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Abstract—We propose a neuron model, able to reproduce 

the basic elements of the neuronal dynamics, optimized for 
digital implementation of Spiking Neural Networks. Its 
architecture is structured in two major blocks, a datapath and 
a control unit. The datapath consists of a membrane potential 
circuit, which emulates the neuronal dynamics at the soma 
level, and a synaptic circuit used to update the synaptic weight 
according to the spike timing dependent plasticity (STDP) 
mechanism. The proposed model is implemented into a 
Cyclone II-Altera FPGA device. Our results indicate the 
neuron model can be used to build up 1K Spiking Neural 
Networks on reconfigurable logic suport, to explore various 
network topologies.    
 

Index Terms—spiking neural network, neuromorphics, 
biological system modeling, field programmable gate arrays, 
very large scale integration. 

I. 1INTRODUCTION 

Biological neurons are complex structures that 
communicate each other by means of 1ms voltage pulses, 
called spikes. Each neuron transforms the spatio-temporal 
patterns applied to presynaptic inputs into output spike 
trains that are distributed along the axons to other neurons, 
where they evoke postsynaptic responses. If a postsynaptic 
neuron receives spikes from several presynaptic neurons 
within a narrow time window, its membrane potential 
increases and may reach a critical threshold, firing a 
postsynaptic spike [1].  

The Spiking Neural Networks (SNNs) are a relatively 
recent class of artificial neural networks [2], more 
biologically plausible than the conventional rate-coded 
counterpart, built up with complex computational units that 
mimics the biological neuron dynamics. Consequently, the 
SNNs can generate and reproduce behaviors similar to 
biological neural systems, being appropriate in experiments 
to model the operational functionality of the brain and 
engineering applications requiring the brain peculiar 
abilities, respectively.  

Cortical neurons show a wide variety of soma and 
synaptic responses to their synaptic input signals. The 
neuroscientists have developed various neuron models that 
vary in complexity between very detailed and computational 
expensive models to simpler and computational effective 
models. Among these, the most complex model, capable to 
reproduce the rich neuronal dynamics is the one developed 
by Hodgking–Huxley in the 50th [3-7]. Despite its 
impressive repertoire of spiking behavior, the Hodgking–
Huxley model is described by a set of complex nonlinear 

differential equations that make it inappropriate for silicon 
implementations.  

 
This work was supported by the CNCSIS-UEFISCU Romania, under 
Grants PN II-IDEI 740/2008 and PN II-IDEI 1552/2008. 

1A good compromise between computational cost and 
repertoire of spiking is the neuron model proposed by 
Izhikevich [8]. The neuron model is described by means of a 
two differential equations system, describing the evolution 
of a membrane potential variable and a slow variable, 
together with a reset mechanism.  

One of the most popular neuron model is the integrate-&-
fire (I&F) neuron model [9]. The simplicity of the I&F 
neuron model allows to implement large, massively parallel 
network of spiking neurons, where de computational 
expenditure is a challenging design issue, at the cost of a 
rough repertoire of spiking behavior.   

In the recent years much research has been devoted to the 
silicon implementation of biologically inspired SNNs. 
Attractive analogue circuits where reported for Hodgking–
Huxley [10], Izhikevich [11] and I&F [12] neuron model 
implementations. The analog approach provides compact 
solutions, which lead to low silicon area and electrical 
power consumption, allowing silicon implementations for 
large parallel neuronal architectures that speed up the 
information processing. However, the analogue solutions 
have some important inconveniences. The most important 
ones consist of the poor flexibility, the lack of effective 
analogue circuits for storing elements and low accuracy. The 
analogue solutions are usually applied to silicon 
implementations of application specific SNNs architectures, 
but are inappropriate as hardware support for applications 
that intend the neural network topologies exploration. 

Digital technology solve the drawbacks of the analogue 
circuits and may serves as an effective solution for   
reconfigurable logic platform implementation, appropriate 
for neural network topologies exploration. Digital circuits 
were reported for I&F [13] and Izhikevich [14] neuron 
model implementations. Because of the main goal of the 
scientists is to build up powerful computational platform 
based on large SNNs, one of the major concerns is the logic 
resource expenditure required for hardware 
implementations.  

In the present paper, we propose a neuron circuit that 
captures the basic elements of the biological neuron 
dynamics, suitable for digital implementations of 
reconfigurable SNNs. The neuron model consists of a soma 
circuit, that reproduces the neuronal membrane potential 
dynamics and a synaptic circuit that implements the learning 
rule, based on the spike timing dependent plasticity (STDP) 
mechanism [15], a class of spike driven learning rule, well 
suited for VLSI implementation.  

We describe in detail the mathematical model of the 
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proposed neuron model in section II and its circuit 
architecture development in the section III, respectively. 
Section IV-V presents the implementation of the neuron 
circuit into a Cyclone II-Altera FPGA device and simulation 
results respectively. Finally, some concluding remarks are 
drawn in the section VI.  

II. THE NEURON MATHEMATICAL MODEL 

The proposed neuron model reproduces the basic 
behavior of the biological neuron, observed at the soma 
level and synaptic inputs respectively. The soma dynamics 
behave as follows: in the absence of the presynaptic spikes, 
the neuron is in the resting state (RST state), during its 
membrane potential has a constant value called the resting 
potential. The presence of the presynaptic spikes at the 
synaptic terminals of the neuron leads to its depolarization 
(DEP state). During this state, the membrane potential 
increases directly proportional to the presynaptic activity, 
recorded at the synaptic input terminals. The cease of the 
presynaptic activity leads to the return of the membrane 
potential back to the resting potential, the neuron keep 
waiting in the resting state, to receive new presynaptic 
spikes. On the other hand, if the presynaptic activity is 
intense, the depolarization of the neuron can become 
sufficiently large to reach a critical threshold, causing the 
neuron to fire a postsynaptic spike. A postsynaptic spike 
firing is followed by a hyperpolarization phase, during the 
membrane potential goes under the resting potential. The 
hyperpolarization starts with an absolute refractory period 
(ARP state), during the membrane potential is kept to a 
minimum value, the neuron being completely insensitive to 
any presynaptic activity. The hyperpolarization follows with 
a relative refractory period (RRP state), during the 
membrane potential slowly returns back to the resting 
potential, the neuron being less sensitive to the presynaptic 
activity, compared to the depolarization state.   

The membrane potential dynamics is described by a set of 
four elementary equations:  
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where:  
vM = the membrane potential,  
Si = the presynaptic spike,  
wi = the synaptic weight,  
N = the number of the synaptic inputs,  
t = the current iteration, 
VT = the firing threshold,  
VMIN = the minimum value of the membrane potential, 
k = the change factor of the membrane potential in the 

absence of the presynaptic activity,  
 i = the sensitivity coefficient of the neuron, that 

modulates the synaptic activity depending on the neuron 
state,  

Sj = postsynaptic spike.  
The synaptic behavior is modeled by means of a 

multiplicative operator, applied to the presynaptic spike and 
the synaptic weight, which is updated according to the 
equation,  

)t(w)t(w)t(w iii  1           (5) 

where wi represents the change of the synaptic weight. 
The proposed neuron model uses the STDP mechanism as 

learning rule, a large used method for learning 
implementation in SNNs, based on the Hebb rule of the 
synaptic efficacy adaptation [16]. According to this learning 
rule, the variation of the synaptic efficacy (synaptic weight) 
is modified according to the time interval between the 
moment that a postsynaptic spike is fired, denoted tPOST, and 
to the moment that a presynaptic spike is detected at the 
synaptic terminal, denoted tPRE, as is shown in Fig.1.  

 
Figure 1. The STDP mechanism. 

 
If a presynaptic spike arrives at the synaptic input, within 

a critical time window called learning window, before a 
postsynaptic spike is emitted, it is considered that the 
postsynaptic spike was fired because of the presynaptic 
activity. In this case, the synaptic efficacy is facilitated. 
Conversely, if the postsynaptic spike is emitted soon before 
the presynaptic spike arrives, it is considered that the 
presynaptic activity has not any effect on the postsynaptic 
neuron activity. In this case, the synaptic efficacy is 
depressed. In the proposed model, the STDP mechanism is 
introduced by means of the equation,  

 ijFijRi wLWτwτ)t(w           (6) 

which describes the updating rule of the synaptic weight. 
In (6) R is the rising time of the synaptic efficacy and F is 
the falling time of the synaptic efficacy, respectively. The 
LW parameter is the learning window and wij is a variable 
that depends on the number of iterations elapsed between 
the arrival moment of a presynaptic spike at a synaptic 
terminal of a neuron, and the firing moment of the 
postsynaptic spike at the same neuron. If the postsynaptic 
spike is fired on the next iteration after the presynaptic spike 
detection, the wij variable has a maximum value. Otherwise, 
wij value decreases in time, in proportion as the number of 
iterations counted between the moment of the presynaptic 
spike detection and the moment of the postsynaptic spike 
firing, increases. When wij reaches 0 value, the learning 
window has finished and the wij value remains locked at this 
value until a new presynaptic spike is detected.   
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III. THE NEURON ARCHITECTURE 

A. THE OPTIMIZATION PROCEDURE 

The calculation of the equation (1) involves 2N 
multiplications and N+1 additions, requiring a lot of logic 
resources for hardware implementation. Because of the 
neuron model is intended to be used as a computational unit 
for large SNNs, it is a demanding design issue to optimize it 
for an effective silicon implementation.  

The equation (1) may be sequentially computed in N+1 
clock cycles, by means of an adder-accumulator structure. In 
addition, the accumulator may be used to cancel the sum (1), 
during the absolute refractory period (ARP state). The 
multiplications within the terms of the sum  iwiSi in the 
equation (1) may be completely elliminated by conveniently 
choosing the sensitivity coefficients values and turning to 
advantage the fact that any spike takes only two binary 
values {0,1}. Thus, because of the membrane potential 
dynamics is solely handled by the accumulator during the 
ARP state, the  i values does not need to be explicitly 
specified in this stage. According to this,  i may be defined 
as: 
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Consequently, the multiplications of synaptic weights wi 
with the sensitivity coefficients  i may be reduced to the 
choice between two synaptic values, wi and wi/2 
respectively, according to the neuron state. This procedure 
may be described by the equation, 

state_neuron)t(wstate_neuron)t(w ii  1
2

1
11  (8) 

where the “neuron_state” signal control delivers the 
neuron state, being ‘0’ logic during the RRP state, and ‘1’ 
logic during the DEP state. The division by 2 of the synaptic 
weight wi may be performed by a 1 bit right shift operation 
of the wi value. This procedure does not necessary requires 
a distinct shift register and may be simplified by 
implementing it at the layout level, by the wire 
concatenation between the layout ground (’0’ logic) with the 
[msb ,…, lsb+1] wi field, the new wi value resulting as [0, 
msb ,.., lsb+1]. 

Similarly, because of a spike takes only binary values, the 
multiplication of the presynaptic spikes Si with the  i·wi 
terms may be reduced to the choice between ‘0’ logic and 
 i·wi value, according of the presynaptic spike value. Thus, 
any term of the sum  i·wi·Si in the equation (1) could be 
obtained by a procedure described as:  

iiii SS)t(wα  01            (9) 

    Both relations, (8) and (9) respectively, match the 
generic equation,  

seldseldoy  1          (10) 

which represents the operating equation of a two data 
input multiplexer. Consequently, two small 2 data input 
multiplexers could replace the multipliers involved to get 
any term of the sum  i·wi·Si in the equation (1), saving a 
significant quantity of logic resource that otherwise would 
be required to implement the multipliers. 

Moreover, the comparator required to implement (2) may 

be removed by an appropriate choice of the critical threshold 
VT value. If the membrane potential value is represented by 
means of B bits and the critical threshold value is chosen as 
VT=2B-1, the condition (2) becomes equivalent with an 
overflow condition detected at the carry output signal of the 
adder, used to implement the equation (1).    

Each synaptic weight update process requires two 
multipliers, an adder and two subtractor circuits 
respectively, rising the quantity of logic resources required 
to implement the synaptic circuit. This approach leads to a 
critical design issue when the neuron holds many synaptic 
inputs. But, if the terms required to compute each wi value 
are sequentially applied to the inputs, because of the 
equation (1) is computed in a sequential manner, the 
synaptic weight computation procedure may be 
implemented by a single set of the above mentioned 
computational circuits. Subsequently, each updated synaptic 
weight value is provided to the circuit that implements the 
sum (1) in a pipelined fashion, as is suggested in Fig. 2, 
where TC is the computation time period, and Tt is the 
iteration time period. According to this approach, each 
updated synaptic weight wi value is fed one cycle before the 
term  iwiSi is actually used in calculations. 

 
Figure 2. The pipeline technique for membrane potential calculation. 

 
Figure 3. The neuron architecture circuit. 

 
The multiplication with the rising/falling time constants 

may be avoided if both  values are chosen equal to unity. 
Furthermore, if a peculiar representation of the wij is used, a 
single adder/subtractor circuit may replace both adder and 
subtractor circuits. This solution is detailed, in section III.B. 

Finally, it can be concluded that, based on the 
optimization techniques described above, each neuron 
requires an adder accumulator structure for the membrane 
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potential computation, an adder/subtractor circuit, N 
registers for storing synaptic weight values and a set of 
multiplexers to guide the operands involved in the current 
calculations. The identified logic resources set lead us to a 
conventional computational architecture, which consists of a 
datapath and a control unit.  

The circuit architecture of the neuron model is depicted in 
Fig. 3. The datapath unit executes the operation required to 
implement the neuron dynamics. The datapath unit consists 
of a synaptic weight and membrane potential computation 
circuits, that model the synaptic inputs and the soma 
dynamics of the neuron, denoted DW and DV respectively. 
The control unit receives information about the datapath 
state and generates control signals to synchronize the 
datapath operation cycles. The control unit consists of a 
master counter, denoted MC, and a Moore finite state 
machine, denoted FSM. In the sequel, the description of 
these circuits is provided in detail. 

 
Figure 4. The soma circuit. 

B. THE DATAPATH UNIT 

The structure of the soma circuit is depicted in Fig. 4. We 
have chosen an 8 bits resolution for the membrane potential 
value, with VT=255, VR=63 and VMIN=0, where VR is the 
resting potential. However, the structure is scalable and a 
greater resolution may be adopted, if the application 
requires.   

The circuit computes the sum (1) in a sequential manner. 
Each TC clock cycle, the input multiplexers MUXW and 
MUXSi take on a single synaptic weight - presynaptic spike 
pair, depending on the SEL selection signal, generated in the 
unit control by the MC master counter. Because of the SEL 
signal also controls the currently computed synaptic weight 
in the synaptic circuit, the wi value is computed one TC 
cycle before the respective term to be used in the soma 
circuit to compute the membrane potential value, as can be 
seen in Fig. 2. Thus, in order to synchronize the moments 
when the synaptic weights values are delivered to the soma 

circuit with the moment when the presynaptic spikes arrive 
to the synaptic inputs, it is required to delay one TC period 
the moment when each term  i·wi·Si is computed relative 
to the moment when the synaptic weight wi is computed. 
The required delay is accomplished if both the synaptic 
weight wi and the presynaptic spike Si are connected 
beginning from the second data input of the input MUXs, 
denoted as 1 in the Fig. 4, leaving the first data input 
(denoted 0) to the ground.  

Each term of the sum  i·wi·Si is computed at MUX1-
MUX2 level, according to the procedure described in the 
optimization section. The sum  i·wi·Si is computed by 
means of an add-and-accumulate technique, by the ADD 
adder and the VC reversible counter.  

The reversible counter with loading facilities was 
preferred as accumulator element. This solution is more 
effective, allowing a natural implementation of the v(t-1)+k 
partial sum (with k’s values used as increment and 
decrement steps), removing the adder/subtractor circuit. In 
addition, this solution simplifies the logic control of the 
control unit.  

The counter operation depends on the neuron state during 
the current iteration, and is controlled by means of the 
control signals provided by the control unit. Thus, the 
counter is synchronously initialized to the VMIN value on the 
negative edge of the TC clock signal, after a postsynaptic 
spike is fired (when “after_SJ” control signal is asserted). It 
is synchronously forced to the resting potential VR on the 
negative edge of the TC clock signal, whenever the neuron 
enters in the resting state (when set_VR signal is asserted). 
Otherwise, on the first TC clock cycle after the current 
iteration begins (after the positive edge of the Tt signal is 
arrived), while the “count” signal is asserted, the counter is 
decremented with a kD=8 step, or incremented with a kR=4 
step, depending on the value of the “neuron_state” signal. 
Subsequently, after the first TC clock cycle ends, the counter 
waits to load the adder output value, depending on the 
presynaptic activity.  

The membrane potential is permanently monitored by the 
control unit via LVR and GVT lines, asserted when vVR 
and vVT, respectively. As vVT (VT=255, the maximum 8 
bits value), an overflow condition occurres at the adder and 
the soma circuit send a firing condition to the control unit 
via GVT line.  

The RSJ register is used to trigger the postsynaptic spike. 
It delivers ‘1’ logic as long as “set_SJ” control signal is 
asserted, otherwise, its output is kept to ‘0’ logic.   

The structure of the synaptic circuit is depicted in the Fig. 
5. This circuit computes the current synaptic weight 
according to a learning rule.  

The multiplexers – demultiplexer group provides the 
operands required in the current calculation of the synaptic 
weight and the wi values for the storing elements, 
respectively, depending on the current value of the selection 
signal SEL.   

The down counter CWi, i=0÷N-1, counts the iteration 
number elapsed between a presynaptic spike detection 
moment and a postsynaptic spike firing moment occured at 
the same neuron. A presynaptic spike detection reset the 
CWi counter to zero, synchronously to the positive edge of 
the Tt clock signal, which designates the current iteration. 
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Subsequently, CWi counts the number of the running 
iterations until a postsynaptic spike is fired. Then, the 
current value of the counter is used to update the synaptic 
weight value.  

 
Figure 5. The synaptic circuit. 

 
TABLE 1. THE CODING SCHEME OF THE CWi VALUES. 

msbCWi 
= 

t sign 

[msb-1….lsb]CWi 
= 
wi 

change intensity in 
the synaptic weight 

111  
... … 

001  
1 

synaptic 
facilitation 000 --  

(out of the learning 
window) 

111  
... … 

001  
0 

synaptic 
depression 000 -- 

(out of the learning 
window) 

 
The STDP learning mechanism is implemented by using a 

peculiar interpretation of the counter value, represented as in 
the Table I. Thus, the msb bit of the CWi value represents 
the sign of the t time interval defined in Fig. 1. This bit is 
taken aside and used to control the operation mode of the 
adder/subtractor circuit. The [msb-1….lsb] bits field of the 
counter value signifies the change value wi of the synaptic 
weight wi. According to this representation, the equation (5) 
can be rewritten as:  

 
  0...1)1()(

1...1)1()(


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CWiCWiii

CWiCWiii

msblsbmsbtwtw

msblsbmsbtwtw
      (11) 

where .   iCWi wlsbmsb  ...1

With this approach, each iteration, elapsed between the 
moment of presynaptic spike detection and postsynaptic 
spike firing, decreases the wi value. The learning window 
is valid as long as the counting procedure runs. Once the 

CWi counter hits the zero value, it is considered the learning 
window is passed. The counter is designed to lock itself in 
the zero value. Consequently, once the learning window is 
passed, the counter value remains to zero and the synaptic 
efficacy is preserved until a new presynaptic spike triggers 
the counting procedure.  

We have chosen a 5 bits resolution for the synaptic 
weight value and a 3 bits resolution for the change of the 
synaptic weight. The synaptic weight updating procedure 
requires a saturation mechanism, that limits the synaptic 
weight values in [0, WMAX] domain value. The saturation 
mechanism is implemented by means of the MUXW 
multiplexer. It controls the source for RWi storing register 
data input, providing it the maximum value WMAX if an 
overflow is detected at addition, the minimum value if a 
borrow is detected at subtraction and the current value of the 
synaptic weight whenever any of these condition are not 
met, respectively.  

All arithmetic circuit operands are brought to the same 
length at the layout level, by the concatenation of the ‘0’ bit 
to the field value in the msb position.  

C. THE CONTROL UNIT 

The control unit has two components, a modulo N+2 
master counter and a Moore finite state machine. The 
control unit have to assure the synchronization of the 
datapath operations, so that the postsynaptic spike in the t 
iteration to be fired before the arrival of the t+1 iteration, 
then kept asserted the entire next iteration until soon before 
the arrival of the t+2 iteration, as is suggested in Fig. 6.  

 
Figure 6. The postsynaptic spike time course. 

 
The Moore finite state machine simulates the neuron 

states and sends the control signals to the datapath according 
to the state flow diagram depicted in the Fig 7 and Table II. 
The finite state machine moves through its states each TC 
time period, depending on its input signals.  

When the global reset is asserted, the neuron is initialized 
in the resting state (RST state). After that, the neuron moves 
into the depolarization, each iteration on. The depolarization 
consists of two states, called DEP and DEC respectively. If 
some presynaptic activity is recorded, the finite state 
machine moves into the DEP state, during the membrane 
potential is increased. If the presynaptic activity is broken, 
the finite state machine moves into the DEC state, during the 
membrane potential is decreased. The firing condition is 
detected in the SJD state, when the membrane potential 
reaches the threshold value. Consequently, as soon as the 
next iteration arrives, the neuron triggers a postsynaptic 
spike, during the SJ state. After that, the neuron enters into 
the refractoriness. Initially, the neuron drifts into the 
absolute refractory period (ARP state), next it go forth to the 
relative refractory period described by INC and RRP states 
respectively, during the membrane potential recovers 
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towards the resting potential. Once the resting potential is 
attained from below the resting value, the neuron returns to 
the resting state.  

 
Figure 7. The state flow diagram of the Moore finite state machine. 

 
TABLE 2. THE FINITE STATE MACHINE OUTPUTS. 

 after_SJ set_VR count neuron_state set_SJ 
RST 0 1 - - 0 
DEP 0 0 0 - 0 
DEC 0 0 1 1 0 
SJD 1 0 - - 1 
SJ 1 0 - - 1 

ARP 1 0 - - 0 
INC 0 0 1 0 0 
RRP 0 0 0 - 0 

 
The master counter controls the time interval required to 

compute the membrane potential according to (1). It controls 
the moment when “set_SJ” control signal is asserted as that  
the moment of postsynaptic spike firing happens before the 
next iteration arrival. For this end, the master counter asserts 
a control unit internal signal, denoted EOS, during the N+1 
TC computation time period, to end the current fired 
postsynaptic spike before the next iteration arrival.  

Also, once a new iteration is running, the master counter 
generate the SEL signal that sweep all the synaptic inputs, to 
record the presynaptic activity of the neuron and provide the 
synaptic weights to the soma circuit.   

IV. THE FPGA IMPLEMENTATION AND 
PERFORMANCE ESTIMATION 

Two variants of neuron models were implemented into a 
FPGA device, to verify the logic resource utilization for the 
hardware neuron implementation and to get the timing 
information to estimate the time period required to compute 
the current value vM(t) of the membrane potential.  

The first neuron has a relative small number of synaptic 
inputs – 8 inputs, and the second one has an appreciable 
number of synaptic inputs – 30 inputs.  

Both models were described in VHDL language [17] and 
implemented in of Cylone II  Altera FPGA devices [18], 
using the Quartus II design software [19]. During 
implementation phase, we have used timing constraints to 
reduce the timing delays of the system signals. The 
implementation results for both neurons are summarized in 
the Table III. The usage of the FPGA’s logic resources is 
reported in Logic Elements (LEs). Each LE consists of a 
combinational function generator, called LUT (Look Up 

Table) block and a flip flop (FF) register.  
 

TABLE 3. THE LOGIC RESOURCES REQUIREMENTS. 
Neuron model LEs (1LUT + 1FF) TCmin 

8 synaptic inputs 245  22[ns] 
30 synaptic inputs 647 24[ns] 

 
The small input neuron requires 245 Logic Elements 

(LEs) and the large input neuron requires 647 LEs of 18752 
total LEs of the FPGA device, which represents about 1,3% 
and about 3,45% of the total logic resource provided by the 
FPGA, respectively. The difference between the quantities 
of the logic resources is determined by the synaptic circuits, 
which require 171 LEs for the first neuron and 572 LEs for 
the second one respectively.  

With the recent advance of the VLSI technologies, more 
logic resource quantity are integrated by the manufactures in 
the FPGA devices. The growing complexity of FPGA 
devices allows the implementation of large SNNs. In this 
respect, a state of the art Stratix V FPGA device may 
accommodates until 1K neurons with 30 synaptic terminals.   

As for the timing, both neurons record similar timings for 
the minimum TC value. However, the different number of 
synaptic inputs makes the current membrane potential value 
to be computed earliest in 220ns and 768ns, for the first 
neuron and for the second one, respectively. Consequently, 
in the proposed neuron model, the iteration can be 
constrained below to 1s, even for a relative large number 
of synaptic inputs.  

However, the speed was not one of our primary design 
goals because of we consider that the computational power 
of the SNN resides in its biologically inspired information 
processing. The key contributions of this work are i) the 
optimized architecture for FPGA implementation towards a 
reduced consumption of the FPGA’s logic resources and ii) 
the integration of the STDP learning mechanism into the 
neuronal architecture that allows the learning procedure to 
be implemented into the chip.    

In the last years, various solutions were reported for 
FPGA based implementation of the digital SNNs. It is 
difficult to compare these designs due to differences in 
design objectives and the implementation technologies. 
Anyway, it is useful to summarize the main approaches 
reported for the FPGA based SNNs and put our solution into 
this framework. 

 One convenient software based approach was reported in 
[20], were an design environment has been developed in C# 
language allowing designing SNNs structures with a user 
friendly interface and converting them into synthesizable 
VHDL code by means of the VHDL Code Generator tool. 
However, the proposed the neuron model does not capture 
the rich dynamical repertoire of the biological neuron. It 
goes aside the learning mechanism and proposes a 
simplified model for the soma, without the update 
mechanism for the synapse, which is described by a simple 
FIFO based storing element. Moreover, the VHDL code 
generated by the used tool is far to be optimized for logical 
synthesis. According to the reported results, a single neuron 
with a single synapse uses about 202 slices of Spartan 3 
Xilinx FPGA device, where the slice represents the Xilinx 
counterpart for Altera LE. A single slice has 2 LUTs and 2 
FFs [21]. 
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A step forward for optimized solution for FPGA based 
SNNs is presented in [22]. The authors developed a 
synthesizable VHDL based library for neuronal primitives, 
used to build up biologically realistic neurons. This 
approach allows easy portability and usability, but not 
incorporates the learning mechanism. The authors designed 
a 86 neurons with 180 synapses SNN which consumed 
14192 LUTs and 13166 FFs. Using our neuron model, we 
estimate that a 80 neurons with 640 synapses SNN, require 
about 19600 LE.  

An interesting software/hardware SNN computing 
platform is reported in [23], were different stage of the 
proposed neuron model are processed in parallel, using 
pipeline techniques. The proposed model capture the soma 
dynamics into the hardware using a dedicated architecture, 
but the learning mechanism is left outside the chip, being 
implemented by means of the software routines. The model 
is based on a processing element that encloses 6 neurons and 
requires about 9162 slices of Virtex 2 Xilinx FPGA devices 
[24].  

Using this reference framework, we can visualize the 
performance of the proposed neuron model and draw some 
useful conclusions.  

V. SIMULATION RESULTS 

To validate the proposed neuron model, an 8 synaptic 
inputs neuron version has been developed and simulated in 
the Active HDL design environment, under various test 
conditions. During the simulation, it were applied random 
presynaptic spikes at the inputs and were monitored the 
change of the synaptic efficacy at each synaptic input, the 
membrane potential variation and postsynaptic spikes firing 
respectively.  It was adopted a 500ns value for the iteration 
time period and 40ns for the computation time period 
respectively and 41 successive iterations were recorded to 
monitor the behavior of the neuron. 

The simulation procedure is divided into two parts. The 
first one, consisted of the 0÷21 iterations, is intended to 
verify the sequence of the states experienced by the neuron 
during its stimulation by the presynaptic activity. The 
simulation results are presented in the Fig. 8.  

Initially, all synaptic inputs are initialized to 16, the 
middle value of the synaptic weights range and the neuron is 
in the resting state, its membrane potential being at the 
resting potential (VM=63). 

If presynaptic spikes are applied to the synaptic inputs, 
the neuron starts to depolarize and the membrane potential 
begins to rise to the threshold value (iterations 1÷5). As long 
as the synaptic activity is broken (iterations 6÷9), the neuron 
tends to return to the resting state, the membrane potential 
decreasing to the resting potential.  

During the 12th iteration, the membrane potential reaches 
the threshold value (VM=255) and a firing condition is 
accomplished. Consequently, a postsynaptic spike is 
triggered by the neuron one iteration later (SJ=1). After that, 
the neuron plunges into the refractoriness (iterations 14÷20).   

Initially, the neuron enters into the absolute refractory 
period, during the membrane potential is forced to the 
minimum value (VM=0) and the neuron is completely 
insensitive to any presynaptic activity. Thenceforward, the 
neuron gets in the relative refractory period, during the 

membrane potential returns back to the resting potential 
irrespective of the synaptic activity presence. As can be 
observed, during the iterations 15÷18, the membrane 
potential recovers to the resting potential even the 
presynaptic activity is broken. In the presence of the 
presynaptic activity, the membrane potential recovering is 
hastened. However, the neuron sensitivity is lower against 
the one displayed during depolarization, and the rising of the 
membrane potential is sluggish. This behavior can be 
observed monitoring the change of the membrane potential 
during the 20th iteration (refractoriness) against to the 3th 

iteration (depolarization). Even each iteration has recorded 
two presynaptic spikes, the change in the membrane 
potential during the 20th iteration is half of the change in the 
membrane potential during the 3th iteration. This behavior 
consists with the sensitivity coefficient of the neuron, 
defined in (7).  Finally, the refractory period ends and the 
neuron returns to the resting state (21th iteration) keep 
waiting new presynaptic activities.  

 
Figure 8. The simulation of the behavior of the neuron. 

 
After the postsynaptic spike is triggered, the synaptic 

weights are altered according to the SDTP mechanism. 
Thus, the synaptic efficacy of the inputs with early activity 
inside the learning window is depressed. This is the case of 
the synapses 0, 1 and 4 respectively, which have all negative 
values for the change intensity of the synaptic weight. The 
synaptic efficacy of the inputs with recent activity inside the 
learning window is facilitated. This is the case of the 
synapses 2, 5, 6 and 7 respectively, which have all negative 
values for the change intensity of the synaptic weight. The 
synaptic activity of the synapse 3 is outside the learning 
window. Consequently, the change intensity of the synaptic 
weight is zero and the synaptic efficacy is unaltered. 

The second part of the simulation scenario, consisted of 
the iterations 21÷40, is intended to point out the ability of 
the neuron to discriminate presynaptic activity, by means of 
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the synaptic efficacy modulation mechanism. The 
simulation results are presented in the Fig. 9.  

 
Figure 9. The discrimination of the neuron in the input space. 

 
As can be observed, the information applied to the inputs 

0, 1 and 3 respectively, tends to be filtered in time. The 
neuron has the ability to decide the synaptic activity of these 
inputs is not correlated with its activity. Consequently, the 
synaptic efficacy of all these inputs decreases in time toward 
zero. However, the inputs 2, 5, 6 and 7 respectively, are 
reinforced. In this case, the neuron decides the presynaptic 
activity to these inputs has effect on its activity. 
Consequently, the synaptic efficacy of all these inputs 
increases in time. The neuron performs a time integration of 
the information applied at these inputs, firing a postsynaptic 
spike based solely on this. This behavior can be exploited as 
coincidence detection inside a time window device.  

VI. CONCLUSION 

It was proposed a neuron model suited for digital SNNs 
implementation, optimized to reduce the logic resource 
requirements of hardware implementations. The model 
emulates the basic elements of the biological neuron 
dynamics, and linearly integrates the contribution of the 
presynaptic spikes to the current value of the membrane 
potential, which can fulfill the postsynaptic spike firing 
condition at most N+2 clock cycles, where N is the number 
of the synaptic inputs.  

The neuron was implemented into a FPGA devices and 
the obtained results recommend it for 1K SNNs. Due to its 
performances, the proposed neuron may be used as a 

computational unit for large reconfigurable SNNs, to 
explore various network topologies.  
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