replace the multipliers involved to get
any term of the sum  i·wi·Si in the equation (1), saving a
significant quantity of logic resource that otherwise would
be required to implement the multipliers.

Moreover, the comparator required to implement (2) may

be removed by an appropriate choice of the critical threshold
VT value. If the membrane potential value is represented by
means of B bits and the critical threshold value is chosen as
VT=2B-1, the condition (2) becomes equivalent with an
overflow condition detected at the carry output signal of the
adder, used to implement the equation (1).

Each synaptic weight update process requires two
multipliers, an adder and two subtractor circuits
respectively, rising the quantity of logic resources required
to implement the synaptic circuit. This approach leads to a
critical design issue when the neuron holds many synaptic
inputs. But, if the terms required to compute each wi value
are sequentially applied to the inputs, because of the
equation (1) is computed in a sequential manner, the
synaptic weight computation procedure may be
implemented by a single set of the above mentioned
computational circuits. Subsequently, each updated synaptic
weight value is provided to the circuit that implements the
sum (1) in a pipelined fashion, as is suggested in Fig. 2,
where TC is the computation time period, and Tt is the
iteration time period. According to this approach, each
updated synaptic weight wi value is fed one cycle before the
term  iwiSi is actually used in calculations.

Figure 2. The pipeline technique for membrane potential calculation.

Figure 3. The neuron architecture circuit.

The multiplication with the rising/falling time constants

may be avoided if both  values are chosen equal to unity.
Furthermore, if a peculiar representation of the wij is used, a
single adder/subtractor circuit may replace both adder and
subtractor circuits. This solution is detailed, in section III.B.

Finally, it can be concluded that, based on the
optimization techniques described above, each neuron
requires an adder accumulator structure for the membrane

 31

[Downloaded from www.aece.ro on Saturday, July 05, 2025 at 23:59:01 (UTC) by 108.162.241.24. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 4, 2011

potential computation, an adder/subtractor circuit, N
registers for storing synaptic weight values and a set of
multiplexers to guide the operands involved in the current
calculations. The identified logic resources set lead us to a
conventional computational architecture, which consists of a
datapath and a control unit.

The circuit architecture of the neuron model is depicted in
Fig. 3. The datapath unit executes the operation required to
implement the neuron dynamics. The datapath unit consists
of a synaptic weight and membrane potential computation
circuits, that model the synaptic inputs and the soma
dynamics of the neuron, denoted DW and DV respectively.
The control unit receives information about the datapath
state and generates control signals to synchronize the
datapath operation cycles. The control unit consists of a
master counter, denoted MC, and a Moore finite state
machine, denoted FSM. In the sequel, the description of
these circuits is provided in detail.

Figure 4. The soma circuit.

B. THE DATAPATH UNIT

The structure of the soma circuit is depicted in Fig. 4. We
have chosen an 8 bits resolution for the membrane potential
value, with VT=255, VR=63 and VMIN=0, where VR is the
resting potential. However, the structure is scalable and a
greater resolution may be adopted, if the application
requires.

The circuit computes the sum (1) in a sequential manner.
Each TC clock cycle, the input multiplexers MUXW and
MUXSi take on a single synaptic weight - presynaptic spike
pair, depending on the SEL selection signal, generated in the
unit control by the MC master counter. Because of the SEL
signal also controls the currently computed synaptic weight
in the synaptic circuit, the wi value is computed one TC
cycle before the respective term to be used in the soma
circuit to compute the membrane potential value, as can be
seen in Fig. 2. Thus, in order to synchronize the moments
when the synaptic weights values are delivered to the soma

circuit with the moment when the presynaptic spikes arrive
to the synaptic inputs, it is required to delay one TC period
the moment when each term  i·wi·Si is computed relative
to the moment when the synaptic weight wi is computed.
The required delay is accomplished if both the synaptic
weight wi and the presynaptic spike Si are connected
beginning from the second data input of the input MUXs,
denoted as 1 in the Fig. 4, leaving the first data input
(denoted 0) to the ground.

Each term of the sum  i·wi·Si is computed at MUX1-
MUX2 level, according to the procedure described in the
optimization section. The sum  i·wi·Si is computed by
means of an add-and-accumulate technique, by the ADD
adder and the VC reversible counter.

The reversible counter with loading facilities was
preferred as accumulator element. This solution is more
effective, allowing a natural implementation of the v(t-1)+k
partial sum (with k’s values used as increment and
decrement steps), removing the adder/subtractor circuit. In
addition, this solution simplifies the logic control of the
control unit.

The counter operation depends on the neuron state during
the current iteration, and is controlled by means of the
control signals provided by the control unit. Thus, the
counter is synchronously initialized to the VMIN value on the
negative edge of the TC clock signal, after a postsynaptic
spike is fired (when “after_SJ” control signal is asserted). It
is synchronously forced to the resting potential VR on the
negative edge of the TC clock signal, whenever the neuron
enters in the resting state (when set_VR signal is asserted).
Otherwise, on the first TC clock cycle after the current
iteration begins (after the positive edge of the Tt signal is
arrived), while the “count” signal is asserted, the counter is
decremented with a kD=8 step, or incremented with a kR=4
step, depending on the value of the “neuron_state” signal.
Subsequently, after the first TC clock cycle ends, the counter
waits to load the adder output value, depending on the
presynaptic activity.

The membrane potential is permanently monitored by the
control unit via LVR and GVT lines, asserted when vVR
and vVT, respectively. As vVT (VT=255, the maximum 8
bits value), an overflow condition occurres at the adder and
the soma circuit send a firing condition to the control unit
via GVT line.

The RSJ register is used to trigger the postsynaptic spike.
It delivers ‘1’ logic as long as “set_SJ” control signal is
asserted, otherwise, its output is kept to ‘0’ logic.

The structure of the synaptic circuit is depicted in the Fig.
5. This circuit computes the current synaptic weight
according to a learning rule.

The multiplexers – demultiplexer group provides the
operands required in the current calculation of the synaptic
weight and the wi values for the storing elements,
respectively, depending on the current value of the selection
signal SEL.

The down counter CWi, i=0÷N-1, counts the iteration
number elapsed between a presynaptic spike detection
moment and a postsynaptic spike firing moment occured at
the same neuron. A presynaptic spike detection reset the
CWi counter to zero, synchronously to the positive edge of
the Tt clock signal, which designates the current iteration.

 32

[Downloaded from www.aece.ro on Saturday, July 05, 2025 at 23:59:01 (UTC) by 108.162.241.24. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 4, 2011

Subsequently, CWi counts the number of the running
iterations until a postsynaptic spike is fired. Then, the
current value of the counter is used to update the synaptic
weight value.

Figure 5. The synaptic circuit.

TABLE 1. THE CODING SCHEME OF THE CWi VALUES.

msbCWi
=

t sign

[msb-1….lsb]CWi
=
wi

change intensity in
the synaptic weight

111 
... …

001 
1

synaptic
facilitation 000 --

(out of the learning
window)

111 
... …

001 
0

synaptic
depression 000 --

(out of the learning
window)

The STDP learning mechanism is implemented by using a

peculiar interpretation of the counter value, represented as in
the Table I. Thus, the msb bit of the CWi value represents
the sign of the t time interval defined in Fig. 1. This bit is
taken aside and used to control the operation mode of the
adder/subtractor circuit. The [msb-1….lsb] bits field of the
counter value signifies the change value wi of the synaptic
weight wi. According to this representation, the equation (5)
can be rewritten as:

 
  0...1)1()(

1...1)1()(




CWiCWiii

CWiCWiii

msblsbmsbtwtw

msblsbmsbtwtw
 (11)

where .   iCWi wlsbmsb  ...1

With this approach, each iteration, elapsed between the
moment of presynaptic spike detection and postsynaptic
spike firing, decreases the wi value. The learning window
is valid as long as the counting procedure runs. Once the

CWi counter hits the zero value, it is considered the learning
window is passed. The counter is designed to lock itself in
the zero value. Consequently, once the learning window is
passed, the counter value remains to zero and the synaptic
efficacy is preserved until a new presynaptic spike triggers
the counting procedure.

We have chosen a 5 bits resolution for the synaptic
weight value and a 3 bits resolution for the change of the
synaptic weight. The synaptic weight updating procedure
requires a saturation mechanism, that limits the synaptic
weight values in [0, WMAX] domain value. The saturation
mechanism is implemented by means of the MUXW
multiplexer. It controls the source for RWi storing register
data input, providing it the maximum value WMAX if an
overflow is detected at addition, the minimum value if a
borrow is detected at subtraction and the current value of the
synaptic weight whenever any of these condition are not
met, respectively.

All arithmetic circuit operands are brought to the same
length at the layout level, by the concatenation of the ‘0’ bit
to the field value in the msb position.

C. THE CONTROL UNIT

The control unit has two components, a modulo N+2
master counter and a Moore finite state machine. The
control unit have to assure the synchronization of the
datapath operations, so that the postsynaptic spike in the t
iteration to be fired before the arrival of the t+1 iteration,
then kept asserted the entire next iteration until soon before
the arrival of the t+2 iteration, as is suggested in Fig. 6.

Figure 6. The postsynaptic spike time course.

The Moore finite state machine simulates the neuron

states and sends the control signals to the datapath according
to the state flow diagram depicted in the Fig 7 and Table II.
The finite state machine moves through its states each TC
time period, depending on its input signals.

When the global reset is asserted, the neuron is initialized
in the resting state (RST state). After that, the neuron moves
into the depolarization, each iteration on. The depolarization
consists of two states, called DEP and DEC respectively. If
some presynaptic activity is recorded, the finite state
machine moves into the DEP state, during the membrane
potential is increased. If the presynaptic activity is broken,
the finite state machine moves into the DEC state, during the
membrane potential is decreased. The firing condition is
detected in the SJD state, when the membrane potential
reaches the threshold value. Consequently, as soon as the
next iteration arrives, the neuron triggers a postsynaptic
spike, during the SJ state. After that, the neuron enters into
the refractoriness. Initially, the neuron drifts into the
absolute refractory period (ARP state), next it go forth to the
relative refractory period described by INC and RRP states
respectively, during the membrane potential recovers

 33

[Downloaded from www.aece.ro on Saturday, July 05, 2025 at 23:59:01 (UTC) by 108.162.241.24. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 4, 2011

towards the resting potential. Once the resting potential is
attained from below the resting value, the neuron returns to
the resting state.

Figure 7. The state flow diagram of the Moore finite state machine.

TABLE 2. THE FINITE STATE MACHINE OUTPUTS.

 after_SJ set_VR count neuron_state set_SJ
RST 0 1 - - 0
DEP 0 0 0 - 0
DEC 0 0 1 1 0
SJD 1 0 - - 1
SJ 1 0 - - 1

ARP 1 0 - - 0
INC 0 0 1 0 0
RRP 0 0 0 - 0

The master counter controls the time interval required to

compute the membrane potential according to (1). It controls
the moment when “set_SJ” control signal is asserted as that
the moment of postsynaptic spike firing happens before the
next iteration arrival. For this end, the master counter asserts
a control unit internal signal, denoted EOS, during the N+1
TC computation time period, to end the current fired
postsynaptic spike before the next iteration arrival.

Also, once a new iteration is running, the master counter
generate the SEL signal that sweep all the synaptic inputs, to
record the presynaptic activity of the neuron and provide the
synaptic weights to the soma circuit.

IV. THE FPGA IMPLEMENTATION AND
PERFORMANCE ESTIMATION

Two variants of neuron models were implemented into a
FPGA device, to verify the logic resource utilization for the
hardware neuron implementation and to get the timing
information to estimate the time period required to compute
the current value vM(t) of the membrane potential.

The first neuron has a relative small number of synaptic
inputs – 8 inputs, and the second one has an appreciable
number of synaptic inputs – 30 inputs.

Both models were described in VHDL language [17] and
implemented in of Cylone II Altera FPGA devices [18],
using the Quartus II design software [19]. During
implementation phase, we have used timing constraints to
reduce the timing delays of the system signals. The
implementation results for both neurons are summarized in
the Table III. The usage of the FPGA’s logic resources is
reported in Logic Elements (LEs). Each LE consists of a
combinational function generator, called LUT (Look Up

Table) block and a flip flop (FF) register.

TABLE 3. THE LOGIC RESOURCES REQUIREMENTS.
Neuron model LEs (1LUT + 1FF) TCmin

8 synaptic inputs 245 22[ns]
30 synaptic inputs 647 24[ns]

The small input neuron requires 245 Logic Elements

(LEs) and the large input neuron requires 647 LEs of 18752
total LEs of the FPGA device, which represents about 1,3%
and about 3,45% of the total logic resource provided by the
FPGA, respectively. The difference between the quantities
of the logic resources is determined by the synaptic circuits,
which require 171 LEs for the first neuron and 572 LEs for
the second one respectively.

With the recent advance of the VLSI technologies, more
logic resource quantity are integrated by the manufactures in
the FPGA devices. The growing complexity of FPGA
devices allows the implementation of large SNNs. In this
respect, a state of the art Stratix V FPGA device may
accommodates until 1K neurons with 30 synaptic terminals.

As for the timing, both neurons record similar timings for
the minimum TC value. However, the different number of
synaptic inputs makes the current membrane potential value
to be computed earliest in 220ns and 768ns, for the first
neuron and for the second one, respectively. Consequently,
in the proposed neuron model, the iteration can be
constrained below to 1s, even for a relative large number
of synaptic inputs.

However, the speed was not one of our primary design
goals because of we consider that the computational power
of the SNN resides in its biologically inspired information
processing. The key contributions of this work are i) the
optimized architecture for FPGA implementation towards a
reduced consumption of the FPGA’s logic resources and ii)
the integration of the STDP learning mechanism into the
neuronal architecture that allows the learning procedure to
be implemented into the chip.

In the last years, various solutions were reported for
FPGA based implementation of the digital SNNs. It is
difficult to compare these designs due to differences in
design objectives and the implementation technologies.
Anyway, it is useful to summarize the main approaches
reported for the FPGA based SNNs and put our solution into
this framework.

 One convenient software based approach was reported in
[20], were an design environment has been developed in C#
language allowing designing SNNs structures with a user
friendly interface and converting them into synthesizable
VHDL code by means of the VHDL Code Generator tool.
However, the proposed the neuron model does not capture
the rich dynamical repertoire of the biological neuron. It
goes aside the learning mechanism and proposes a
simplified model for the soma, without the update
mechanism for the synapse, which is described by a simple
FIFO based storing element. Moreover, the VHDL code
generated by the used tool is far to be optimized for logical
synthesis. According to the reported results, a single neuron
with a single synapse uses about 202 slices of Spartan 3
Xilinx FPGA device, where the slice represents the Xilinx
counterpart for Altera LE. A single slice has 2 LUTs and 2
FFs [21].

 34

[Downloaded from www.aece.ro on Saturday, July 05, 2025 at 23:59:01 (UTC) by 108.162.241.24. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 4, 2011

 35

A step forward for optimized solution for FPGA based
SNNs is presented in [22]. The authors developed a
synthesizable VHDL based library for neuronal primitives,
used to build up biologically realistic neurons. This
approach allows easy portability and usability, but not
incorporates the learning mechanism. The authors designed
a 86 neurons with 180 synapses SNN which consumed
14192 LUTs and 13166 FFs. Using our neuron model, we
estimate that a 80 neurons with 640 synapses SNN, require
about 19600 LE.

An interesting software/hardware SNN computing
platform is reported in [23], were different stage of the
proposed neuron model are processed in parallel, using
pipeline techniques. The proposed model capture the soma
dynamics into the hardware using a dedicated architecture,
but the learning mechanism is left outside the chip, being
implemented by means of the software routines. The model
is based on a processing element that encloses 6 neurons and
requires about 9162 slices of Virtex 2 Xilinx FPGA devices
[24].

Using this reference framework, we can visualize the
performance of the proposed neuron model and draw some
useful conclusions.

V. SIMULATION RESULTS

To validate the proposed neuron model, an 8 synaptic
inputs neuron version has been developed and simulated in
the Active HDL design environment, under various test
conditions. During the simulation, it were applied random
presynaptic spikes at the inputs and were monitored the
change of the synaptic efficacy at each synaptic input, the
membrane potential variation and postsynaptic spikes firing
respectively. It was adopted a 500ns value for the iteration
time period and 40ns for the computation time period
respectively and 41 successive iterations were recorded to
monitor the behavior of the neuron.

The simulation procedure is divided into two parts. The
first one, consisted of the 0÷21 iterations, is intended to
verify the sequence of the states experienced by the neuron
during its stimulation by the presynaptic activity. The
simulation results are presented in the Fig. 8.

Initially, all synaptic inputs are initialized to 16, the
middle value of the synaptic weights range and the neuron is
in the resting state, its membrane potential being at the
resting potential (VM=63).

If presynaptic spikes are applied to the synaptic inputs,
the neuron starts to depolarize and the membrane potential
begins to rise to the threshold value (iterations 1÷5). As long
as the synaptic activity is broken (iterations 6÷9), the neuron
tends to return to the resting state, the membrane potential
decreasing to the resting potential.

During the 12th iteration, the membrane potential reaches
the threshold value (VM=255) and a firing condition is
accomplished. Consequently, a postsynaptic spike is
triggered by the neuron one iteration later (SJ=1). After that,
the neuron plunges into the refractoriness (iterations 14÷20).

Initially, the neuron enters into the absolute refractory
period, during the membrane potential is forced to the
minimum value (VM=0) and the neuron is completely
insensitive to any presynaptic activity. Thenceforward, the
neuron gets in the relative refractory period, during the

membrane potential returns back to the resting potential
irrespective of the synaptic activity presence. As can be
observed, during the iterations 15÷18, the membrane
potential recovers to the resting potential even the
presynaptic activity is broken. In the presence of the
presynaptic activity, the membrane potential recovering is
hastened. However, the neuron sensitivity is lower against
the one displayed during depolarization, and the rising of the
membrane potential is sluggish. This behavior can be
observed monitoring the change of the membrane potential
during the 20th iteration (refractoriness) against to the 3th

iteration (depolarization). Even each iteration has recorded
two presynaptic spikes, the change in the membrane
potential during the 20th iteration is half of the change in the
membrane potential during the 3th iteration. This behavior
consists with the sensitivity coefficient of the neuron,
defined in (7). Finally, the refractory period ends and the
neuron returns to the resting state (21th iteration) keep
waiting new presynaptic activities.

Figure 8. The simulation of the behavior of the neuron.

After the postsynaptic spike is triggered, the synaptic

weights are altered according to the SDTP mechanism.
Thus, the synaptic efficacy of the inputs with early activity
inside the learning window is depressed. This is the case of
the synapses 0, 1 and 4 respectively, which have all negative
values for the change intensity of the synaptic weight. The
synaptic efficacy of the inputs with recent activity inside the
learning window is facilitated. This is the case of the
synapses 2, 5, 6 and 7 respectively, which have all negative
values for the change intensity of the synaptic weight. The
synaptic activity of the synapse 3 is outside the learning
window. Consequently, the change intensity of the synaptic
weight is zero and the synaptic efficacy is unaltered.

The second part of the simulation scenario, consisted of
the iterations 21÷40, is intended to point out the ability of
the neuron to discriminate presynaptic activity, by means of

[Downloaded from www.aece.ro on Saturday, July 05, 2025 at 23:59:01 (UTC) by 108.162.241.24. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 4, 2011

the synaptic efficacy modulation mechanism. The
simulation results are presented in the Fig. 9.

Figure 9. The discrimination of the neuron in the input space.

As can be observed, the information applied to the inputs

0, 1 and 3 respectively, tends to be filtered in time. The
neuron has the ability to decide the synaptic activity of these
inputs is not correlated with its activity. Consequently, the
synaptic efficacy of all these inputs decreases in time toward
zero. However, the inputs 2, 5, 6 and 7 respectively, are
reinforced. In this case, the neuron decides the presynaptic
activity to these inputs has effect on its activity.
Consequently, the synaptic efficacy of all these inputs
increases in time. The neuron performs a time integration of
the information applied at these inputs, firing a postsynaptic
spike based solely on this. This behavior can be exploited as
coincidence detection inside a time window device.

VI. CONCLUSION

It was proposed a neuron model suited for digital SNNs
implementation, optimized to reduce the logic resource
requirements of hardware implementations. The model
emulates the basic elements of the biological neuron
dynamics, and linearly integrates the contribution of the
presynaptic spikes to the current value of the membrane
potential, which can fulfill the postsynaptic spike firing
condition at most N+2 clock cycles, where N is the number
of the synaptic inputs.

The neuron was implemented into a FPGA devices and
the obtained results recommend it for 1K SNNs. Due to its
performances, the proposed neuron may be used as a

computational unit for large reconfigurable SNNs, to
explore various network topologies.

REFERENCES
[1] C. Koch, “Biophysics of Computation: Information Processing in

Single Neurons”, New York: Oxford Univ. Press., 1999
[2] W. Maass, “The Third Generation of Neural Network Models”,

Technische Universität Graz, 1997.
[3] A.L. Hodgkin, F. Huxley, B. Katz, “Measurements of current–voltage

relations in the membrane of the giant axon of Loligo”. J. Physiol.
vol. 116, pp. 424–448, 1952.

[4] A.L. Hodgkin, F. Huxley, “Currents carried by sodium and potassium
ions through the membrane of the giant axon of Loligo”. J. Physiol.
vol. 116, pp. 449–472, 1952.

[5] A.L. Hodgkin, F. Huxley, “The components of membrane
conductance in the giant axon of Loligo”, J. Physiol. vol. 116, pp.
473–496, 1952.

[6] A.L. Hodgkin, F. Huxley, The dual effect of membrane potential on
sodium conductance in the giant axon of Loligo. J. Physiol. vol. 116
pp. 497–506, 1952..

[7] A.L. Hodgkin, F. Huxley, “A quantitative description of membrane
current and its application to conduction and excitation in nerve”, J.
Physiol. vol. 116, pp. 507–544, 1952..

[8] E.M. Izhikevich, “Simple Model of Spiking Neurons”, IEEE
Transactions of Neural Networks, vol. 14, no. 6, pp. 1569-1572, 2003.

[9] L.F. Abbott, “Lapique's introduction of the integrate-and-fire model
neuron (1907)”, Brain Research Bulletin, vol. 50, no. 5/6, pp. 303–
304, 1999.

[10] K.M Hynna, K. Boahen, “Thermodynamically Equivalent Silicon
Models of Voltage-Dependent Ion Channels”, Neural Computation,
vol. 19, no. 2, pp. 327-350, 2007

[11] J. H. B. Wijekoon, P. Dudek, “Compact Silicon Neuron with Spiking
and Bursting Behaviour”, Neural Networks, vol. 21, pp. 524-534,
2008.

[12] G. Indiveri, E. Chicca, R. Douglas, “A VLSI array of low-power
spiking neurons and bistable synapses with spike–timing dependent
plasticity”, IEEE Transactions on Neural Networks, vol. 17, no. 1 pp.
211-221, 2006.

[13] M. J. Pearson, A. G. Pipe, B. Mitchinson, K. Gurney, C. Melhuish, I.
Gilhespy, M. Nibouche, “Implementing Spiking Neural Networks for
Real Time Signal Processing and Control Applications: A Model
Validated FPGA Approach”, IEEE Transactions on Neural Networks,
vol. 18, no. 5, pp. 1472-1487, 2007

[14] P. Arena, L. Fortuna, M. Frasca, L. Patane, “Learning Anticipation
via Spiking Networks: Application to Navigation Control”, IEEE
Transactions on Neural Networks, vol. 20, no. 2, pp. 202-216, 2009

[15] H. Markram, J. Lubke, M. Frotscher, B. Sakmann, “Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs”,
Science, vol. 275, pp. 213-215, 1997.

[16] D. O. Hebb, “The organization of behavior”, New York: Wiley &
Sons, 1949

[17] P.P.Chu, “RTL Hardware Design Using VHDL. Coding for
Efficiency, Portability and Scalabilty”, Wiley and Sons, 2006.

[18] “Cyclone II Device Handbook”, available at http://www.altera.com,
2008

[19] “Quartus II Handbook”, available at http://www.altera.com, 2008
[20] A. Rosado-Munoz, A.B. Fijalkowski, M. Bataller-Mompean, J.

Guerrero-Martinez, “FPGA implementation of Spiking Neural
Networks supported by a Software Design Environment”,
Proccedings of the 18th IFAC World Congress, 2011

[21] http://www.xilinx.com/support/documentation/data_sheets, “Spartan
3E FPGA device family: data sheet”

[22] J.A. Bailey, R. Wilcock, P.R. Wilson, J.E.Chad, “Behavioral
simulation and synthesis of biological neuron systems using
synthesizable VHDL”, Neurocomputing, vol. 74, pp. 2392-2406, 2011

[23] E. Ros, E.M. Ortigosa, R. Agis, R. Carrillo, M. Arnold, “Real-time
computing platform for spiking neurons (RT-spike)”, IEEE
Transactions on Neural Networks, vol. 17, no.4, pp. 1050-1063, 2007.

[24] http://www.xilinx.com/support/documentation/data_sheets/ds031.pdf,
“Vitex 2 FPGA device family: complete data sheet”

 36

[Downloaded from www.aece.ro on Saturday, July 05, 2025 at 23:59:01 (UTC) by 108.162.241.24. Redistribution subject to AECE license or copyright.]

