
Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

 91

Abstract—In this paper, we present a codebook generation
algorithm to produce a codebook with lower distortion. Our
method combines a fast codebook generation algorithm
(CGAUCD) with doubling technique and fast agglomerative
clustering algorithm (FACA) to generate a codebook with less
computing time and lower distortion. Instead of using FACA
directly to divide training vectors into M clusters, our proposed
method first generates qM clusters from these training vectors,
where q>1 is an integer, and then applies FACA to merge these
qM clusters into M cells. This is due to the computational
complexity of CGAUCD with doubling technique is less than
that of FACA. These M cluster centers are used as the initial
codebook for CGAUCD. Using three real images as the
training set, our method can reduce the MSE and computing
time of FPNN+CGAUCD, which is the available best method to
our knowledge, by 0.19 to 0.38 and 74.6% to 84.3%,
respectively.

Index Terms—Codebook generation, agglomerative
clustering, vector quantization

I. INTRODUCTION

Vector quantization (VQ) has been investigated in more
than a decade [1-11] for data compression due to its
relatively simple structure and computation. Many types of
VQ, such as classified VQ [1- 4], finite state VQ [5], and
side-match VQ [6], have been implemented for various
purposes. VQ has been applied to some other applications
including inverse halftoning [7-9]. The operations of VQ
consist of separating the signal to be compressed into
vectors (or blocks) and finding the closest codeword of an
input vector from the codebook. This most similar codeword
is called the reproduction vector of the input vector. In the
encoding process of VQ, an index, which points to the
closest codeword of an input vector, is found. In the
decoding process, this index is used to fetch a codeword
from the identical codebook.

A good codebook is important for VQ. The method most
commonly used is the Linde-Buzo-Gary (LBG) algorithm
[10, 11], which is also called the generalized Lloyd
algorithm (GLA). GLA performs iteratively the partition
step and new codebook generation step until convergence.
The main drawback of GLA is that it gets stuck to the local
optimal solution. To solve this problem, simulated annealing
was presented [10]. However, simulated annealing requires
a large amount of computing time and gains a little
improvement only [12]. Another approach of obtaining a
codebook is agglomerative clustering [13], which can
usually obtain a better codebook than GLA [14]. For a data
set of N training vectors, the computational complexities, in

terms of distance calculations, of GLA and agglomerative
clustering are O(NMt) and O(N3), respectively, where M is
the number of codewords in a codebook, and t is the number
of iterations. It is noted that M<< N and t<< N, in general.

The generated codebook using GLA depends on the
initial codebook. With a good initialization, a good
codebook can be obtained by GLA. Using the cluster centers
obtained by agglomerative clustering as the initialization for
GLA, the corresponding codebook can further be improved.
The computational complexities of GLA and agglomerative
approach can be reduced by many available methods [14-
16]. In [15], an FPNN (fast pairwise nearest neighbor)
algorithm is proposed to reduce the computational
complexity of agglomerative clustering. The computational
complexity, in terms of the number of distance calculations,
of FPNN is O(N2), where  is the average number of
clusters to be updated for each merging process. In this
paper, we will use the approaches presented in [16] to
reduce the computational complexity of our proposed
method. To use the developed fast agglomerative clustering
algorithm, the nearest neighbor for each data points should
be determined in the initialization process. To our
knowledge, the fast k-nearest-neighbor search algorithm
(FKNNSA) [17] is the fastest method and we will use it to
determine the nearest neighbor of a data point for
agglomerative clustering.

In this paper, we will use a method to divide a set of
training vectors into qM clusters, where q>1 is an integer
and M is the codebook size. Then the developed fast
agglomerative clustering algorithm is used to merge these
qM clusters into M ones. Finally, CGAUCD (codebook
generation algorithm using codeword displacement) [16] is
used to generate the desired codebook of size M. It is noted
that CGAUCD is a partitioning clustering algorithm.

This paper is organized as follows. Section II describes
the related works. Section III presents the algorithms
developed in this paper. Some experimental results are given
in Section IV and concluding remarks are presented in
Section V.

II. RELATED WORKS

In this section, we will describe CGAUCD (codebook
generation algorithm using codeword displacement) [16],
CGAUCD with doubling technique, and fast PNN algorithm
[15].

(A) CGAUCD with Doubling Technique

The most well known algorithm for generating a

Codebook Generation Using Partition and
Agglomerative Clustering

Chih-Tang CHANG1, Jim Z.C. LAI2, Mu-Der JENG1

1Dept. of Electrical Engineering, National Taiwan Ocean University, Keelung, Taiwan 202, R. O. C.
2Dept. of Computer Science, National Taiwan Ocean University, Keelung, Taiwan 202, R. O. C.

D93530005@mail.ntou.edu.tw

1582-7445 © 2011 AECE

Digital Object Identifier 10.4316/AECE.2011.03015

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:49:02 (UTC) by 54.166.170.195. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

92

codebook is the generalized Lloyd algorithm (GLA). Denote
the set of training vectors as S ={X}. Let d(X,Y) be the
distortion between any two vectors X and Y. In this paper,
d(X,Y) is defined as the squared Euclidean distance between
X and Y. To reduce the computational complexity of GLA,
we will use CGAUCD [16] to generate the desired codebook
for it is a fast version of GLA and has the least computing
time as far as we know.

The squared Euclidean distance between an input vector
X = (x1, x2,…, xd)

t and a codeword C = (c1, c2,…, cd)
t is

defined by the following equation:

d(X,C) = [xi- ci
2] (1)

Let the center of cluster Ra in the current and previous
partitions be Ca and Ca, respectively. Denote the squared
displacement between Ca and Ca as Da. If Da = 0, then the
vector Ca is defined as a static cluster center; otherwise it is
called an active cluster center. If Ca is active, then Ra is
called an active cluster; otherwise Ra is defined as a static
cluster. Denote the squared Euclidean distances between a
training vector X and the corresponding nearest as well as
second nearest codewords in the previous partition as r1 and
r2, respectively.

Let the subcodebook CBactive consist of active codewords.
Suppose that the training vector X is in a cluster Ra. Let r1 =
d(X, Ca). In the case that Ra is static and a codeword Cb is
not the nearest codeword of X in the previous partition, then
Cb can’t be the nearest codeword of X in the current
partition also if Cb is static. If X is in an active cluster Ra, we
will first calculate r1 = d(X,Ca). If r1< r2, the nearest
codeword of X in the current iteration is impossible from the
set of static codewords and we can find the closest
codeword of X from CBactive. In the case of r1 r2, we must
perform full search to find the closest codeword of X. Now,
we would like to present CGAUCD below for the reason of
completeness.

CGAUCD

(1) Give an initial codebook CB0 and preprocess all

training vectors for fast search. Perform the partition
process using codebook CB0, calculate r1 and r2 for

each training vector X and generate a new codebook
CB.

(2) Generate the subcodebook CBactive and search
structures for CB and CBactive.

(3) For each training vector X, perform the following
partition process:

3a. If X is in a static cluster, search the codewords
from CBactive to determine its nearest codeword
and update r1 and r2.

3b. If X is in an active cluster with center Ca,

calculate r1 between X and Ca. If r1 < r2, search

subcodebook CBactive to find the nearest
codeword of X and update r1 and r2; otherwise

determine its nearest codeword of X from the
codebook CB and update r1 and r2.

(4) Genarate the new codebook CB and subcodebook

CBactive as well as the search structures for CB and
CBactive.

(5) Go to step 3 until the codebook is converged.

CGAUCD with doubling technique, referred to as
CGAUCD+DT, generates M cluster centers in s steps,
where s = log2M. Let SC(j) = {C1, C2, …, C2

j} consist of 2j

cluster centers. To generate 2j+1 cluster centers using
CGAUCD+DT, we first let SC*(j+1) = {C*1, C*2, …,
C*2

j+1}, where C*i = Ci/2- if i is even; C*i = C(i-1)/2+ if i is
odd; and  is a small random vector. It is noted that each
component of  is generated randomly to be a small positive
real number. Using SC*(j+1) as the set of initial cluster
centers, we can use CGAUCD to generate SC(j+1) = {C1,
C2, …, C2j+1}. CGAUCD with doubling technique is
presented as follows:

CGAUCD with Doubling Technique

(1) Compute SC(0) = {C1} from the training set S, where

C1=(


N

i 1

Xi)/N, and N is the number of data points.

Set s = log2M and j = 1, where M is the number of
clusters.

(2) Let SC*(j) = {C*1, C*2, …, C*2j}, where C*i = C i/2 - 

if i is even; C*i = C(i-1)/2 +  if i is odd. Use SC*(j) as the

set of initial cluster centers for CGAUCD to generate

SC(j) = {C1, C2, …, C2j}.

(3) Set j = j+1. If j > s stop; otherwise go to step (2).

(B)Fast PNN Algorithm

The fast PNN (pairwise nearest neighbor) algorithm,
divides a set of N training vectors into M clusters through a
sequence of merge operations. The increase of distortion of
merging two clusters Ra and Rb into one cluster Rab can be
calculated by [18]

Da,b =
ba

ba

nn

nn


d(Ca,Cb)

 (2)

where na=Ra; nb=Rb; Ca is the center of Ra; and Cb is

the center of Rb. Da,b is called the cluster distance of Ra and

Rb. The cluster center Cab and cardinality nab (the number of

training vectors) of Rab are updated as follows:

Cab = (naCa+nbCb)/(na+nb)
(3)

nab = na + nb (4)

At each stage of merge, two clusters which have the least
cluster distance are determined and merged. For clarity,
clusters Ra, Rb, and Rab will be abbreviated to clusters a, b,

and ab, respectively, in this paper. Fränti et al. [15] used a
nearest neighbor table NNT, which records the index
pointing to a cluster’s nearest neighbor and the cluster




d

i 1

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:49:02 (UTC) by 54.166.170.195. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

 93

distance between the cluster and its nearest neighbor, to
reduce the computational complexity of PNN algorithm. It is
noted that NNT[l] is the nearest neighbor for cluster l. If two
clusters a and b are merged, then a set of clusters being
updated (Su) is determined, where Su = {l: NNT[l] = a or

NNT[l] = b} \ {a, b}. Now, we would like to present the
FPNN (fast PNN) algorithm.

FPNN Algorithm

(1) For a cluster l (l = 1, 2, ..., N), find the
corresponding nearest neighbor NNT[l] and
generate the nearest neighbor table NNT. Set Nt =

N.
(2) Find two clusters b and a, which have the minimum

cluster distance. Merge clusters a and b into cluster
ab.

(3) Find the set Su = {l: NNT[l] = a or NNT[l] = b} \

{a, b}.
(4) Update Cab and nab. Set na = nab, Ca = Cab and

delete cluster b. For each cluster in Su, find the

corresponding nearest neighbor and update table
NNT.

(5) Set Nt = Nt - 1. If Nt >M, go to step (2).

III. PROPOSED ALGORITHM

To generate a codebook with lower distortion, we can use
FPNN to generate a set of M cluster centers first. Then,
these M cluster centers are used as the initial codebook for
CGAUCD. To reduce the computational complexity of
FPNN, we will present a fast agglomerative clustering
algorithm in this section.

Let NNl be the nearest neighbor of cluster l. For each
cluster, we will also maintain a set of clusters, which have
cluster l as their nearest neighbor. Denote INNSl as the set
containing clusters, which have cluster l as their nearest
neighbor. That is, INNSl ={j: NNj = l}. Denote cluster a as
the nearest neighbor of cluster l. Here, we set Dmin(l) = Dl,a.
Let the cluster table CT record the cluster index and nearest
distance table NDT store the corresponding nearest distance.
It is noted that CT and NDT are arranged in the descending
order of Dmin(l). From CT, we can easily find the clusters
being merged. Denote these two clusters being merged as a
and b. From INNSa and INNSb, we can find the
corresponding set of clusters whose nearest neighbors need
to be updated. That is, the set of candidates being updated is
Su = INNSa  INNSb\{a, b}. At this stage, we can calculate
the nearest neighbor of cluster ab (NNab) and replace all the
information of cluster a by the one of ab, where ab is the
merged cluster.

In the beginning of determining the nearest neighbor for a
cluster l, we first select a cluster and calculate its cluster
distance to l. Let NNl be the current nearest neighbor of l
and denote r as the cluster distance between cluster l and
NNl. If another cluster j satisfies the follow expression:

Dmin(j)  r (5)

then cluster j can be rejected directly in the process of
finding the closest neighbor for l. This is due to the cluster

distance between l and j should be greater than or equal to
the nearest distance r. Since the cluster table CT is arranged
in the descending order of cluster distance, we will have
NDT[j]  NDT[m] for m<j. That is, if expression (5) is
satisfied by a cluster j and CT[i] = j, then CT[t] won’t be the
nearest neighbor of l, where t < i. Using expression (5) to
reject impossible candidates for a cluster’s nearest neighbor
is a novel approach.

We may expect that expression (5) can have a good
performance of rejecting unlikely candidates for a cluster’s
nearest neighbor, if a good initial cluster is found. If clusters
b and a have the minimum cluster distance we will merge
them into cluster ab. To determine the nearest neighbor for
cluster ab, we determine the initial candidate through
finding the nearest neighbor NNab from the set Su =
INNSaINNSb\{a, b}. That is, NNab is used as the initial
candidate for the nearest neighbor of cluster ab. In the case
of Su = , if CT[Nt-1]b we set the initial nearest neighbor
NNab = CT[Nt-1]; otherwise we let NNab = CT[Nt-2], where
 is the empty set and Nt is the number of clusters. To
determine the initial nearest neighbor NNl for a cluster lSu,
we can find it through finding the nearest neighbor of l from
the set INNSl\{a, b}. In the case of INNSl\{a,b} = , if
CT[Nt-1]b we set the initial nearest candidate NNl =
CT[Nt-1]; otherwise let NNl = CT[Nt-2].

In the initialization step of our proposed fast
agglomerative clustering algorithm, we need to determine
the nearest neighbor for each data point. As far as we know,
FKNNSA [17] is the fastest algorithm of determining a
query point’s nearest neighbor. Therefore, we will use it to
determine NNl for each cluster l in initialization step.
FKNNSA uses a set of inequalities to reject impossible
candidates for a query point during the process of finding its
nearest neighbors. These inequalities are developed using
the geometrical information of the query point and
candidates. Now we would like to present our fast
agglomerative clustering algorithm (FACA).

Fast Agglomerative Clustering Algorithm

(1) Initially, allocate N data points to N clusters with each
cluster having one data point.
(1a)For each cluster l (l = 1, 2, ..., N), use FKNNSA

to determine the corresponding nearest neighbor
NNl.

(1b)Generate the cluster table CT, nearest distance
table NDT, and INNSl.

(1c)Use the nearest distance table NDT to sort the
cluster table CT by the descending order of
cluster distance. Set Nt = N.

(2) Find two clusters a and b, which have the minimum
cluster distance from the cluster table CT, where
CT[Nt] = a and NNa = b.

(2a)Merge clusters a and b into cluster ab and
generate Su =INNSa  INNSb \ {a, b}. Use

equation (3) and (4) to update Cab and nab. Set na

= nab and Ca = Cab. Remove cluster b.

(2b)If Su  , determine NNab from the set Su. In the

case of Su = , if CT[Nt-1]b set NNab = CT[Nt-

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:49:02 (UTC) by 54.166.170.195. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

94

1]; otherwise set NNab = CT[Nt-2]. Let r = Dab,c,

where c = NNab. Let idu = id = Nt - 1.

(2c)If CT[id] = b, set idb = id and go to step (2d).

Calculate Dab,c, where c = CT[id]. If Dab,c < r, let

r = Dab,c and set NNab = CT[id]. If r < NDT[id],

set idu = id and go to step (2e).

(2d)Set id = id - 1 and go to step (2c).
(2e)For j = (idu + 2) to idb, set CT[j] = CT[j-1] and

NDT[j] = NDT[j-1]. Set NNa = NNab, CT[idu+1] =

a, and NDT[idu+1] = r. Let m = NNa and update

INNSm = INNSm  {a}.

(3) If Su is an empty set, go to step (5); otherwise, for

each cluster l  Su:

(3a)If INNSl\{a,b}  , set NNl as the nearest

neighbor of l determined from the set INNSl \

{a,b}. In the case of INNSl\{a,b} = , if CT[Nt-

1]  b set NNl = CT[Nt-1]; otherwise let NNl =

CT[Nt-2]. Let r = Dl,c, where c = NNl. Let id = idu

= Nt - 1.

(3b)If CT[id] = l, set idl = id and go to step (3c).

Calculate Dab,c, where c= CT[id]. If Dab,c < r, let r

= Dab,c and set NNl = CT[id]. If r < NDT[id], set

idu = id and go to step (3d).

(3c)Set id = id - 1 and go to step (3b).
(3d)For j = (idu+2) to idl, set CT[j] = CT[j-1] and

NDT[j] = NDT[j-1]. Set CT[idu + 1] = l and

NDT[idu + 1] = r. Let m = NNl and update INNSm

= INNSm  {l}.

(3e)If cluster b is in INNSl, update INNSl by

removing cluster b from INNSl.

(4) Update INNSa from Su. For each cluster c in Su, insert

cluster c into INNSa if NNc is cluster a.

(5) Set Nt = Nt - 1. If Nt > M, go to step (2).

The flow chart of FACA is given in figure 1. The
computational complexity, in terms of the number of
distance calculations, of FACA is O(N), where  is the
average number of clusters to be updated for each stage of
cluster merge and  is the average number of clusters to be
visited in the process of determining a cluster’s nearest
neighbor. From our experiments, we find that the value of 
is about 4 and  < N.

The computational complexity of CGAUCD is O(utN)
[16], where N is the number of data points, t<<N is the
number of iterations, and u<M is the average number of
clusters to be searched to determine a data point’s nearest
neighbor. CGAUCD with doubling technique (referred to as
CGAUCD+DT) performs CGAUCD log2M times to

generate a codebook of size M. Therefore the computational
complexity of CGAUCD+DT is O(utNlog2M). That is, the

computational complexity of CGAUCD+DT is less than that
of FACA. Instead of using FACA to merge N data points
into M clusters directly, we can use CGAUCD+DT to
generate a set of qM cluster centers first, where q > 1, and
then apply FACA to merge these qM clusters into M cells to

reduce computing time. Finally, these M cluster centers will
be used as the initial codebook for CGAUCD. This
approach is referred to as algorithm 1 here. Now, we would
like to present algorithm 1.

Algorithm 1

(1) Use CGAUCD+DT to generate the set SC={C1,

C2,.., CqM}, which consists of qM cluster centers.

(2) Apply FACA to determine the initial codebook
CB={C1, C2,.., CM} with M codewords.

(3) Use CGAUCD to generate the desired codebook.

IV. EXPERIMENTAL RESULTS

To evaluate the performances of the proposed algorithms,
three real data sets and several synthetic data sets have been
used as our training sets to generate codebooks. The first
real data set having 16,384 data points is obtained from a
real image: “Lena;” while the second real data set with
49,152 data points is generated from three real images:
“Lena,” “Baboon,” and “Peppers.” The third real data set
with size of 98,304 is obtained from six real images:
“Tiffany,” “Peppers,” “Baboon,” “Airplane,” “Bike” and
“Girl.” It is noted here that the characteristics of these
images are different. The images “Baboon” and “Bike”
possess many texture regions; whereas the pictures
“Peppers” and “Tiffany” have a lot of smooth areas. “Girl”
and “Airplane” have a small fraction of texture and edge
areas. The synthetic data sets with size 10,000 and
dimensions from 8 to 40 are obtained from the Gauss
Markov sequence [10] with =10, =0, and a=0.9, where 
is the standard deviation,  is the mean value of the
sequence and a is the correlation coefficient. All computing
is performed on a Pentium IV 3.2 GHz PC with 512 MB of
memory.

Five codebook generation algorithms: GLA, FPNN,
FPNN+CGAUCD, FACA+CGAUCD, and our method
(algorithm 1) are implemented, where FPNN+CGAUCD
and FACA+CGAUCD use the cluster centers generated by
FPNN and FACA, respectively, as the initial codebooks for
CGAUCD. For the GLA, the initial codewords are selected
randomly from the training set. These methods are
compared in terms of computing time and mean square error
(MSE). The mean square error (MSE) for a set of N training
vectors {Xi} is defined as follows:

MSE = (


N

i 1
||Xi-Q(Xi)||

2
/(Nd) (6)

where Q(Xi) is the closest codeword (reproduction vector)

of X and d is the vector dimension. MSE is usually used to
measure the quality of a picture [10]. The lower MSE
implies the better image quality. That is, a codebook with
lower MSE implies that it is a better codebook. Therefore
MSE is used here as a metric to measure the quality of a
codebook.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:49:02 (UTC) by 54.166.170.195. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

 95

Method M

128 256 512

GLA with 100 runs 144.015528 122.699041 105.406689

FPNN 147.710213 125.642842 105.700978

FPNN+CGAUCD 143.607546 121.411422 102.054237

FACA+CGAUCD 143.374579 121.545285 102.120814

Algorithm 1, q=2 143.303827 121.274645 102.202804

Algorithm 1, q=4 143.178823 121.167374 101.937034

Method M

128 256 512

GLA with 100 runs 107.05 207.81 421.03

FPNN 1157.625 1143.28 1183.18

FPNN+CGAUCD 1173.535 1162.69 1202.79

FACA+CGAUCD 787.66 780.93 793.08

Algorithm 1, q=2 143.13 191.34 250.61

Algorithm 1, q=4 188.41 237.11 305.84

Method M

128 256 512

GLA with 100 runs 15.83 32.19 55.03

FPNN 146.00 146.13 145.92

FPNN+CGAUCD 86.69 91.55 93.72

FACA+CGAUCD 61.78 61.92 62.66

Algorithm 1, q=2 18.60 25.89 39.86

Algorithm 1, q=4 26.02 38.07 57.25





Figure 1. The flow chart of FACA Algorithm 1

(6)
TABLE 1: THE COMPUTING TIME OF FPNN AND FACA USING THE FIRST

AND SECOND REAL DATA SETS, RESPECTIVELY, TO GENERATE CODEBOOKS

OF SIZE 256
Method The first data set The second data set

FPNN 83.02 1143.28

FACA 59.89 763.52

TABLE 2: THE LEAST MEAN SQUARE ERROR OF GLA WITH 100 RUNS AS

WELL AS MEAN SQUARE ERRORS OF PNN, PNN+CGAUCD,
FACA+CGAUCD AND ALGORITHM 1 USING TRAINING VECTORS FROM THE

FIRST REAL DATA SET

Method M

128 256 512

GLA with 100 runs 53.786457 43.434393 35.469834

FPNN 54.121899 41.138968 30.639848

FPNN+CGAUCD 52.703916 40.108582 30.005831

FACA+CGAUCD 52.705974 40.111941 29.974793

Algorithm 1, q=2 52.352139 40.315626 30.536785

Algorithm 1, q=4 52.385429 40.039429 30.066588

TABLE 3: THE COMPUTING TIME OF GLA WITH 100 RUNS, PNN,
PNN+CGAUCD, FACA+CGAUCD AND ALGORITHM 1 USING TRAINING

VECTORS FROM THE FIRST REAL DATA SET

TABLE 4: THE LEAST MEAN SQUARE ERROR OF GLA WITH 100 RUNS AS

WELL AS MEAN SQUARE ERRORS OF PNN, PNN+CGAUCD,
FACA+CGAUCD AND ALGORITHM 1 USING TRAINING VECTORS FROM THE

SECOND REAL DATA SET

TABLE 5: THE COMPUTING TIME OF GLA WITH 100 RUNS, PNN,
PNN+CGAUCD, FACA+CGAUCD AND ALGORITHM 1 USING TRAINING

VECTORS FROM THE SECOND REAL DATA SET

Table 1 gives the computing time of FPNN and FACA,
which use the first and second real data sets to generate
codebooks of size 256. From table 1, we can find that FACA
can reduce the computing time of FPNN significantly.
FACA can reduce the computing time of FPNN by a factor
of about 1.40. Table 2 gives the least mean square error
(MSE) of GLA with 100 randomly selected initial
codebooks and MSEs of FPNN, FPNN+CGAUCD,
FACA+CGAUCD and algorithm 1 with various values of q
for the first real data set. Table 3 presents the computing
time of GLA with 100 runs, FPNN, FPNN+CGAUCD,
FACA+CGAUCD and our method with various values of q
for the first real data set. Table 4 lists the least MSE of GLA
with 100 runs as well as MSEs of FPNN, FPNN+CGAUCD,
FACA+CGAUCD and algorithm 1 for the second data set;
while table 5 presents the computing time of GLA with 100

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:49:02 (UTC) by 54.166.170.195. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

96

runs, FPNN, FPNN+CGAUCD, FACA+CGAUCD and
algorithm 1 for the second data set.

TABLE 6: THE LEAST MEAN SQUARE ERROR OF GLA WITH 100 RUNS AS

WELL AS MEAN SQUARE ERRORS OF PNN, PNN+CGAUCD,
FACA+CGAUCD AND ALGORITHM 1 USING TRAINING VECTORS FROM THE

THIRD REAL DATA SET

Method M

128 256 512

GLA with 100 runs 153.946964 129.462589 109.456045

FPNN 158.015196 132.853107 112.043991

FPNN+CGAUCD 153.419479 128.515097 108.244302

FACA+CGAUCD 153.033692 128.805776 108.185836

Algorithm 1, q=2 153.737790 128.575970 108.116461

Algorithm 1, q=4 153.252590 128.612478 108.057259

TABLE 7: THE COMPUTING TIME OF GLA WITH 100 RUNS, PNN,
PNN+CGAUCD, FACA+CGAUCD AND ALGORITHM 1 USING TRAINING

VECTORS FROM THE THIRD REAL DATA SET

Method M

128 256 512

GLA with 100 runs 273.53 436.03 909.18

FPNN 6817.52 6779.39 6737.73

FPNN+CGAUCD 6882.86 6863.53 6840.41

FACA+CGAUCD 2018.39 1685.56 1636.61

Algorithm 1, q=2 321.47 452.91 583.51

Algorithm 1, q=4 433.97 564.84 777.80

From table 2 and table 4, we will find that FPNN gives
highest mean square error in average and our method
(algorithm 1 with q = 4) gives the least mean square errors
in almost all cases. Compared to GLA, algorithm 1 with q =
4 can reduce the mean square error by 0.69 to 5.40. Tables 2
and 4 show that both FPNN+CGAUCD and
FACA+CGAUCD can obtain about the same mean square
error for a codebook. It is noted that there is a little
difference between the means square errors of the
codebooks generated by FPNN+CGAUCD and
FACA+CGAUCD, respectively. In the early stage of
merging clusters, there are many cluster pairs with the same
cluster distance. Merging different pairs with the same
cluster distance in the early stage will result in a little
difference for the clustering results. That is, there will be a
little difference between the means square errors of the
codebooks generated by FPNN+CGAUCD and
FACA+CGAUCD due to FPNN and FACA may select
different cluster pairs with the same cluster distance. Our
method FACA+CGAUCD can reduce the computing time of
FPNN+CGAUCD by about 32.9% for the second real data
set. From table 3, we will also find that the computing time
of algorithm1 with q = 2 or 4 is less than that of
FACA+CGAUCD. This is due to the computational
complexity of CGAUCD+DT is less than that of FACA. It is
noted that to our knowledge, FPNN+CGAUCD is the
available algorithm of generating a codebook with the
lowest mean square error. Compared to FPNN+CGAUCD,
algorithm 1 with q = 2 can generate a codebook with the
much less computing time and little higher MSE. Compared

with FPNN+CGAUCD, algorithm 1 with q = 4 generates a
codebook with the much less computing time and lower
MSE. Compared to FPNN+CGACD, algorithm 1 with q = 4
can reduce the average mean square error and computing
time by 0.165 and 79.4%, respectively. From tables 3 and 4,
we can find that the MSE of algorithms 1 is lower in general
when a larger q is used. However, it should be noted that the
corresponding computing time is also increased when a
larger q is adopted. From table 2, we can conclude that
algorithm 1 with q = 4 is not global optimal. Therefore
algorithm 1 with q = 2 may occasionally obtain lower MSE
than algorithm 1 with q = 4 (for example, M = 128),
although their difference is not significant any more.

Figures 2 to 4 presents the compressed images of “Lena,’
“Baboon,” and “Peppers,” using codebooks of size 256
generated by GLA with 100 runs, FPNN, FPNN+CGAUCD,
and algorithm 1 with q=2, respectively. From figures 2(a),
2(b), 2(c), and 2(d), we can find that GLA and FPNN have
more blocking effects in the hat; while FPNN+CGAUCD
and algorithm 1 provide less blocking effects and better
image quality. For figures 3(a) to 4(d), these four algorithms
have almost the same visual quality.

To understand the effect of data size on our proposed
methods, a large data set is used here. Table 6 presents the
least MSE of GLA with 100 runs as well as MSEs of FPNN,
FPNN+CGAUCD, FACA+CGAUCD and algorithm 1 for
the third real data set; while table 7 shows the computing
time of GLA with 100 runs, FPNN, FPNN+CGAUCD,
FACA+CGAUCD and algorithm 1 for the same data set.
From table 7, we can find that our method algorithm 1 with
q = 2 has the least computing time in average. Compared to
FPNN+CGAUCD, algorithm 1 with q = 2 can reduce the
computing time significantly and obtain a little higher MSE.
From table 2 to table 7, we can conclude that the
performances of our proposed methods are more remarkable
when a larger data set is used.

 (a) (b)

 (c) (d)

Figure 2. The compressed images of “Lena” using codebooks generated by
(a) GLA with 100 runs; (b) FPNN, (c) FPNN+CGAUCD, and (d) algorithm
1 with q=2.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:49:02 (UTC) by 54.166.170.195. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

 97

 (a) (b)

 (c) (d)

Figure 3. The compressed images of “Baboon” using codebooks generated
by (a) GLA with 100 runs; (b) FPNN, (c) FPNN+CGAUCD, and (d)
algorithm 1 with q=2.

 (a) (b)

 (c) (d)
Figure 4. The compressed images of “Peppers” using codebooks generated
by (a) GLA with 100 runs; (b) FPNN, (c) FPNN+CGAUCD, and (d)
algorithm 1 with q=2.

Figure 5. The computing time (in seconds) of generating codebooks of size
256 using synthetic data sets with sizes = 10,000 and dimensions from 8 to
40.

Figure 6. The mean square errors for synthetic data sets of generating
codebooks of size 256 using synthetic data sets with sizes = 10,000 and
dimensions from 8 to 40.

To study the effect of data dimension on the performances
of our proposed methods, figures 5 and 6 present the mean
square errors and computing time, respectively, of
FPNN+CGACD and algorithm 1 with q = 4 to generate
codebooks of size 256 using synthetic data sets with size =
10,000 and dimension ranging from 8 to 40. From figures 4
and 5, we can find that compared to FPNN+CGAUCD, our
method algorithm 1 with q = 4 can reduce the average
computing time of 60.8% with about the same MSE. The
performance of algorithm 1 is better when a data set with
higher dimension is used. It is recommended that algorithm
1 with q = 4 can be used to generate the desired codebook
for it gives the least mean square error.

V. CONCLUSION

In this paper, we develop a method to generate a
codebook from a set of training vectors. A fast
agglomerative clustering algorithm FACA is also developed
to reduce the computing time of FPNN. FACA uses an
inequality to speed up the process of finding a cluster’s
nearest neighbor. Compared to the available best method as
far as we know, our method algorithm 1 with q = 4 can
reduce the average mean square error by 0.165 with the
reduction of computing time by 82.3% to 89.3% for the
second real data set. Compared to GLA, our method
algorithm 1 with q = 4 can decrease the mean square error of
a codebook by 0.69 to 5.40. Compared to
FPNN+CGAUCD, which is the available best method to our
knowledge, our proposed method FACA+CGAUCD can
decrease the computing time by about 32.9% with the same
mean square error for the second real data set.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:49:02 (UTC) by 54.166.170.195. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

98

REFERENCES
[1] Y. C. Liaw, J. Z. C. Lai, and Winston Lo,” Image restoration of

compressed image using classified vector quantization,” Pattern
Recognition, vol. 35, no. 2, pp. 181-192, February 2002.

[2] M. Bi , S. H. Ong, and Y. H. Ang , “Wavelet-based image
compression using classified interpolative vector quantization,”
Optical engineering, vol. 47, no. 2, pp. 1528-1535, June 2002.

[3] J. Z. C. Lai, Y. C. Liaw, and Winston Lo, “Artifact reduction of JPEG
coded images using mean-removed classified vector quantization,”
Signal Processing, vol. 82, no. 10, pp. 1375-1388, October 2002.

[4] S. H Hong, R. H Park, S. Yang, and J. Y. Kim, “Image interpolation
using interpolative classified vector quantization,” Image and Vision
Computing, vol. 26, no. 2, pp. 228-239, February 2008, Available:
http://dx.doi.org/10.1016/j.imavis.2007.05.002.

[5] Y. L. Huang and R. F. Chang, “A new side-match finite-state vector
quantization for image coding,” Journal of Visual Communication
and Image Representation, vol. 13, no. 3, pp. 335-347, September
2002.

[6] S. B. Yang and L. Y. Tseng, “Smooth side-match classified vector
quantizer with variable block size,” IEEE Transactions on Image
Processing, vol. 10, no. 5, pp. 677-685, May 2001, Available:
http://dx.doi.org/10.1109/83.918561.

[7] J. Z. C. Lai and Chen C. C. Chen, “Algorithms of halftoning color
images with edge enhancement,” Journal of Visual Communication
and Image Representation, vol. 14, no. 4, December 2003, pp.389-
404..

[8] J. Z. C. Lai and J. Y. Yen, “Inverse error-diffusion using classified
vector quantization,” IEEE Trans. on Image Processing, vol. 7, no. 12,
pp. 1753-1758, December 1998, Available:
http://dx.doi.org/10.1109/83.730390.

[9] P. C. Chang, C. S. Yu, and T. H. Lee, “Hybrid LMS-MMSE inverse
halftoning technique,” IEEE Trans. on Image Processing, vol. 10, no.

1, pp. 95-103, January 2001, Available:
http://dx.doi.org/10.1109/83.892446.

[10] Gersho and R. M. Gray, Vector Quantization and Signal
Compression. Kluwer Academic Publishers, Boston MA., 1991.

[11] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector
quantizer design,” IEEE Trans. on Communications, vol. 28, no. 1,
pp. 84-95, January 1980, Available:
http://dx.doi.org/10.1109/TCOM.1980.1094577.

[12] J. Z. C. Lai and C. C. Lue, “Fast search algorithms for VQ codebook
generation,” Journal of Visual Communication and Image
Representation, vol. 7, no. 2, pp. 163-168, June 1996.

[13] J. Shanbehzadeh and P. O. Ogunbona, “On the computational
complexity of the LBG and PNN algorithm,” IEEE Trans. on Image
Processing, vol. 6, no. 4, pp. 614-616, April 1997, Available:
http://dx.doi.org/10.1109/83.563327.

[14] P. Fränti, O. Virmajoki, and Ville Hautamäki, “Fast agglomerative
clustering using a k-nearest neighbor graph,” IEEE Trans. on PAMI,
vol. 26, no. 11, pp1875-1881, November 2006, Available:
http://dx.doi.org/10.1109/TPAMI.2006.227.

[15] T. Kaukoranta, P. Fränti, and O. Nevalainen, “A fast Exact GLA
based code vector activity detection,” IEEE Trans. on Image
Processing, vol. 9, no. 8, pp. 1337-1342, August 2000, Available:
http://dx.doi.org/10.1109/83.855429.

[16] Jim Z. C. Lai, Y. C. Liaw, and Julie Liu, “A fast VQ codebook
generation using codeword displacement,” Pattern Recognition, vol.
41, no. 1, pp. 315-319, January 2008.

[17] Jim Z. C. Lai, Y. C. Liaw, and Julie Liu, “Fast k-nearest-neighbor
search based on projection and triangular inequality,” Pattern
Recognition, vol. 40, no. 2, pp. 351-359, February 2007.

[18] W. H. Equitz, “A new vector quantization clustering algorithm,”
IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 37, no.
10, pp.1568-1575, October 1989, Available:
http://dx.doi.org/10.1109/29.35395.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:49:02 (UTC) by 54.166.170.195. Redistribution subject to AECE license or copyright.]

