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Abstract—As the scale of Grid platforms grows, the idea of a 
centralized scheduler loses its efficiency, and it is replaced with 
the scheme of decentralized schedulers. However, a new 
problem emerges in distributed scheduling systems, which is 
how to coordinate the autonomous schedulers to avoid the 
occurrence of conflicting schedules. In this paper, by exploiting 
the idea of randomized algorithms, a new scheduling scheme 
has been proposed, which addresses the problem of scheduling 
conflicts. The proposed algorithm is thoroughly decentralized 
in the sense that there is no central point of contact in the 
system. In addition, our approach is a suitable way toward 
reaching scalability and autonomy in future Grids. We prove 
the feasibility and effectiveness of the proposed algorithm 
through statistical analysis.  

 
Index Terms—Coordination, Distributed system, Grid, 

Randomized Algorithms, Scheduling 

I. INTRODUCTION 
A grid computing infrastructure [1] is a collection of 

computational, storage and other resources connected by a 
network. The grid middleware facilitates the interaction of 
resources in the grid, and forms the image of a single huge 
environment. Grid users run their applications on top of the 
grid middleware layer. A grid environment can execute 
numerous such applications concurrently.  

The grid resource management system (GRMS) controls 
the exploitation of resources across the grid to reach the goal 
of a grid system with high performance. Scheduling is the 
main part of GRMS, which utilizes both the grid and 
applications information to produce an assignment from user 
jobs to grid machines [4]. Different scheduling algorithms 
try to optimize various parameters like job makespan [2, 5] 
and waiting time, resource utilization, and system 
throughput. However, scheduling is a complicated problem, 
which has been shown to be NP complete [3].  

One of the characteristics of a good scheduling algorithm 
for grids is its scalability. Hence, centralized algorithms lose 
their efficiency, and we need the implementation of 
decentralized or distributed schemes [2, 10]. On the other 
hand, distributed scheduling algorithms introduce a new 
challenge, which is the need for coordination between 
distributed schedulers to prevent the occurrence of 
conflicting schedules [8, 9]. For example, consider the grid 
environment shown in Figure 1, which has n number of 
resources and m number of schedulers. Grid users submit 
their applications to one of the schedulers. These schedulers 
generate schedules based on the resource information 
attained from the grid information system (GIS). However, 
if two schedulers query the GIS at the same time, they will 
obtain similar information about free resources. Based on 

this information, they will produce the same mapping of 
tasks in their applications to the available resources, and 
hence, conflicting schedules will occur. Therefore, both the 
grid system and applications of users will suffer from 
degraded performance. 

For better illustration, we assume there are two schedulers 
S1 and S2, and three available machines known as P1, P2, and 
P3. The tasks J1 and J2 are submitted in approximately the 
same time to the schedulers S1, and S2, respectively. The 
execution time of J1 in P1, P2, and P3 is 10, 6, and 4, and the 
execution time of J2 in P1, P2, and P3 is 17, 11, and 20, 
respectively. Now, if both the schedulers assign their task to 
the machine which is expected to have the minimum 
execution time, the machine P2 will receive the two tasks 
sequentially, and the makespan will be equal to 17. On the 
other hand, if one of the schedulers, (e.g. S2) assigns the task 
to P2, and the other allocates another machine (e.g. P1) to its 
task, the makespan metric will decrease to 11. 

 
Figure 1. An existing decentralized scheduling approach. 

 
Some of the decentralized schedulers exploit message 

passing mechanisms to handle this situation. In other words, 
after determining resources to assign a job, they make them 
aware and obtain permission of sending the job through 
messages [2]. However, due to the uncertainty and rigorous 
dynamicity of the grid environment, and the fact that an 
entity is not exactly aware of other resources whether being 
available, free or busy, this mechanism is not efficient. 
Furthermore, it causes to waste time by sending and 
receiving messages. On the other hand, in many of real 
economic grid environments, resources gain money for 
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executing jobs or offering services, therefore it is obvious 
that each resource tries to acquire more jobs to increase its 
profit. 

In [9] a conflict-free resource allocation mechanism has 
been presented. Its goal is to propose a market mechanism 
that allows resources from a central resource pool to be 
allocated to distributed decision makers (agents) that seek to 
optimize their respective scheduling goals. It assumes that 
the central pool of resources is owned by a central server 
(who is the auctioneer), and each job list is represented by a 
bidder agent who bids for resources to service all the jobs in 
its job list [9]. The approach is based on the tatonnement 
[11] process which solves resource conflicts by iteratively 
updating the prices of resources based on excess demand. 
The tatonnement process was originally proposed by Walras 
in 1954 and improved by many other studies [12]. Within 
each iteration, the auctioneer collects bids from all agents 
and updates prices in order to solve resource conflicts. A 
proper design of the price adjustment strategy is essential for 
fast convergence, since the tatonnement process is known to 
converge slowly. 

In [8], authors tackle the problem of conflicting schedules 
in workflow scheduling systems. They propose a 
decentralized and cooperative workflow scheduling scheme, 
which utilizes a Peer-to-Peer (P2P) coordination space with 
respect to coordinating the application schedules among the 
grid wide distributed workflow brokers. However, the 
approach has problems with scalability, and makes the 
scheduling process longer. 

In this paper, we exploit the idea of randomized 
algorithms to solve the conflict problem that arises in the 
decentralized scheduling algorithms. A randomized 
algorithm is an algorithm that exploits the probability and 
randomness to solve a difficult problem. These algorithms 
are one of the significant tools to getting around NP-
completeness. There are two main advantages of 
randomized algorithms: performance and simplicity [7]. 
Randomized algorithms run faster than the best-known 
deterministic algorithms. Furthermore, many of them are 
simpler to describe and implement than deterministic 
algorithms of comparable performance. The proposed 

randomized decentralized scheduling (RDS) algorithm is 
based on the availability of numerous resources in a real 
grid and is suitable and efficient in highly dynamic 
environments.  

The rest of the paper is organized as follows: in section 2, 
the grid and scheduling model is presented. Section 3 
describes the proposed randomized decentralized scheduling 
scheme. We evaluate the RDS through statistical analysis in 
section 4 and conclude the paper in section 5. 

System model 
The exploited grid model is based on the Grid federation 

[6] model. We assume a heterogeneous computational 
network, with numerous available resources. It means that, 
at any time, there are free resources for executing user jobs 
in the grid. The assumed grid consists of n resources {m1, 
m2,…,mn} and q schedulers {s1,s2,…,sq}, which situated in a 
decentralized manner. The job arrival time to each scheduler 
follows the Poisson distribution. λi is the Poisson rate of 
submitting jobs to scheduler si. To consider grid 
heterogeneity, jobs and processors are divided into two 
categories: type 1 and type 2. Only resources with 
processors of type 1 can execute jobs of type 1. The same 
statement is true for resources and jobs of type 2. 

II. RDS: RANDOMIZED DECENTRALIZED SCHEDULING 
SCHEME 

Most of the scheduling algorithms are user centric, in that 
trying to decrease the job completion time, response time or 
makespan. Therefore, free resources with highest 
computational potential are the first choices of these 
schedulers for allocating to the submitted jobs. Figure 2 
shows the general algorithm for most of the existing 
schedulers. 

This algorithm assigns the job i to the resource which 
optimizes a metric. Most of the schedulers follow this 
algorithm, and only differentiate in the metric function. 
Usually this function is selected so as to minimize the 
overall completion time of jobs. In other words, it tries to 
optimize the makespan metric. For example, this function is 
the minimum function for the online Min-Min algorithm. 
 
 
 
 

 

(1) For each submitted job i do 
(2)      For each free resource j with the potential to execute i do 
(3)            Compute CTi,j = Completion Time(job i, resource j) 
(4)      End for 
(5)      Compute metric(i) = f (CTi,1, CTi,2, ……) 
(6)      Assign job i to the resource which is corresponded to metric(i) 
(7) End for 

Figure 2. The General Scheduling Algorithm. 
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(1) For each submitted job i do 
(2)      For each free resource j with the potential to execute i do 
(3)            Compute CTi,j = Completion Time(job i, resource j) 
(4)      End for 
(5)      For counter = 1 to k     do 
(6)           Compute metric(i) = f (CTi,1, CTi,2, ……) 
(7)           Insert the resource which is corresponded to metric(i) to  
                  the list of potential resources for executing the job i. 
(8)            Remove this resource from the list of available resources. 
(9)             If there is not any available resource with the capability      
                   to execute the job, break 
(10)       End for 
(11)       Select one of the resources in the potential list randomly, and  
              Assign the job to it. 
(12) End for 

Figure 3. The randomized scheduling algorithm. 

 
As stated before, the problem of these scheduling 

algorithms is more obvious in distributed and decentralized 
environments. For example, if two jobs of type 1 are 
submitted to two schedulers at approximately the same time, 
each of these jobs is only executable on resources of type 1, 
it is almost certain that the result of both of the schedulers 
will be the resource which has the most capability among all 
resources of type 1. Consequently, both of the jobs will be 
sent to that resource (scheduling conflict) and will be 
executed sequentially. Therefore, the grid performance will 
be degraded and job’s makespan will be increased. 

For solving this problem, we introduce the RDS 
algorithm, which is based on the randomized algorithms 
subject. The main assumption of the RDS algorithm is the 
existence of numerous available resources and hosts in the 
grid. Figure 3 shows the general form of the randomized 
scheduling algorithm. 

The randomized scheduling algorithm is composed of two 
phases. In the first phase, a list of maximum k elements of 
potential resources for executing the job is obtained. This 
list is created by using the metric that exists in many of the 
scheduling algorithms. This is done through lines 5 to 10. 
Afterward, in the second phase we assume the resources in 
the potential list have uniform distribution, select one of 
them randomly and assign the job to it. Line 11 performs 
this. Since we did not make any restriction on the metric 
function, many of the scheduling algorithms can be moulded 
in this model; hence we can construct their randomized 
version, which has better performance in dynamic 
decentralized environments. 

III. EVALUATION 
In this section, we compare the scheduling conflicts in 

generalized decentralized schedulers and RDS. First, we 
assess the probability of occurring scheduling conflicts in 
generalized decentralized schedulers, and then, this 
probability is computed for RDS algorithm. 

A. Scheduling conflicts in decentralized schedulers 
We assume the probability for a job to be of kind 1 is p2, 

and the probability for a resource to be able to execute a job 
of kind 1 is p1. Hence, the probability for a job to be of kind 
2 is 1-p2, and the probability for a resource to be able to 
execute a job of kind 2 is 1-p1. Furthermore TSij is the time 
interval between sending a job A from scheduler Si to the 
resource mj and when the update message of resource mj 
reaches to other schedulers. We want to compute the 
probability of sending a job B by another scheduler sl to the 
resource mj in this time interval. By the implicit assumption 
that the resource mj has the highest computational capability 
between free resources which are able to execute the job A 
(sent by scheduler si), this probability equals:  
Prob(L) = P(a job B is submitted to sl in this time -interval) 
× P(The job B can be executed on mj ) (1) 

By analyzing the assumption that λi is the Poisson rate of 
submitting jobs to scheduler si , the first quantity of the 
above expression equals: 

P (a job B is submitted to sl ) 
⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧
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l
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Furthermore, the probability that the job B is executable 
on resource mj, can be computed as the addition of two 
probabilities. The probability that job B is of type 1 and the 
jobs of type 1 are executable on resource mj (equals to p2 p1), 
plus the probability that job B is of type 2 and the jobs of 
type 2 are executable on resource mj  
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So the probability that no other scheduler sends a job to 
mj in this time interval equals to: 
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Prob (no conflict) = ∏  (4) 
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where q is the number of schedulers.  

For better analysis we assume that p1 = p2 = 0.5, λ1=λ2= … 
= λq = λ , and TSij = Ts for all i and j. Hence, the probability 
that no other scheduler sends a job to mj in this time interval 
equals to: 

Prob (no conflict) = 
1
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This expression represents the probability of the occurrence 
of no scheduling conflict with a given schedule (schedule of 
job A by scheduler Si ). For better illustration, we plot the 
diagram of this probability with the assumption of Ts=1 in 
two phases. This assumption states that the time interval 
between sending a job from a scheduler to a resource, and 
when the update message of the resource reaches to other 
schedulers, is just 1 second. It is an ideal assumption, 
because in reality, this quantity is usually larger than 1 
second. In the first phase, we assume λ=60 seconds, and 
plot the diagram versus the number of schedulers (q) in 
Figure 4. In other words, we assume that every 60 seconds a 
job is submitted to each of the schedulers, averagely. As it 
can be seen in this plot, when there are more than 20 
decentralized schedulers, the probability of absence of 
conflicts becomes less than 0.8. On the other hand, the 
probability of the occurrence of a conflict becomes more 
than 0.2, which causes the increase of makespan. As it is 
obvious in this figure, the bigger the number of schedulers, 
the smaller the probability of absence of conflicts; hence the 
bigger the probability of conflict occurrence. 
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Figure 4. The probability of absence of conflicts versus 
number of schedulers (λ=60). 
In the second stage, we assume that there are 20 
decentralized schedulers. Figure 5 shows the diagram of the 
probability of absence of conflicts versus the Poisson rate of 
arriving jobs to schedulers. As it can be seen, when λ=50 
seconds, this probability is near to 0.8. In other words, when 
there are 20 decentralized schedulers, and one job is 
submitted averagely every 50 seconds to each of the 
schedulers, the probability of conflict occurrence is 0.2. 
When the Poisson rate decreases, the probability of conflict 
absence diminishes, which is fully predictable. Because the 
reduction of λ is equivalent to faster submission of jobs to 
schedulers, we obtain the increase in the number of 

scheduling conflicts between decentralized schedulers. 
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Figure 5. The probability of absence of conflicts versus job arrival rate 

(q=20). 

B. Scheduling conflicts in RDS 
 

Now we discuss the probability of scheduling conflicts in 
the RDS scheme. We assume there are always k available 
resources in the potential list. In the RDS scheme, a 
scheduler sends a job to one of the k potential resources, 
according to the uniform distribution of resources in list. 
Regarding the assumptions and reasoning of the previous 
subsection, here we have Equation 1 as follows 

Prob(L) =  ×p(a job B is submitted to sl in this time -

interval) × p(The job B can be executed on mj ) (6) 
Hence, the probability of no scheduling conflict 

occurrence with a given schedule is as follows: 

Prob (no conflict) = 
1
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−
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s

k
T
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The only difference of this equation and equation 5 is the 
parameter k in the denominator. In fact this coefficient is 
due to the randomized selection between k potential 
resources in the RDS. For better analysis we also assume 
Ts=1 in this case. In other words, we assume that the time 
interval between sending a job from a scheduler to a 
resource and when the update message of the resource 
reaches to other schedulers is just 1 second. In addition, we 
set the parameter k in the RDS to 10. Figures 6 and 7 
correspond to Figures 4 and 5, respectively. 
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Figure 6. The probability of absence of conflicts versus number of 

schedulers (λ=60). 
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Figure 7. The probability of absence of conflicts versus job arrival rate 

(q=20) 

 
As it can be seen, in similar situations, the probability of 

absence of conflicts in RDS raises strongly as compared to 
the generalized decentralized scheme. In other words, in 
similar situations, the probability of occurring scheduling 
conflicts in RDS is smaller than generalized scheme. 
Therefore, we can expect a much better makespan from 
RDS. As an example regarding Figures 4 and 6, when the 
number of schedulers is about 80, the probability of absence 
of conflicts in the generalized and RDS schemes is 0.5 and 
0.93, respectively. Furthermore, the comparison of Figures 5 
and 7 reveals the differences between the two algorithms. 
As an example, when the Poisson rate is about 20 (or 
averagely every 20 seconds a job is submitted to each of the 
schedulers), the probability of absence of conflicts in the 
generalized and RDS schemes is 0.6 and 0.95, respectively. 
It means that the probabilities of occurring scheduling 
conflicts in this situation are 0.4 and 0.05 for generalized 
and RDS schemes, respectively, which shows the 
differences in avoiding scheduling conflicts between these 
two approaches. 

 
 
 
 
 

IV. CONCLUSION 
We have presented a new approach for handling 

scheduling conflicts in decentralized scheduling schemes. 
The approach, which is also called RDS, is based on 
randomized algorithms. Contrary to the coordination 
algorithms in distributed systems, the RDS imposes no 
further load to the system. Furthermore, it is very simple and 
easily implementable. We have shown the efficiency of the 
RDS through statistical analysis. In the future, we intend to 
implement the RDS scheme in a decentralized system and 
compare its efficiency with available coordination schemes 
in a real Grid environment. 
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