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1Abstract—Border effects are very common in many finite 
signals analysis and processing approaches using convolution 
operation. Alleviating the border effects that can occur in the
processing of finite-length signals using wavelet transform is 
considered in this paper. Traditional methods for alleviating
the border effects are suitable to compression or coding 
applications. We propose an algorithm based on Fourier series
which is proved to be appropriate to the application of time-
frequency analysis of nonlinear signals. Fourier series 
extension method preserves the time-varying characteristics of 
the signals. A modified signal duration expression for
measuring the extent of border effects region is presented. The 
proposed algorithm is confirmed to be efficient to alleviate the 
border effects in comparison to the current methods through
the numerical examples.

Index Terms—Convolution, Fourier series, Frequency 
estimation, Spectrogram, Wavelet transforms.

I. INTRODUCTION

The wavelet transform has been found useful for 
analyzing signals which are nonlinear or nonstationary due 
to its ability to localize a signal simultaneously in both time 
and frequency in a significant different way from the 
tradition analysis tools, such as Fourier transform or short 
time Fourier transform [1]–[4]. The continuous wavelet 
transform is defined by a convolution of the input signal
with wavelet functions generated from the mother wavelet
by scaling and translation. For a finite signal, convolution 
operation cannot be done at the ends of the signal if there is 
no any preprocesses of the original signal. Since, at both 
borders of the signal, the analysis wavelet extends into a 
region with no available data. In most practical applications, 
the signals are over a finite interval. The wavelet transform
will require the computation of non-existent values outside 
the interval. This creates a border effect, where transform 
values close to the border of the signal are tainted by the 
unavailable data of the signal edge. Similar problems also 
arise in the context where a convolution is performed on 
finite-length signals [5]–[8]. 

There are many different approaches to handling borders. 
One alternative is to extend the signal in some suitable ways
and then apply the standard wavelet transform to the 
extension. Several methods have been proposed to extend a 
signal and thereby allow for the computation of the wavelet 
coefficients near the edges (start and end) of the signal. The 
main difficulty is that distortion would appear when the 

1 This work was supported in part by the National Natural Science 
Foundation of China (Grant No. 50935005).

extension method is not proper [9]–[16]. 
Traditional extension techniques include extension by 

zero padding, by periodicity and by symmetry. Each method
has its drawbacks [12], [15], [16]. It has been shown that 
computing the wavelet transform of an extension signal is
equivalent to using the corresponding boundary wavelets 
[14]–[16]. The boundary wavelets of zero padding and 
periodic extension have no vanishing moments at the 
borders. Therefore, the transform values behave as if signal 
was discontinuous at the borders. And boundary wavelets of 
symmetric extension have one vanishing moment and avoid
the discontinuous at the borders. So it introduces a jump in 
the first derivation. However, if the reflection is symmetric 
the wavelets must be symmetric to ensure no distortion in 
the transform values. It is well known that Haar is the only 
symmetric wavelet with a compact support that has been 
found so far. One goal of this paper is to seek an extension 
scheme that preserves the property of vanishing moments. 

Many existing extension methods are exploited to the 
application of data compression or coding [10], [17], [18]. 
In such applications, they have paid much attention on the 
procedures of analysis and synthesis using filter banks [9] –
[11], [19]. However, for other applications, such as diseases 
diagnosis [1] and machine condition monitoring [2] [3], it is 
desired to analyze the time-frequency content of arbitrary
nonlinear and nonstationary signals. And traditional 
methods are not appropriate for such applications. They only 
make simple assumption about the signal characteristics
outside the borders [15], [20], [21] so that they fail to 
produce satisfactory results. Thus, we will show the failure 
of tradition methods and present an extension mode that is 
suited for the application of time-frequency of nonlinear
signals. Our method preserves the time-varying 
characteristics of the signals while reduces the distortion due 
to improper extensions at the borders. 

In some literatures [6], the extent of these border effects 
regions has been mentioned, but it has not been given an 
explicit definition. Therefore, we will show that the extent 
of border effects region is not equivalent to the width of 
wavelets under traditional mean square definition.

The paper is organized as follows. In Section II, a 
brief review of the border effects in the wavelets transform 
and the shortcomings of traditional extension methods in the
application to nonlinear time-varying signal analysis are 
given. Section III describes the details of the Fourier 
extension method and illustrates the proposed approach is 
suitable to the application of time-frequency analysis. 
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Comparisons are made with symmetric extension method. 
Section IV describes the modifications to traditional mean 
square definition the duration of wavelet that allow 
evaluating the extent of border effects region. Section V 
concludes the paper.

II. BORDER EFFECTS IN THE WAVELET SPECTROGRAM

The goal of time-frequency analysis has primarily been to 
characterize and visualize the behavior of nonstationary 
signals. This is achieved by abstracting both the amplitude
and phase information of a signal's time series to present an 
image of the variation of the frequency content of the signal 
with respect to time. Wavelet spectrogram, which refers to a 
time-scale energy distribution, is such an image. It is defined 
as square modulus of the wavelet coefficients. Essentially, 
spectrogram is one of the joint time-frequency 
representations. The wavelet spectrogram has been widely 
used for biologic, medical or mechanical signal analysis,
since it is particularly helpful in tackling problems involving 
signal identification and detection of hidden transients that 
is hard to detect. Wavelet spectrogram suffers from border
effects which would seriously affect the consequent 
identification procedure. But most previously suggested
methods aim at preserving the perfect reconstruction. Thus 
this section will discuss the effect of traditional extension on 
the wavelet spectrogram in order to seek a suited extension 
method that can alleviate border effects. These traditional 
methods include zero padding, periodic extension and 
symmetric extension.

To show the border effects of various traditional methods, 
we consider a nonlinear frequency-modulated signal with 
instantaneous frequency given by

1 3
0

0

( ) [ ]
tf

f t f
f

 (1)

with sampling interval 0.01sT  and total signal length 
300N  in interval [0,3]t (s). The values of 

parameters 0 10f  , 1 40f   are chosen. This is a typical 

nonstationary signal. Fig. 1(a) plots the time-domain 
representation of the signal. The analyzing wavelet used to 
generate the spectrogram is a Morlet wavelet since it is very 
useful and common for the detection of nonlinear
characteristics [22], [23]. Fig. 1(b) shows the contour of 
spectrogram of the test signal which exhibits marked border 
effects that result from extensions by zeros, which amounts 
to ignoring the need for extensions. Significant artifacts 
marked by circled can be observed near the borders of the 
wavelet spectrogram. In order to observe the details about 
the resulting spectrogram, we extract the ridge [24] of this 
wavelet spectrogram as shown in Fig. 1(c).It can be see that 
the middle part of ridge almost perfect coincides with the 
theoretical result, which is denoted by solid line, while the 
border parts are deviated from that. It should be noted that 
deviation of the right end is much less than that of the left. 
This is due to the high frequency in the right side which 
corresponds to short wavelet length and short border effects 
region that will be discussed later.

Since the three methods only have big different at the 
border of the ridge, it is more clear to plot one border part. 
In Fig. 2, we show a comparative border effects caused by 
the three different extension schemes. It can be observed 

that the zero padding might have similar performance to 
periodic extension, whereas the symmetric extension
presents a slight better result than the other two. This 
graphic outcome is also confirmed by the error between 
theoretical result and the results provided by traditional 
methods shown in Fig. 2(b). All three errors decrease when 
it gets close to the interior of the signal where the number of 
adding points participating calculation also decreases.
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Figure 1. (a) Linear frequency modulation signal. (b) Wavelet spectrogram
contour. (c) Wavelet ridge. Solid line—theoretical result; dotted line—zero 
padding result.

One of the main problems observed when handling 
borders using periodic extension is that, unless the input 
sequence is truly periodic and the end-points of the sequence 
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match at the borders, artificial singularities can be
introduced to wavelet transform near the borders. This is 
due to the discontinuity of the input sequence at the borders.
Symmetric extension has the advantage, compared with 
periodic extension, that the extension sequence near the 
borders is continuous. Symmetric extension for handling 
borders is used extensively in many applications. It is the 
default extension scheme used in some software packages 
(e.g. MATLAB). However, the first and higher-order 
derivatives of the extension signal at the borders may not be
continuous.
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Figure 2. (a) The right border of wavelet ridge for the three traditional 
methods. (b) Estimation error. Solid line—theoretical result; cross--zero
padding; diamond-- periodic extension; circle-- symmetric extension.

III. BORDER EFFECTS ALLEVIATED VIA FOURIER 

EXTENSION

As discussed, every traditional method may have 
drawbacks. We should choose one according to the practical
application. In other words, the extension methods should be 
consistent with the object to be analyzed. The choice of the 
border extension method depends on the morphology of the 
end points of the data sequence. When the object of analysis 
and processing is a signal with time-varying frequency 
content, we should choose a method which best matches the 
signals. The extension part should be consistent with the 
characteristics of the original part in order to alleviate the 

impact of artificial extension on features of the original 
signal. We expect the extension will be smooth and 
represent the past or future of signal that is nonlinear and 
nonstationary. In additional, wavelet transform should be 
computationally efficient depends on the particular 
application. Real-time applications would need to choose 
border extension methods that provide fast transform 
implementations.

A. Principle of Fourier Extension Method

Let us now consider the same test signal that has been 
used in Section II. We can see from Fig. 1(a) that the signal 
contains many harmonic vibrations. The traditional
extension schemes cannot reflect such waving feature. It is 
nature to think of employing Fourier series technical to 
extension signal. Because Fourier series can be used to 
represent a signal in terms of the harmonics it is composed 
of. Although Fourier series is periodic, as we will see later, 
we only require a small segment of signal to achieve 
extension process which can be assumed to be periodic. In 
this paper, we call this novel scheme the Fourier series 
extension. The main principle of the Fourier series extension 
scheme is to fit a Fourier series model to the border points 
of the signal and then extrapolate that Fourier series at both 
ends.

Specifically, the procedure of Fourier series extension can 
be described as following:

1) The Fourier series model is given by

0
1

( ) cos( ) cos( )
m

i i i i
i

y t a a t b t 


   (2)

where 0a is a constant term in the signal, both ia , ib  and 

i are parameters that need to be estimated by the fit, m is 

the number of harmonics in the data.
Because the above Fourier series model is nonlinear, the 

first step of Fourier series extension is to perform data 
transformations to obtain a linear or simple model.

2) Fourier series fitting process involves finding the 
above model parameters to minimize the summed square of
residual defined as the difference between the real date
value s  and the fitted response value y . This approach is 

referred as least-squares method.
3) After completing the parameters estimate, the resulting 

Fourier series is extended to define the data beyond the 
borders so that the convolution can be calculated.

B. Design of Fourier Extension

When performing the Fourier series extension, several 
important problems must be considered.

1) The choice of fitting number
The number of the border samples M to be fitted should 

be chosen carefully. If M is too small, the fitting result could 
not give a good represent of the characteristics of the 
original signal. On the other hand, a large M will lead to 
extra computation. In some applications, e.g., subband 
coding, M is equivalent to the length of the filters. As we 
will discuss later, in the application of time-frequency 
analysis using wavelet with an infinite support, M is 
determined by the extent of the border effects region.

2) Periodic problem
Fourier series extension does not require the signal to 
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represent a periodic function because we only choose border 
parts of the signal to perform extension which could be 
considered as a segment of a periodic function. However, if 
the data presented are assumed to represent a full cycle of 
periodic function, then many terms of a Fourier series are 
needed to achieve fitting. Therefore it is necessary to think 
in terms of the data representing only a partial segment of 
one complete periodic cycle so that only a few terms can 
give a good fit.

C. Properties of Fourier Extension

Unlike the traditional extension methods, the advantage 
of Fourier series extension is that it avoids the artificial 
discontinuities at the borders neither in the extension signal 
nor in its derivatives. So it prevents the appearance of large 
wavelet transform values at the ends. Therefore, Fourier
series extension is a smooth extension. Moreover, using 
Fourier series to represent signal could well fit the 
fluctuation features of some very common signals in the 
areas of diagnosis and monitoring.

It should be noted that there is another smooth extension
named polynomial extension. But it needs a higher degree 
polynomial to fit the fluctuation features compared with the 
Fourier series extension which has much less computational 
complexity and provides fast transform implementations. 

D. Numerical Examples

Some results that illustrate the performance of our method 
are shown. Fig. 3 depicts the extension results (only the left 
border) using Fourier series extension applied to the same
signal in Section II. Fourier series extension displays both 
smooth and a good ‘explanation’ of signal itself. As we have 
done in the previous section, the error between theoretical
and estimated wavelet ridge are shown in Fig. 4(b) to 
illustrate the effect of Fourier series extension, compared 
with that obtained by symmetric extension which is superior
over the other two traditional methods. It can be clearly 
observed that less artificial values appear when using our
Fourier series extension techniques. In this example, we 
conclude that our Fourier series extension method provides
the best results.

IV. EXTENT OF BORDER EFFECTS REGION

It is important to examine the extent of the border effects 
region with appearance of the artificial components. The 
border effects region consists of a segment of transform 
results where the wavelet coefficients are calculated from 
the part of signal which contains the extension data. The 
range of extension would significantly depend on this issue.

A. Mean Square Definition of the Duration of Wavelet

As mentioned in the introduction, border effects root from 
wavelets analysis window extending beyond the data. Thus, 
the extent of the border effects region is relative to the width 
of wavelets analysis window, i.e. the duration of the 
wavelet.

For the solution of this problem, let take Morlet wavelet 
for example. Morlet wavelet is a complex sine wave 
localized with a Gaussian envelope given by

22 ( / )1( ) c bj t

b

t e  


  (3)

where b is a bandwidth parameter defined as the variance 
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Figure 3. Extension results of the left end of the signal. Solid line—original 
signal; dotted line—extension segment.
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Figure 4. (a) Border effects reduction comparison. (b) Error of wavelet 
ridge estimation. Circle--symmetric extension; triangle—Fourier series
extension.

of the Fourier transform of the Morlet wavelet and c
denotes the wavelet center frequency.

In fact, the strict duration of the Morlet wavelet is not a 
compact interval but the entire time axis. Hence, a duration
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where most of the signal energy is contained might be 
accepted as a practical measure of the signal duration. A 
widely used definition of signal duration t , proposed by 
Gabor [25] is

2 2

2

| ( )|

| ( )|

t s t dt

s t dt
t








 


(4)

which is a mean square definition. Based on this definition, 
the duration for a scaled Morlet wavelet at scale a can be 
written as

2
bt a


  (5)

To examine the relationship between the extent of the 
border effects region and wavelet duration, we consider a 
simple sine signal with frequency 8f Hz . The transform

result of this signal using the wavelet in Fig. 5(a) at scale 
1a   is plotted in Fig. 5(b). Due to the impact of border 

effects, the transform result which should be constant with 
time represents a curve at both ends. The length of the curve 
is the actual extent of border effects. It is much longer, not 
equivalent, than the duration of the wavelet defined in 
(3).This is due to the fact that the interval [ , ]t t   just 

contains roughly 53% of the entire signal energy in this case 
of Morlet wavelet as shown in the Fig. 5(a). Hence, the 
definition of duration should be modified in order to be 
applied to the measure of the extent of border effects.

B. Modified Definition of the duration of wavelet

In this paper, we define a new duration et where a 

dominating fraction of the signal energy occurs.
Denote the ratio of integral of the modulus of Morlet 

wavelet over the interval  ,e et t  to over the entire time 

axis as , then
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(6)

The numerator of the (5) is given by
2

2
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1
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The denominator can be written as
2

2

( , )
1

b

t
a

b

a t e dt a
a
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Substituting (6) and (7) into (5) yields

( )e

b

t
erf

a






(9)

where ( )erf x is the error function defined as

2

0

2
( )

x terf x e dt


  (10)

Then, the modified duration is defined as et that satisfies

the formula in (8).
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Figure 5. (a)Duration defined by (3) in the modulus of a Morlet wavelet and 
(b) related extent of border effects region in the wavelet transform of a sine 
signal with 8f Hz . The left side of dotted line represents the extent of 

border effects region.
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If we set the parameter 0.9  , which means the new

duration containing majority effective part of the wavelet, 
the duration of the same Morlet wavelet becomes 
[ 0.73,0.73] (s) which approaches to the extent of border 

effects region. Since such a definition yields an interval
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Figure 6. (a)Duration defined by (8) in the modulus of a Morlet wavelet and 
(b) related extent of border effects region in the wavelet transform of a sine 
signal with 8f Hz . The left side of dotted line represents the border

effects region.

containing dominating fraction of the wavelet energy. Fig. 6 
shows the new duration. In Fig. 6(a), we can observe that 
the new duration of wavelet is much more reasonable since 
the extent of border effects region obtained from it covers 
the whole distortion part in the wavelet transform.

Note that according to (8), the extent of border effects 
region increases linearly with scale parameter a . 
Furthermore, the degree of the border effects will become 
less as closing to the interior of the signal where the 
calculation of the wavelet coefficients involves less artificial 
data.

V. CONCLUSION

Border effects often arise when a convolution is 
performed on finite-length signals. We have discussed the 
problem of dealing with the border effects in the application 
of nonlinear time-varying analysis. A smooth extension 
scheme using Fourier series to avoid distortion appearing at 
the borders was proposed. Numerical examples results 
depicted that Fourier series extension produces lower error
in comparison to traditional methods including zero
padding, periodic extension and symmetric extension for the 
chosen FM signal. A strict definition of duration of wavelet 
was introduced to measure the extent of the border effects 
region which would be applied to the procedure of Fourier 
extension. An example based on Morlet wavelet was used to 
validate the theoretical derivations.
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