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Abstract—In this paper, we present a codebook generation 
algorithm to produce a codebook with lower distortion. Our 
method combines a fast codebook generation algorithm 
(CGAUCD) with doubling technique and fast agglomerative 
clustering algorithm (FACA) to generate a codebook with less 
computing time and lower distortion. Instead of using FACA 
directly to divide training vectors into M clusters, our proposed 
method first generates qM clusters from these training vectors, 
where q>1 is an integer, and then applies FACA to merge these 
qM clusters into M cells. This is due to the computational 
complexity of CGAUCD with doubling technique is less than 
that of FACA. These M cluster centers are used as the initial 
codebook for CGAUCD. Using three real images as the 
training set, our method can reduce the MSE and computing 
time of FPNN+CGAUCD, which is the available best method to 
our knowledge, by 0.19 to 0.38 and 74.6% to 84.3%, 
respectively.

Index Terms—Codebook generation, agglomerative 
clustering, vector quantization

I. INTRODUCTION

Vector quantization (VQ) has been investigated in more 
than a decade [1-11] for data compression due to its 
relatively simple structure and computation. Many types of 
VQ, such as classified VQ [1- 4], finite state VQ [5], and 
side-match VQ [6], have been implemented for various 
purposes. VQ has been applied to some other applications 
including inverse halftoning [7-9]. The operations of VQ 
consist of separating the signal to be compressed into 
vectors (or blocks) and finding the closest codeword of an 
input vector from the codebook. This most similar codeword 
is called the reproduction vector of the input vector. In the 
encoding process of VQ, an index, which points to the 
closest codeword of an input vector, is found. In the 
decoding process, this index is used to fetch a codeword 
from the identical codebook.

A good codebook is important for VQ. The method most 
commonly used is the Linde-Buzo-Gary (LBG) algorithm 
[10, 11], which is also called the generalized Lloyd 
algorithm (GLA). GLA performs iteratively the partition 
step and new codebook generation step until convergence. 
The main drawback of GLA is that it gets stuck to the local 
optimal solution. To solve this problem, simulated annealing 
was presented [10]. However, simulated annealing requires 
a large amount of computing time and gains a little 
improvement only [12]. Another approach of obtaining a 
codebook is agglomerative clustering [13], which can 
usually obtain a better codebook than GLA [14]. For a data 
set of N training vectors, the computational complexities, in 

terms of distance calculations, of GLA and agglomerative 
clustering are O(NMt) and O(N3), respectively, where M is 
the number of codewords in a codebook, and t is the number 
of iterations. It is noted that M<< N and t<< N, in general.  

The generated codebook using GLA depends on the 
initial codebook. With a good initialization, a good 
codebook can be obtained by GLA. Using the cluster centers 
obtained by agglomerative clustering as the initialization for 
GLA, the corresponding codebook can further be improved. 
The computational complexities of GLA and agglomerative 
approach can be reduced by many available methods [14-
16]. In [15], an FPNN (fast pairwise nearest neighbor) 
algorithm is proposed to reduce the computational 
complexity of agglomerative clustering. The computational 
complexity, in terms of the number of distance calculations, 
of FPNN is O(N2), where  is the average number of 
clusters to be updated for each merging process. In this 
paper, we will use the approaches presented in [16] to 
reduce the computational complexity of our proposed 
method. To use the developed fast agglomerative clustering 
algorithm, the nearest neighbor for each data points should 
be determined in the initialization process. To our 
knowledge, the fast k-nearest-neighbor search algorithm 
(FKNNSA) [17] is the fastest method and we will use it to 
determine the nearest neighbor of a data point for 
agglomerative clustering.

In this paper, we will use a method to divide a set of 
training vectors into qM clusters, where q>1 is an integer 
and M is the codebook size. Then the developed fast 
agglomerative clustering algorithm is used to merge these 
qM clusters into M ones. Finally, CGAUCD (codebook 
generation algorithm using codeword displacement) [16] is 
used to generate the desired codebook of size M. It is noted 
that CGAUCD is a partitioning clustering algorithm.

This paper is organized as follows. Section II describes 
the related works. Section III presents the algorithms 
developed in this paper. Some experimental results are given 
in Section IV and concluding remarks are presented in 
Section V.

II. RELATED WORKS

In this section, we will describe CGAUCD (codebook 
generation algorithm using codeword displacement) [16], 
CGAUCD with doubling technique, and fast PNN algorithm 
[15].

(A) CGAUCD with Doubling Technique

The most well known algorithm for generating a 
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codebook is the generalized Lloyd algorithm (GLA). Denote 
the set of training vectors as S ={X}. Let d(X,Y) be the 
distortion between any two vectors X and Y. In this paper, 
d(X,Y) is defined as the squared Euclidean distance between 
X and Y. To reduce the computational complexity of GLA, 
we will use CGAUCD [16] to generate the desired codebook 
for it is a fast version of GLA and has the least computing 
time as far as we know. 

The squared Euclidean distance between an input vector 
X = (x1, x2,…, xd )

t and a codeword C = (c1, c2,…, cd )
t is 

defined by the following equation:

d(X,C) = [        xi- ci
2]                                            (1)

Let the center of cluster Ra in the current and previous 
partitions be Ca and Ca, respectively. Denote the squared 
displacement between Ca and Ca as Da. If Da = 0, then the 
vector Ca is defined as a static cluster center; otherwise it is 
called an active cluster center. If Ca is active, then Ra is 
called an active cluster; otherwise Ra is defined as a static 
cluster. Denote the squared Euclidean distances between a 
training vector X and the corresponding nearest as well as 
second nearest codewords in the previous partition as r1 and 
r2, respectively.

Let the subcodebook CBactive consist of active codewords. 
Suppose that the training vector X is in a cluster Ra. Let r1 = 
d(X, Ca). In the case that Ra is static and a codeword Cb is 
not the nearest codeword of X in the previous partition, then 
Cb can’t be the nearest codeword of X in the current 
partition also if Cb is static. If X is in an active cluster Ra, we 
will first calculate r1 = d(X,Ca). If r1< r2, the nearest 
codeword of X in the current iteration is impossible from the 
set of static codewords and we can find the closest 
codeword of X from CBactive. In the case of r1 r2, we must 
perform full search to find the closest codeword of X. Now, 
we would like to present CGAUCD below for the reason of 
completeness.

CGAUCD

(1) Give an initial codebook CB0 and preprocess all 

training vectors for fast search. Perform the partition 
process using codebook CB0, calculate r1 and r2 for

each training vector X and generate a new codebook 
CB.

(2) Generate the subcodebook CBactive and search 
structures for CB and CBactive.

(3) For each training vector X, perform the following 
partition process:

3a. If X is in a static cluster, search the codewords 
from CBactive to determine its nearest codeword 
and update r1 and r2.

3b. If X is in an active cluster with center Ca, 

calculate r1 between X and Ca. If r1 < r2, search

subcodebook CBactive to find the nearest 
codeword of X and update r1 and r2; otherwise 

determine its nearest codeword of X from the 
codebook CB and update r1 and r2.

(4) Genarate the new codebook CB and subcodebook 

CBactive as well as the search structures for CB and 
CBactive.

(5) Go to step 3 until the codebook is converged.

CGAUCD with doubling technique, referred to as 
CGAUCD+DT, generates M cluster centers in s steps, 
where s = log2M. Let SC(j) = {C1, C2, …, C2

j} consist of 2j

cluster centers. To generate 2j+1 cluster centers using 
CGAUCD+DT, we first let SC*(j+1) = {C*1, C*2, …, 
C*2

j+1}, where C*i = Ci/2- if i is even; C*i = C(i-1)/2+ if i is 
odd; and  is a small random vector. It is noted that each 
component of  is generated randomly to be a small positive 
real number. Using SC*(j+1) as the set of initial cluster 
centers, we can use CGAUCD to generate SC(j+1) = {C1,
C2, …, C2j+1}. CGAUCD with doubling technique is 
presented as follows:

CGAUCD with Doubling Technique

(1) Compute SC(0) = {C1} from the training set S, where 

C1=(


N

i 1

Xi)/N, and N is the number of data points. 

Set s = log2M and j = 1, where M is the number of 
clusters.

(2) Let SC*(j) = {C*1, C*2, …, C*2j}, where C*i = C i/2 - 

if i is even; C*i = C(i-1)/2 +  if i is odd. Use SC*(j) as the 

set of initial cluster centers for CGAUCD to generate 

SC(j) = {C1, C2, …, C2j}.

(3) Set j = j+1. If j > s stop; otherwise go to step (2). 

(B)Fast PNN Algorithm

The fast PNN (pairwise nearest neighbor) algorithm, 
divides a set of N training vectors into M clusters through a 
sequence of merge operations. The increase of distortion of 
merging two clusters Ra and Rb into one cluster Rab can be 
calculated by [18]

Da,b = 
ba

ba

nn

nn


d(Ca,Cb)    

                                    (2)

where na=Ra; nb=Rb; Ca is the center of Ra; and Cb is 

the center of Rb. Da,b is called the cluster distance of Ra and 

Rb. The cluster center Cab and cardinality nab (the number of 

training vectors) of Rab are updated as follows:

Cab = (naCa+nbCb)/( na+nb)                                         
(3)

nab = na + nb                                                                (4)

At each stage of merge, two clusters which have the least 
cluster distance are determined and merged. For clarity, 
clusters Ra, Rb, and Rab will be abbreviated to clusters a, b, 

and ab, respectively, in this paper. Fränti et al. [15] used a 
nearest neighbor table NNT, which records the index 
pointing to a cluster’s nearest neighbor and the cluster 




d

i 1
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distance between the cluster and its nearest neighbor, to 
reduce the computational complexity of PNN algorithm. It is 
noted that NNT[l] is the nearest neighbor for cluster l. If two 
clusters a and b are merged, then a set of clusters being 
updated (Su) is determined, where Su = {l: NNT[l] = a or 

NNT[l] = b} \ {a, b}. Now, we would like to present the 
FPNN (fast PNN) algorithm.

FPNN Algorithm

(1) For a cluster l (l = 1, 2, ..., N), find the 
corresponding nearest neighbor NNT[l] and 
generate the nearest neighbor table NNT. Set Nt = 

N.
(2) Find two clusters b and a, which have the minimum 

cluster distance. Merge clusters a and b into cluster 
ab.

(3) Find the set Su = {l: NNT[l] = a or NNT[l] = b} \

{a, b}.
(4) Update Cab and nab. Set na = nab, Ca = Cab and 

delete cluster b. For each cluster in Su, find the 

corresponding nearest neighbor and update table 
NNT.

(5)  Set Nt = Nt - 1. If Nt >M, go to step (2).

III. PROPOSED ALGORITHM

To generate a codebook with lower distortion, we can use 
FPNN to generate a set of M cluster centers first. Then, 
these M cluster centers are used as the initial codebook for 
CGAUCD. To reduce the computational complexity of 
FPNN, we will present a fast agglomerative clustering 
algorithm in this section.

Let NNl be the nearest neighbor of cluster l. For each 
cluster, we will also maintain a set of clusters, which have 
cluster l as their nearest neighbor. Denote INNSl as the set 
containing clusters, which have cluster l as their nearest 
neighbor. That is, INNSl ={j: NNj = l}. Denote cluster a as 
the nearest neighbor of cluster l. Here, we set Dmin(l) = Dl,a. 
Let the cluster table CT record the cluster index and nearest 
distance table NDT store the corresponding nearest distance.
It is noted that CT and NDT are arranged in the descending 
order of Dmin(l). From CT, we can easily find the clusters 
being merged. Denote these two clusters being merged as a
and b. From INNSa and INNSb, we can find the 
corresponding set of clusters whose nearest neighbors need 
to be updated. That is, the set of candidates being updated is 
Su = INNSa  INNSb\{a, b}. At this stage, we can calculate 
the nearest neighbor of cluster ab (NNab) and replace all the 
information of cluster a by the one of ab, where ab is the 
merged cluster. 

In the beginning of determining the nearest neighbor for a 
cluster l, we first select a cluster and calculate its cluster 
distance to l. Let NNl be the current nearest neighbor of l
and denote r as the cluster distance between cluster l and 
NNl. If another cluster j satisfies the follow expression:

Dmin(j)  r                                                     (5)

then cluster j can be rejected directly in the process of 
finding the closest neighbor for l. This is due to the cluster 

distance between l and j should be greater than or equal to 
the nearest distance r. Since the cluster table CT is arranged 
in the descending order of cluster distance, we will have 
NDT[j]  NDT[m] for m<j. That is, if expression (5) is 
satisfied by a cluster j and CT[i] = j, then CT[t] won’t be the 
nearest neighbor of l, where t < i. Using expression (5) to 
reject impossible candidates for a cluster’s nearest neighbor 
is a novel approach.

We may expect that expression (5) can have a good 
performance of rejecting unlikely candidates for a cluster’s 
nearest neighbor, if a good initial cluster is found. If clusters 
b and a have the minimum cluster distance we will merge 
them into cluster ab. To determine the nearest neighbor for 
cluster ab, we determine the initial candidate through 
finding the nearest neighbor NNab from the set Su = 
INNSaINNSb\{a, b}. That is, NNab is used as the initial 
candidate for the nearest neighbor of cluster ab. In the case 
of Su = , if CT[Nt-1]b we set the initial nearest neighbor 
NNab = CT[Nt-1]; otherwise we let NNab = CT[Nt-2], where 
 is the empty set and Nt is the number of clusters. To 
determine the initial nearest neighbor NNl for a cluster lSu, 
we can find it through finding the nearest neighbor of l from 
the set INNSl\{a, b}. In the case of INNSl\{a,b} = , if 
CT[Nt-1]b we set the initial nearest candidate NNl = 
CT[Nt-1]; otherwise let NNl = CT[Nt-2]. 

In the initialization step of our proposed fast 
agglomerative clustering algorithm, we need to determine
the nearest neighbor for each data point. As far as we know, 
FKNNSA [17] is the fastest algorithm of determining a 
query point’s nearest neighbor. Therefore, we will use it to 
determine NNl for each cluster l in initialization step. 
FKNNSA uses a set of inequalities to reject impossible 
candidates for a query point during the process of finding its 
nearest neighbors. These inequalities are developed using 
the geometrical information of the query point and 
candidates. Now we would like to present our fast 
agglomerative clustering algorithm (FACA).

Fast Agglomerative Clustering Algorithm 

(1) Initially, allocate N data points to N clusters with each 
cluster having one data point. 
(1a)For each cluster l (l = 1, 2, ..., N), use FKNNSA 

to determine the corresponding nearest neighbor 
NNl.

(1b)Generate the cluster table CT, nearest distance 
table NDT, and INNSl.

(1c)Use the nearest distance table NDT to sort the 
cluster table CT by the descending order of 
cluster distance. Set Nt = N.

(2) Find two clusters a and b, which have the minimum 
cluster distance from the cluster table CT, where 
CT[Nt] = a and NNa = b.

(2a)Merge clusters a and b into cluster ab and 
generate Su =INNSa  INNSb \ {a, b}. Use 

equation (3) and (4) to update Cab and nab. Set na

= nab and Ca = Cab. Remove cluster b.

(2b)If Su  , determine NNab from the set Su. In the 

case of Su = , if CT[Nt-1]b set NNab = CT[Nt-
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1]; otherwise set NNab = CT[Nt-2]. Let r = Dab,c, 

where c = NNab. Let idu = id = Nt - 1.

(2c)If CT[id] = b, set idb = id and go to step (2d). 

Calculate Dab,c, where c = CT[id]. If Dab,c < r, let 

r = Dab,c and set NNab = CT[id]. If r < NDT[id], 

set idu = id and go to step (2e).

(2d)Set id = id - 1 and go to step (2c).
(2e)For j = (idu + 2) to idb, set CT[j] = CT[j-1] and 

NDT[j] = NDT[j-1]. Set NNa = NNab, CT[idu+1] = 

a, and NDT[idu+1] = r. Let m = NNa and update 

INNSm = INNSm  {a}.

(3) If Su is an empty set, go to step (5); otherwise, for 

each cluster l  Su:

(3a)If INNSl\{a,b}  , set NNl as the nearest 

neighbor of l determined from the set INNSl \

{a,b}. In the case of INNSl\{a,b} = ,  if CT[Nt-

1]  b set NNl = CT[Nt-1]; otherwise let NNl = 

CT[Nt-2]. Let r = Dl,c, where c = NNl. Let id = idu

= Nt - 1.

(3b)If CT[id] = l, set idl = id and go to step (3c). 

Calculate Dab,c, where c= CT[id]. If Dab,c < r, let r 

= Dab,c and set NNl = CT[id]. If r < NDT[id], set 

idu = id and go to step (3d).

(3c)Set id = id - 1 and go to step (3b).
(3d)For j = (idu+2) to idl, set CT[j] = CT[j-1] and

NDT[j] = NDT[j-1]. Set CT[idu + 1] = l and 

NDT[idu + 1] = r. Let m = NNl and update INNSm

= INNSm  {l}.

(3e)If cluster b is in INNSl, update INNSl by 

removing cluster b from INNSl.

(4) Update INNSa from Su. For each cluster c in Su, insert 

cluster c into INNSa if NNc is cluster a.

(5) Set Nt = Nt - 1. If Nt > M, go to step (2).

The flow chart of FACA is given in figure 1. The 
computational complexity, in terms of the number of 
distance calculations, of FACA is O(N), where  is the 
average number of clusters to be updated for each stage of 
cluster merge and  is the average number of clusters to be 
visited in the process of determining a cluster’s nearest 
neighbor. From our experiments, we find that the value of 
is about 4 and  < N.

The computational complexity of CGAUCD is O(utN) 
[16], where N is the number of data points, t<<N is the 
number of iterations, and u<M is the average number of 
clusters to be searched to determine a data point’s nearest 
neighbor. CGAUCD with doubling technique (referred to as 
CGAUCD+DT) performs CGAUCD log2M times to 

generate a codebook of size M. Therefore the computational 
complexity of CGAUCD+DT is O(utNlog2M). That is, the 

computational complexity of CGAUCD+DT is less than that 
of FACA. Instead of using FACA to merge N data points 
into M clusters directly, we can use CGAUCD+DT to 
generate a set of qM cluster centers first, where q > 1, and 
then apply FACA to merge these qM clusters into M cells to 

reduce computing time. Finally, these M cluster centers will 
be used as the initial codebook for CGAUCD. This 
approach is referred to as algorithm 1 here. Now, we would 
like to present algorithm 1.

Algorithm 1

(1) Use CGAUCD+DT to generate the set SC={C1, 

C2,.., CqM}, which consists of qM cluster centers.

(2) Apply FACA to determine the initial codebook 
CB={C1, C2,.., CM} with M codewords.

(3) Use CGAUCD to generate the desired codebook.

IV. EXPERIMENTAL RESULTS

To evaluate the performances of the proposed algorithms, 
three real data sets and several synthetic data sets have been 
used as our training sets to generate codebooks. The first 
real data set having 16,384 data points is obtained from a 
real image: “Lena;” while the second real data set with 
49,152 data points is generated from three real images: 
“Lena,” “Baboon,” and “Peppers.” The third real data set 
with size of 98,304 is obtained from six real images: 
“Tiffany,” “Peppers,” “Baboon,” “Airplane,” “Bike” and 
“Girl.” It is noted here that the characteristics of these 
images are different. The images “Baboon” and “Bike” 
possess many texture regions; whereas the pictures 
“Peppers” and “Tiffany” have a lot of smooth areas. “Girl” 
and “Airplane” have a small fraction of texture and edge 
areas. The synthetic data sets with size 10,000 and 
dimensions from 8 to 40 are obtained from the Gauss 
Markov sequence [10] with =10, =0, and a=0.9, where 
is the standard deviation,  is the mean value of the 
sequence and a is the correlation coefficient. All computing 
is performed on a Pentium IV 3.2 GHz PC with 512 MB of 
memory.

Five codebook generation algorithms: GLA, FPNN, 
FPNN+CGAUCD, FACA+CGAUCD, and our method 
(algorithm 1) are implemented, where FPNN+CGAUCD 
and FACA+CGAUCD use the cluster centers generated by 
FPNN and FACA, respectively, as the initial codebooks for 
CGAUCD. For the GLA, the initial codewords are selected 
randomly from the training set. These methods are 
compared in terms of computing time and mean square error 
(MSE). The mean square error (MSE) for a set of N training 
vectors {Xi} is defined as follows:

MSE = (


N

i 1
||Xi-Q(Xi)||

2
/(Nd)                                  (6)

where Q(Xi) is the closest codeword (reproduction vector) 

of X and d is the vector dimension. MSE is usually used to 
measure the quality of a picture [10]. The lower MSE 
implies the better image quality. That is, a codebook with 
lower MSE implies that it is a better codebook. Therefore 
MSE is used here as a metric to measure the quality of a 
codebook.
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Method M

128 256 512

GLA with 100 runs 144.015528 122.699041 105.406689

FPNN 147.710213 125.642842 105.700978

FPNN+CGAUCD 143.607546 121.411422 102.054237

FACA+CGAUCD 143.374579 121.545285 102.120814

Algorithm 1, q=2 143.303827 121.274645 102.202804

Algorithm 1, q=4 143.178823 121.167374 101.937034

Method M

128 256 512

GLA with 100 runs 107.05 207.81 421.03

FPNN 1157.625 1143.28 1183.18

FPNN+CGAUCD 1173.535 1162.69 1202.79

FACA+CGAUCD 787.66 780.93 793.08

Algorithm 1, q=2 143.13 191.34 250.61

Algorithm 1, q=4 188.41 237.11 305.84

Method M

128 256 512

GLA with 100 runs 15.83 32.19 55.03

FPNN 146.00 146.13 145.92

FPNN+CGAUCD 86.69 91.55 93.72

FACA+CGAUCD 61.78 61.92 62.66

Algorithm 1, q=2 18.60 25.89 39.86

Algorithm 1, q=4 26.02 38.07 57.25





Figure 1. The flow chart of FACA Algorithm 1

(6)
TABLE 1: THE COMPUTING TIME OF FPNN AND FACA USING THE FIRST 

AND SECOND REAL DATA SETS, RESPECTIVELY, TO GENERATE CODEBOOKS 

OF SIZE 256
Method The first data set The second data set

FPNN 83.02 1143.28

FACA 59.89 763.52

TABLE 2: THE LEAST MEAN SQUARE ERROR OF GLA WITH 100 RUNS AS 

WELL AS MEAN SQUARE ERRORS OF PNN, PNN+CGAUCD,
FACA+CGAUCD AND ALGORITHM 1 USING TRAINING VECTORS FROM THE 

FIRST REAL DATA SET

Method M

128 256 512

GLA with 100 runs 53.786457 43.434393 35.469834

FPNN 54.121899 41.138968 30.639848

FPNN+CGAUCD 52.703916 40.108582 30.005831

FACA+CGAUCD 52.705974 40.111941 29.974793

Algorithm 1, q=2 52.352139 40.315626 30.536785

Algorithm 1, q=4 52.385429 40.039429 30.066588

TABLE 3: THE COMPUTING TIME OF GLA WITH 100 RUNS, PNN,
PNN+CGAUCD, FACA+CGAUCD AND ALGORITHM 1 USING TRAINING 

VECTORS FROM THE FIRST REAL DATA SET

TABLE 4: THE LEAST MEAN SQUARE ERROR OF GLA WITH 100 RUNS AS 

WELL AS MEAN SQUARE ERRORS OF PNN, PNN+CGAUCD,
FACA+CGAUCD AND ALGORITHM 1 USING TRAINING VECTORS FROM THE 

SECOND REAL DATA SET

TABLE 5: THE COMPUTING TIME OF GLA WITH 100 RUNS, PNN,
PNN+CGAUCD, FACA+CGAUCD AND ALGORITHM 1 USING TRAINING 

VECTORS FROM THE SECOND REAL DATA SET

Table 1 gives the computing time of FPNN and FACA, 
which use the first and second real data sets to generate 
codebooks of size 256. From table 1, we can find that FACA 
can reduce the computing time of FPNN significantly. 
FACA can reduce the computing time of FPNN by a factor 
of about 1.40. Table 2 gives the least mean square error 
(MSE) of GLA with 100 randomly selected initial 
codebooks and MSEs of FPNN, FPNN+CGAUCD, 
FACA+CGAUCD and algorithm 1 with various values of q
for the first real data set. Table 3 presents the computing 
time of GLA with 100 runs, FPNN, FPNN+CGAUCD, 
FACA+CGAUCD and our method with various values of q
for the first real data set. Table 4 lists the least MSE of GLA 
with 100 runs as well as MSEs of FPNN, FPNN+CGAUCD, 
FACA+CGAUCD and algorithm 1 for the second data set; 
while table 5 presents the computing time of GLA with 100 
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runs, FPNN, FPNN+CGAUCD, FACA+CGAUCD and 
algorithm 1 for the second data set.

TABLE 6: THE LEAST MEAN SQUARE ERROR OF GLA WITH 100 RUNS AS 

WELL AS MEAN SQUARE ERRORS OF PNN, PNN+CGAUCD,
FACA+CGAUCD AND ALGORITHM 1 USING TRAINING VECTORS FROM THE 

THIRD REAL DATA SET

Method M

128 256 512

GLA with 100 runs 153.946964 129.462589 109.456045

FPNN 158.015196 132.853107 112.043991

FPNN+CGAUCD 153.419479 128.515097 108.244302

FACA+CGAUCD 153.033692 128.805776 108.185836

Algorithm 1, q=2 153.737790 128.575970 108.116461

Algorithm 1, q=4 153.252590 128.612478 108.057259

TABLE 7: THE COMPUTING TIME OF GLA WITH 100 RUNS, PNN,
PNN+CGAUCD, FACA+CGAUCD AND ALGORITHM 1 USING TRAINING 

VECTORS FROM THE THIRD REAL DATA SET 

Method M

128 256 512

GLA with 100 runs 273.53 436.03 909.18

FPNN 6817.52 6779.39 6737.73

FPNN+CGAUCD 6882.86 6863.53 6840.41

FACA+CGAUCD 2018.39 1685.56 1636.61

Algorithm 1, q=2 321.47 452.91 583.51

Algorithm 1, q=4 433.97 564.84 777.80

From table 2 and table 4, we will find that FPNN gives 
highest mean square error in average and our method 
(algorithm 1 with q = 4) gives the least mean square errors 
in almost all cases. Compared to GLA, algorithm 1 with q = 
4 can reduce the mean square error by 0.69 to 5.40. Tables 2 
and 4 show that both FPNN+CGAUCD and 
FACA+CGAUCD can obtain about the same mean square 
error for a codebook. It is noted that there is a little
difference between the means square errors of the 
codebooks generated by FPNN+CGAUCD and 
FACA+CGAUCD, respectively. In the early stage of 
merging clusters, there are many cluster pairs with the same
cluster distance. Merging different pairs with the same 
cluster distance in the early stage will result in a little
difference for the clustering results. That is, there will be a 
little difference between the means square errors of the 
codebooks generated by FPNN+CGAUCD and 
FACA+CGAUCD due to FPNN and FACA may select 
different cluster pairs with the same cluster distance. Our 
method FACA+CGAUCD can reduce the computing time of 
FPNN+CGAUCD by about 32.9% for the second real data 
set. From table 3, we will also find that the computing time 
of algorithm1 with q = 2 or 4 is less than that of 
FACA+CGAUCD. This is due to the computational 
complexity of CGAUCD+DT is less than that of FACA. It is 
noted that to our knowledge, FPNN+CGAUCD is the 
available algorithm of generating a codebook with the 
lowest mean square error. Compared to FPNN+CGAUCD, 
algorithm 1 with q = 2 can generate a codebook with the 
much less computing time and little higher MSE. Compared 

with FPNN+CGAUCD, algorithm 1 with q = 4 generates a 
codebook with the much less computing time and lower 
MSE. Compared to FPNN+CGACD, algorithm 1 with q = 4 
can reduce the average mean square error and computing 
time by 0.165 and 79.4%, respectively.  From tables 3 and 4, 
we can find that the MSE of algorithms 1 is lower in general 
when a larger q is used. However, it should be noted that the 
corresponding computing time is also increased when a 
larger q is adopted. From table 2, we can conclude that 
algorithm 1 with q = 4 is not global optimal. Therefore 
algorithm 1 with q = 2 may occasionally obtain lower MSE 
than algorithm 1 with q = 4 (for example, M = 128), 
although their difference is not significant any more.

Figures 2 to 4 presents the compressed images of “Lena,’ 
“Baboon,” and “Peppers,” using codebooks of size 256 
generated by GLA with 100 runs, FPNN, FPNN+CGAUCD, 
and algorithm 1 with q=2, respectively. From figures 2(a), 
2(b), 2(c), and 2(d), we can find that GLA and FPNN have 
more blocking effects in the hat; while FPNN+CGAUCD
and algorithm 1 provide less blocking effects and better 
image quality. For figures 3(a) to 4(d), these four algorithms 
have almost the same visual quality.

To understand the effect of data size on our proposed 
methods, a large data set is used here. Table 6 presents the 
least MSE of GLA with 100 runs as well as MSEs of FPNN, 
FPNN+CGAUCD, FACA+CGAUCD and algorithm 1 for 
the third real data set; while table 7 shows the computing 
time of GLA with 100 runs, FPNN, FPNN+CGAUCD, 
FACA+CGAUCD and algorithm 1 for the same data set. 
From table 7, we can find that our method algorithm 1 with 
q = 2 has the least computing time in average. Compared to 
FPNN+CGAUCD, algorithm 1 with q = 2 can reduce the
computing time significantly and obtain a little higher MSE. 
From table 2 to table 7, we can conclude that the 
performances of our proposed methods are more remarkable 
when a larger data set is used.

                     (a)                                                  (b)

                   (c)                                                     (d)

Figure 2. The compressed images of “Lena” using codebooks generated by 
(a) GLA with 100 runs; (b) FPNN, (c) FPNN+CGAUCD, and (d) algorithm 
1 with q=2.
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                    (a)                                                    (b)

                    (c)                                                   (d)

Figure 3. The compressed images of “Baboon” using codebooks generated 
by (a) GLA with 100 runs; (b) FPNN, (c) FPNN+CGAUCD, and (d) 
algorithm 1 with q=2.

                        (a)                                                  (b)

                        (c)                                                   (d)
Figure 4. The compressed images of “Peppers” using codebooks generated 
by (a) GLA with 100 runs; (b) FPNN, (c) FPNN+CGAUCD, and (d) 
algorithm 1 with q=2.

Figure 5. The computing time (in seconds) of generating codebooks of size 
256 using synthetic data sets with sizes = 10,000 and dimensions from 8 to 
40. 

Figure 6. The mean square errors for synthetic data sets of generating 
codebooks of size 256 using synthetic data sets with sizes = 10,000 and 
dimensions from 8 to 40.

To study the effect of data dimension on the performances 
of our proposed methods, figures 5 and 6 present the mean 
square errors and computing time, respectively, of 
FPNN+CGACD and algorithm 1 with q = 4 to generate 
codebooks of size 256 using synthetic data sets with size = 
10,000 and dimension ranging from 8 to 40.  From figures 4 
and 5, we can find that compared to FPNN+CGAUCD, our 
method algorithm 1 with q = 4 can reduce the average 
computing time of 60.8% with about the same MSE. The 
performance of algorithm 1 is better when a data set with 
higher dimension is used. It is recommended that algorithm 
1 with q = 4 can be used to generate the desired codebook 
for it gives the least mean square error.

V. CONCLUSION 

In this paper, we develop a method to generate a 
codebook from a set of training vectors. A fast 
agglomerative clustering algorithm FACA is also developed 
to reduce the computing time of FPNN. FACA uses an 
inequality to speed up the process of finding a cluster’s 
nearest neighbor. Compared to the available best method as 
far as we know, our method algorithm 1 with q = 4 can 
reduce the average mean square error by 0.165 with the 
reduction of computing time by 82.3% to 89.3% for the 
second real data set. Compared to GLA, our method 
algorithm 1 with q = 4 can decrease the mean square error of 
a codebook by 0.69 to 5.40. Compared to 
FPNN+CGAUCD, which is the available best method to our 
knowledge, our proposed method FACA+CGAUCD can 
decrease the computing time by about 32.9% with the same 
mean square error for the second real data set.
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