
Advances in Electrical and Computer Engineering Volume 9, Number 3, 2009

A New Randomized Algorithm for Handling
Scheduling Conflicts in Grids

Hamed VAHDAT-NEJAD, Kamran ZAMANIFAR
Computer Engineering Department, University of Isfahan, IRAN

vahdatnejad@eng.ui.ac.ir

Abstract—As the scale of Grid platforms grows, the idea of a
centralized scheduler loses its efficiency, and it is replaced with
the scheme of decentralized schedulers. However, a new
problem emerges in distributed scheduling systems, which is
how to coordinate the autonomous schedulers to avoid the
occurrence of conflicting schedules. In this paper, by exploiting
the idea of randomized algorithms, a new scheduling scheme
has been proposed, which addresses the problem of scheduling
conflicts. The proposed algorithm is thoroughly decentralized
in the sense that there is no central point of contact in the
system. In addition, our approach is a suitable way toward
reaching scalability and autonomy in future Grids. We prove
the feasibility and effectiveness of the proposed algorithm
through statistical analysis.

Index Terms—Coordination, Distributed system, Grid,

Randomized Algorithms, Scheduling

I. INTRODUCTION
A grid computing infrastructure [1] is a collection of

computational, storage and other resources connected by a
network. The grid middleware facilitates the interaction of
resources in the grid, and forms the image of a single huge
environment. Grid users run their applications on top of the
grid middleware layer. A grid environment can execute
numerous such applications concurrently.

The grid resource management system (GRMS) controls
the exploitation of resources across the grid to reach the goal
of a grid system with high performance. Scheduling is the
main part of GRMS, which utilizes both the grid and
applications information to produce an assignment from user
jobs to grid machines [4]. Different scheduling algorithms
try to optimize various parameters like job makespan [2, 5]
and waiting time, resource utilization, and system
throughput. However, scheduling is a complicated problem,
which has been shown to be NP complete [3].

One of the characteristics of a good scheduling algorithm
for grids is its scalability. Hence, centralized algorithms lose
their efficiency, and we need the implementation of
decentralized or distributed schemes [2, 10]. On the other
hand, distributed scheduling algorithms introduce a new
challenge, which is the need for coordination between
distributed schedulers to prevent the occurrence of
conflicting schedules [8, 9]. For example, consider the grid
environment shown in Figure 1, which has n number of
resources and m number of schedulers. Grid users submit
their applications to one of the schedulers. These schedulers
generate schedules based on the resource information
attained from the grid information system (GIS). However,
if two schedulers query the GIS at the same time, they will
obtain similar information about free resources. Based on

this information, they will produce the same mapping of
tasks in their applications to the available resources, and
hence, conflicting schedules will occur. Therefore, both the
grid system and applications of users will suffer from
degraded performance.

For better illustration, we assume there are two schedulers
S1 and S2, and three available machines known as P1, P2, and
P3. The tasks J1 and J2 are submitted in approximately the
same time to the schedulers S1, and S2, respectively. The
execution time of J1 in P1, P2, and P3 is 10, 6, and 4, and the
execution time of J2 in P1, P2, and P3 is 17, 11, and 20,
respectively. Now, if both the schedulers assign their task to
the machine which is expected to have the minimum
execution time, the machine P2 will receive the two tasks
sequentially, and the makespan will be equal to 17. On the
other hand, if one of the schedulers, (e.g. S2) assigns the task
to P2, and the other allocates another machine (e.g. P1) to its
task, the makespan metric will decrease to 11.

Figure 1. An existing decentralized scheduling approach.

Some of the decentralized schedulers exploit message

passing mechanisms to handle this situation. In other words,
after determining resources to assign a job, they make them
aware and obtain permission of sending the job through
messages [2]. However, due to the uncertainty and rigorous
dynamicity of the grid environment, and the fact that an
entity is not exactly aware of other resources whether being
available, free or busy, this mechanism is not efficient.
Furthermore, it causes to waste time by sending and
receiving messages. On the other hand, in many of real
economic grid environments, resources gain money for

Resource 1 Resource2

Resource n

GIS

Scheduler 1 Scheduler 2 Scheduler m

 22
Digital Object Identifier 10.4316/AECE.2009.03005

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:00:17 (UTC) by 3.90.202.157. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 9, Number 3, 2009

executing jobs or offering services, therefore it is obvious
that each resource tries to acquire more jobs to increase its
profit.

In [9] a conflict-free resource allocation mechanism has
been presented. Its goal is to propose a market mechanism
that allows resources from a central resource pool to be
allocated to distributed decision makers (agents) that seek to
optimize their respective scheduling goals. It assumes that
the central pool of resources is owned by a central server
(who is the auctioneer), and each job list is represented by a
bidder agent who bids for resources to service all the jobs in
its job list [9]. The approach is based on the tatonnement
[11] process which solves resource conflicts by iteratively
updating the prices of resources based on excess demand.
The tatonnement process was originally proposed by Walras
in 1954 and improved by many other studies [12]. Within
each iteration, the auctioneer collects bids from all agents
and updates prices in order to solve resource conflicts. A
proper design of the price adjustment strategy is essential for
fast convergence, since the tatonnement process is known to
converge slowly.

In [8], authors tackle the problem of conflicting schedules
in workflow scheduling systems. They propose a
decentralized and cooperative workflow scheduling scheme,
which utilizes a Peer-to-Peer (P2P) coordination space with
respect to coordinating the application schedules among the
grid wide distributed workflow brokers. However, the
approach has problems with scalability, and makes the
scheduling process longer.

In this paper, we exploit the idea of randomized
algorithms to solve the conflict problem that arises in the
decentralized scheduling algorithms. A randomized
algorithm is an algorithm that exploits the probability and
randomness to solve a difficult problem. These algorithms
are one of the significant tools to getting around NP-
completeness. There are two main advantages of
randomized algorithms: performance and simplicity [7].
Randomized algorithms run faster than the best-known
deterministic algorithms. Furthermore, many of them are
simpler to describe and implement than deterministic
algorithms of comparable performance. The proposed

randomized decentralized scheduling (RDS) algorithm is
based on the availability of numerous resources in a real
grid and is suitable and efficient in highly dynamic
environments.

The rest of the paper is organized as follows: in section 2,
the grid and scheduling model is presented. Section 3
describes the proposed randomized decentralized scheduling
scheme. We evaluate the RDS through statistical analysis in
section 4 and conclude the paper in section 5.

System model
The exploited grid model is based on the Grid federation

[6] model. We assume a heterogeneous computational
network, with numerous available resources. It means that,
at any time, there are free resources for executing user jobs
in the grid. The assumed grid consists of n resources {m1,
m2,…,mn} and q schedulers {s1,s2,…,sq}, which situated in a
decentralized manner. The job arrival time to each scheduler
follows the Poisson distribution. λi is the Poisson rate of
submitting jobs to scheduler si. To consider grid
heterogeneity, jobs and processors are divided into two
categories: type 1 and type 2. Only resources with
processors of type 1 can execute jobs of type 1. The same
statement is true for resources and jobs of type 2.

II. RDS: RANDOMIZED DECENTRALIZED SCHEDULING
SCHEME

Most of the scheduling algorithms are user centric, in that
trying to decrease the job completion time, response time or
makespan. Therefore, free resources with highest
computational potential are the first choices of these
schedulers for allocating to the submitted jobs. Figure 2
shows the general algorithm for most of the existing
schedulers.

This algorithm assigns the job i to the resource which
optimizes a metric. Most of the schedulers follow this
algorithm, and only differentiate in the metric function.
Usually this function is selected so as to minimize the
overall completion time of jobs. In other words, it tries to
optimize the makespan metric. For example, this function is
the minimum function for the online Min-Min algorithm.

(1) For each submitted job i do
(2) For each free resource j with the potential to execute i do
(3) Compute CTi,j = Completion Time(job i, resource j)
(4) End for
(5) Compute metric(i) = f (CTi,1, CTi,2, ……)
(6) Assign job i to the resource which is corresponded to metric(i)
(7) End for

Figure 2. The General Scheduling Algorithm.

 23

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:00:17 (UTC) by 3.90.202.157. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 9, Number 3, 2009

(1) For each submitted job i do
(2) For each free resource j with the potential to execute i do
(3) Compute CTi,j = Completion Time(job i, resource j)
(4) End for
(5) For counter = 1 to k do
(6) Compute metric(i) = f (CTi,1, CTi,2, ……)
(7) Insert the resource which is corresponded to metric(i) to
 the list of potential resources for executing the job i.
(8) Remove this resource from the list of available resources.
(9) If there is not any available resource with the capability
 to execute the job, break
(10) End for
(11) Select one of the resources in the potential list randomly, and
 Assign the job to it.
(12) End for

Figure 3. The randomized scheduling algorithm.

As stated before, the problem of these scheduling

algorithms is more obvious in distributed and decentralized
environments. For example, if two jobs of type 1 are
submitted to two schedulers at approximately the same time,
each of these jobs is only executable on resources of type 1,
it is almost certain that the result of both of the schedulers
will be the resource which has the most capability among all
resources of type 1. Consequently, both of the jobs will be
sent to that resource (scheduling conflict) and will be
executed sequentially. Therefore, the grid performance will
be degraded and job’s makespan will be increased.

For solving this problem, we introduce the RDS
algorithm, which is based on the randomized algorithms
subject. The main assumption of the RDS algorithm is the
existence of numerous available resources and hosts in the
grid. Figure 3 shows the general form of the randomized
scheduling algorithm.

The randomized scheduling algorithm is composed of two
phases. In the first phase, a list of maximum k elements of
potential resources for executing the job is obtained. This
list is created by using the metric that exists in many of the
scheduling algorithms. This is done through lines 5 to 10.
Afterward, in the second phase we assume the resources in
the potential list have uniform distribution, select one of
them randomly and assign the job to it. Line 11 performs
this. Since we did not make any restriction on the metric
function, many of the scheduling algorithms can be moulded
in this model; hence we can construct their randomized
version, which has better performance in dynamic
decentralized environments.

III. EVALUATION
In this section, we compare the scheduling conflicts in

generalized decentralized schedulers and RDS. First, we
assess the probability of occurring scheduling conflicts in
generalized decentralized schedulers, and then, this
probability is computed for RDS algorithm.

A. Scheduling conflicts in decentralized schedulers
We assume the probability for a job to be of kind 1 is p2,

and the probability for a resource to be able to execute a job
of kind 1 is p1. Hence, the probability for a job to be of kind
2 is 1-p2, and the probability for a resource to be able to
execute a job of kind 2 is 1-p1. Furthermore TSij is the time
interval between sending a job A from scheduler Si to the
resource mj and when the update message of resource mj
reaches to other schedulers. We want to compute the
probability of sending a job B by another scheduler sl to the
resource mj in this time interval. By the implicit assumption
that the resource mj has the highest computational capability
between free resources which are able to execute the job A
(sent by scheduler si), this probability equals:
Prob(L) = P(a job B is submitted to sl in this time -interval)
× P(The job B can be executed on mj) (1)

By analyzing the assumption that λi is the Poisson rate of
submitting jobs to scheduler si , the first quantity of the
above expression equals:

P (a job B is submitted to sl)
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= 1,
l

Sij
T

MAX
λ

 (2)

Furthermore, the probability that the job B is executable
on resource mj, can be computed as the addition of two
probabilities. The probability that job B is of type 1 and the
jobs of type 1 are executable on resource mj (equals to p2 p1),
plus the probability that job B is of type 2 and the jobs of
type 2 are executable on resource mj

))1)(1(to(equals 12 pp −− .
Therefore)assume(lSij

T λ<

l

S

l

S ijij
T

pp
T

ppLprob
λλ

)1)(1()(1212 −−+= (3)

So the probability that no other scheduler sends a job to
mj in this time interval equals to:

 24

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:00:17 (UTC) by 3.90.202.157. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 9, Number 3, 2009

Prob (no conflict) = ∏ (4)
≠
= −

q

ii
i prob1))1(1(

where q is the number of schedulers.

For better analysis we assume that p1 = p2 = 0.5, λ1=λ2= …
= λq = λ , and TSij = Ts for all i and j. Hence, the probability
that no other scheduler sends a job to mj in this time interval
equals to:

Prob (no conflict) =
1

2
1

−

⎟
⎠
⎞

⎜
⎝
⎛ −

q
sT
λ

 (5)

This expression represents the probability of the occurrence
of no scheduling conflict with a given schedule (schedule of
job A by scheduler Si). For better illustration, we plot the
diagram of this probability with the assumption of Ts=1 in
two phases. This assumption states that the time interval
between sending a job from a scheduler to a resource, and
when the update message of the resource reaches to other
schedulers, is just 1 second. It is an ideal assumption,
because in reality, this quantity is usually larger than 1
second. In the first phase, we assume λ=60 seconds, and
plot the diagram versus the number of schedulers (q) in
Figure 4. In other words, we assume that every 60 seconds a
job is submitted to each of the schedulers, averagely. As it
can be seen in this plot, when there are more than 20
decentralized schedulers, the probability of absence of
conflicts becomes less than 0.8. On the other hand, the
probability of the occurrence of a conflict becomes more
than 0.2, which causes the increase of makespan. As it is
obvious in this figure, the bigger the number of schedulers,
the smaller the probability of absence of conflicts; hence the
bigger the probability of conflict occurrence.

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4. The probability of absence of conflicts versus
number of schedulers (λ=60).
In the second stage, we assume that there are 20
decentralized schedulers. Figure 5 shows the diagram of the
probability of absence of conflicts versus the Poisson rate of
arriving jobs to schedulers. As it can be seen, when λ=50
seconds, this probability is near to 0.8. In other words, when
there are 20 decentralized schedulers, and one job is
submitted averagely every 50 seconds to each of the
schedulers, the probability of conflict occurrence is 0.2.
When the Poisson rate decreases, the probability of conflict
absence diminishes, which is fully predictable. Because the
reduction of λ is equivalent to faster submission of jobs to
schedulers, we obtain the increase in the number of

scheduling conflicts between decentralized schedulers.

10 20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5. The probability of absence of conflicts versus job arrival rate

(q=20).

B. Scheduling conflicts in RDS

Now we discuss the probability of scheduling conflicts in
the RDS scheme. We assume there are always k available
resources in the potential list. In the RDS scheme, a
scheduler sends a job to one of the k potential resources,
according to the uniform distribution of resources in list.
Regarding the assumptions and reasoning of the previous
subsection, here we have Equation 1 as follows

Prob(L) = ×p(a job B is submitted to sl in this time -

interval) × p(The job B can be executed on mj) (6)
Hence, the probability of no scheduling conflict

occurrence with a given schedule is as follows:

Prob (no conflict) =
1

2
1

−

⎟
⎠
⎞

⎜
⎝
⎛ −

q
s

k
T
λ

 (7)

The only difference of this equation and equation 5 is the
parameter k in the denominator. In fact this coefficient is
due to the randomized selection between k potential
resources in the RDS. For better analysis we also assume
Ts=1 in this case. In other words, we assume that the time
interval between sending a job from a scheduler to a
resource and when the update message of the resource
reaches to other schedulers is just 1 second. In addition, we
set the parameter k in the RDS to 10. Figures 6 and 7
correspond to Figures 4 and 5, respectively.

0 10 20 30 40 50 60 70 80 90 100
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Figure 6. The probability of absence of conflicts versus number of

schedulers (λ=60).

 25

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:00:17 (UTC) by 3.90.202.157. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 9, Number 3, 2009

10 20 30 40 50 60 70 80 90 100
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Figure 7. The probability of absence of conflicts versus job arrival rate

(q=20)

As it can be seen, in similar situations, the probability of

absence of conflicts in RDS raises strongly as compared to
the generalized decentralized scheme. In other words, in
similar situations, the probability of occurring scheduling
conflicts in RDS is smaller than generalized scheme.
Therefore, we can expect a much better makespan from
RDS. As an example regarding Figures 4 and 6, when the
number of schedulers is about 80, the probability of absence
of conflicts in the generalized and RDS schemes is 0.5 and
0.93, respectively. Furthermore, the comparison of Figures 5
and 7 reveals the differences between the two algorithms.
As an example, when the Poisson rate is about 20 (or
averagely every 20 seconds a job is submitted to each of the
schedulers), the probability of absence of conflicts in the
generalized and RDS schemes is 0.6 and 0.95, respectively.
It means that the probabilities of occurring scheduling
conflicts in this situation are 0.4 and 0.05 for generalized
and RDS schemes, respectively, which shows the
differences in avoiding scheduling conflicts between these
two approaches.

IV. CONCLUSION
We have presented a new approach for handling

scheduling conflicts in decentralized scheduling schemes.
The approach, which is also called RDS, is based on
randomized algorithms. Contrary to the coordination
algorithms in distributed systems, the RDS imposes no
further load to the system. Furthermore, it is very simple and
easily implementable. We have shown the efficiency of the
RDS through statistical analysis. In the future, we intend to
implement the RDS scheme in a decentralized system and
compare its efficiency with available coordination schemes
in a real Grid environment.

REFERENCES
[1] I. Foster and C. Kesselman, grid: "Blueprint for a new computing

infrastructure", Morgan Kaufmann Publishers, USA, 1998
[2] Hamed Vahdat-Nejad, Reza Monsefi, Hossein Deldari, "Distributed

resource scheduling in grid computing using fuzzy approach",
Proceedings of the International Conference on Information and
Knowledge Technology, Iran, 2007

[3] HU Rong, HU Zhigang, "A scheduling algorithm aimed at time and
cost for meta-tasks in grid computing using fuzzy applicability",
Proceedings of the eighth International Conference on High-
performance Computing in Asia-pacific region, IEEE 2005

[4] Hamed Vahdat-Nejad, Reza Monsefi, Mahmoud Naghibzadeh, "A
new fuzzy algorithm for global job scheduling in multiclusters and
grids", Proceedings of International Conference on Computational
Intelligence for Measurement Systems and Applications, Italy, 2007

[5] Hamed Vahdat-Nejad, Reza Monsefi, "Static parallel job scheduling
in computational grids", Proceedings of the International Conference
on Computer and Electrical Engineering, Thailand, 2008

[6] Rajiv Ranjan, Aaron Harwood, Rajkumar Buyya, "A case for
cooperative and incentive-based federation of distributed clusters",
Future generation computer systems, Elsevier, 2007

[7] Ashraf Osman, "Introduction to randomized algorithms", West
Virginia University

[8] Rajiv Ranjan, Mustafizur Rahman, and Rajkumar Buyya, "A
decentralized and cooperative workflow scheduling algorithm",
Proceedings of eighth IEEE International Symposium on Cluster
Computing and the Grid, 2008

[9] Hoong Chuin Lau, Shih Fen Cheng, Thin Yin Leong, "Multi-period
combinatorial auction mechanism for distributed resource allocation
and scheduling", Proceedings of IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, 2007

[10] Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud Legrand,
Loris Marchal, and Yves Robert, "Centralized versus distributed
schedulers for bag-of-tasks applications", IEEE Transactions on
Parallel and Distributed Systems, Volume 19, No 5, May 2008

[11] L. Walras, "Elements of pure economics", Allen and Unwin, English
translation by William Jaffe 1954 (originally published in 1874)

[12] J. Q. Cheng and M. P. Wellmam, "The WALAS algorithm: A
convergent distributed implementation or general equilibrium
outcomes", Computational Econ. 12: 1-24, 1998

 26

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:00:17 (UTC) by 3.90.202.157. Redistribution subject to AECE license or copyright.]

