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Abstract—This work describes a Radial Basis Function 

(RBF) neural network method used to analyze ECG signals for 
diagnosing cardiac arrhythmias effectively. The proposed 
method can accurately classify and differentiate normal 
(Normal) and abnormal heartbeats. Abnormal heartbeats 
include left bundle branch block (LBBB), right bundle branch 
block (RBBB), atrial premature contractions (APC) and 
premature ventricular contractions (PVC). This paper 
proposes a three stage, preprocessing, feature extraction and 
classification method for the detection of ECG beat types. In 
the first stage, ECG beats is normalized to a mean of zero and 
standard deviation of unity. Feature extraction module extracts 
wavelet approximate coefficients of ECG signals in conjunction 
with three timing interval features. Then a number of radial 
basis function (RBF) neural networks with different value of 
spread parameter are designed. We compared the classification 
ability of five different classes of ECG signals that were 
achieved over eight files from the MIT/BIH arrhythmia 
database. 

 
Index Terms—ECG Beat Classification, Wavelet, Radial 

Basis Function Neural Network 

I. INTRODUCTION  

The analysis of ECG has been widely used for diagnosing 
many cardiac diseases. The development of accurate and 
quick methods for automatic ECG classification is vital for 
clinical diagnosis of heart diseases. 

In the literature, several methods have been proposed for 
the automatic classification of ECG signals. In [1], the 
authors designed a local and global classifier and combined 
it with a mixture of experts (MOE) approach. In [2] the 
authors used a feed forward neural network as classifier. 
They derived five features included the QRS width and 
offset, amplitude of R segment, the T segment slope and the 
R-R interval duration. In [3], the authors used 
morphological information as features and a neural-network 
classifier for differentiating the ECG beats. In [4], the author 
used Independent Components Analysis (ICA) for ECG 
detection. In [5], different classification systems based on 
linear discriminant classifiers are explored, together with 
different morphological and timing features obtained from 
single and multiple ECG leads. 

In this paper, we have proposed an automated method for 
ECG heartbeats classification into five different classes. For 
feature extraction module, we have used a suitable set of 
features that consists in both morphological and temporal 
features, to include both of the shaping and timing 
information of signal. Then, we investigated the different 
Radial Basis Function (RBF) neural networks and varied the 

spread parameter value for functions of those neural 
networks. Then we have prepared some experiments to 
measure their performances and compare them. 

The paper is organized as follows. Section II explains the 
feature extraction. Section III presents the classifier. Section 
IV, describes the database and performance metrics. Section 
V shows some simulation results. Section VI discusses the 
results and finally Section VII concludes the paper. 

II. FEATURE EXTRACTION 

A. Wavelet Transform 
The continuous wavelet transform (CWT) is a 

generalization of the STFT (Short Time Fourier Transform) 
that allows for analysis at multiple scales. Similar to the 
STFT, the CWT makes use of a windowing function to 
extract signal segments; in this case the window is called a 
wavelet. Unlike the STFT, the analysis window or wavelet 
is not only translated, but dilated and contracted depending 
on the scale of activity under study. Wavelet dilation 
increases the CWT sensitivity to long time-scale events, and 
wavelet contraction increases its sensitivity to short time-
scale events. The continuous wavelet transform is given by 

*1( , ) ( )tC a x t dt
aa
ττ ψ −⎛ ⎞= ⎜ ⎟

⎝ ⎠∫
  (1) 

Where ψ* is the complex conjugate of the mother wavelet 
ψ(t), which is shifted by a time τ and dilated or contracted by 
a factor prior to computing its correlation with the signal 
x(t). The correlation between the signal and the wavelet is 
defined as the integral of their product. The CWT maps x(t) 
into a bivariate function C(a, τ ) that it can be used to 
determine the similarity between x(t) and a wavelet scaled 
by a at a given time τ . The correlation is localized in time 
and is computed over an interval beginning at t = τ and 
ending at t = τ + L, where L represents the duration of the 
wavelet. 

Under contraction (a < 1), the wavelet offers high 
temporal resolution and is well suited for determining the 
onset of short-time events, such as a spikes and transients. 
Under dilation, (a > 1), the wavelet offers high spectral 
resolution and is well suited for determining the frequency 
of sustained, long-term events, such as baseline wander. 
This time-frequency trade-off provides a practical tool for 
ECG analysis. 

A tree-structured filter bank can be used to compute the 
wavelet coefficients C(a, τ ) of the continuous wavelet 
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transform, but only over a dyadic (power of 2) scale of 
dilations and contractions. A tree-structured filter bank splits 
an incoming signal into a lowpass channel using the filter 
H0(z) and a highpass channel using the filter H1(z). The 
lowpass channel can be recursively split N times using the 
same two filters. Signals extracted from the filter bank at 
higher iteration levels contain increasingly longer time-scale 
activity, while those extracted from lower levels contain 
shorter time-scale activity. Using only a dyadic scale of 
wavelet coefficients one can perfectly reconstruct the input 
signal; this possibility highlights the redundancy of 
continuously varying the scale parameter a in the CWT. The 
reconstruction or synthesis filter bank is a mirror image of 
the analysis filter bank. The analysis filters H0(z) and H1(z) 
and the reconstruction filters F0(z) and F1(z) must be 
carefully chosen such that the decomposed signal can be 
perfectly reconstructed. The analysis and reconstruction 
filters have to satisfy antialias and zero-distortion 
conditions.  

Performing wavelet decomposition, involves the 
following steps: 

1. Select a wavelet appropriate for analyzing the signal of 
interest. The wavelet should have morphological features 
that match those to be extracted, highlighted, or detected in 
the input signal. 

2. Derive the filters H0(z) and H1(z) so that an efficient 
filter bank implementation can be used to compute the 
wavelet coefficients. 

3. Derive the filters F0(z) and F1(z) so that an efficient 
inverse filter bank can be used to reconstruct a new version 
of the signal from the modified wavelet coefficients. 

Fortunately, the filters H0(z), H1(z), F0(z), and F1(z) 
have already been computed for a large number of wavelet 
functions, and these filters can be immediately used to study 
signals of interest. If all the wavelet coefficients produced 
by the analysis filter bank are preserved and the signal is 
reconstructed, the synthesized signal will equal the input 
signal. If some coefficients are selectively preserved, then 
we are effectively filtering in the time or scale domain as 
opposed to the conventional frequency domain.  

We have used the discrete wavelet transform (DWT). The 
DWT operates on wavelets that are discretely sampled and 
is calculated by passing a signal through a collection of 
filters (a filter bank) in order to decompose a signal into a 
set of frequency bands. This decomposition allows one to 
selectively examine or modify the content of a signal within 
the chosen bands for the purpose of compression, filtering, 
or signal classification. 

The LP filters produce a set of components, called 
approximations, and the HP filters produce a set of 
components called details. In general, the overall waveform 
of a signal will be primarily contained in the approximation 
coefficients, and short-term transients or high-frequency 
activity (such as spikes) will be contained in the detail 
coefficients. If we reconstruct the signal only using the 
approximation coefficients, we will recover the major 
morphological component. If we reconstruct the signal only 
using the detail coefficients, we will recover the spike 
components [6]. 

B. Feature Extraction 
We constructed ten feature sets based on the ECG data 

wavelet transform by Daubechies mother wavelet at orders 
from one to ten, in conjunction with timing information. We 
tested the various RBF neural network classifiers using each 
of these feature sets and compared the results. Then we used 
the best feature set to evaluate the performance of classifier 
on the all of dataset for the classification of ECG beats into 
five different classes. 

ECG waveform and wavelet transform features were 
extracted by selecting a window of -300 ms to +400 ms 
around the R wave as found in the database annotation. The 
252-sample vectors were normalized to a mean of zero and 
standard deviation of unity. This reduced the DC offset and 
eliminated the amplitude variance from file to file. 

In addition to the morphological features, we extracted 
three local timing features that contributed to the 
discriminating power of morphology-based features, 
especially in discriminating morphologically similar 
heartbeat patterns. They are an R-R time interval ratio (IR) 
and two R-R time intervals. The IR ratio feature reflects the 
deviation from a constant beat rate and was defined as: 

1
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where Ti represents the time at which the R-wave for beat i 
occurs. The local RR-interval ratio provides a convenient 
differentiator between normal beats  and PVC beats )1( >iIR

)1( <iIR , and is normalized by definition )1( =iIR  at 
constant rate). Two other timing features are the next and 
previous R-R time intervals for each heartbeat. Neural 
Network Classifier 

We have used RBF neural networks as the classifier. RBF 
neural networks with their structural simplicity and training 
efficiency are good candidate to perform a nonlinear 
mapping between the input and output vector spaces. RBF 
NN is a fully connected feed forward structure and consists 
of three layers, namely, an input layer, a single layer of 
nonlinear processing units and an output layer. 

The network structure is shown in Figure 1. Input layer is 
composed of input nodes that are equal to the dimension of 
the input vector x. The output of the jth hidden neuron with 
Gaussian transfer function can be calculated as 

2

2
jx c

jh e σ

− −

=
  (3) 

Where hj is the output of the jth neuron, x ∈ ℜnx1 is an 
input vector, cj ∈ ℜnx1 is the jth RBF center, σ is the center 
spread parameter which controls the width of the RBF, and 

2. represents the Euclidean norm. The output of any 

neuron at the output layer of RBF network is calculated as 

1

k
i ij j jy w h

=
= ∑   (4) 

where  is the weight connecting hidden neuron j to 
output neuron i and k is the number of hidden layer neurons. 

ijw
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The mapping properties of the RBF NN can be modified 
through the weights in the output layer, the centers of the 
RBFs, and spread parameter of the Gaussian function. The 
simplest form of RBF network training can be obtained with 
fixed number of centers. If the number of centers is made 
equal to the number of input vectors, namely exact RBF, 
then the error between the desired and actual network 
outputs for the training data set will be equal to zero. In this 
work, exact RBF NN was used. The number of RBF centers 
was made equal to the number of input vectors. 

 

 

Figure 1. Structure of RBF Neural Network.. 

III. DATABASE AND PERFORMANCE METRICS 
The MIT-BIH arrhythmia database [7] was used as the 

data source in this study. The database contains 48 
recordings, each has a duration of 30 minutes and includes 
two leads—the modified limb lead II and one of the 
modified leads V1, V2, V4 or V5. There are over 109,000 
labeled ventricular beats from 15 different heartbeat types. 
The database is annotated both in timing information and 
beat Classification. For more details about MIT-BIH 
Arrhythmia database see [8]. The considered beats in this 
paper refer to the following classes: normal sinus rhythm 
(Normal), left bundle branch block (LBBB), right bundle 
branch block (RBBB), atrial premature contraction beat 
(APC) and ventricular premature contraction beat (PVC). 
We used a total of eight records with numbers: 118, 124, 
207, 208, 209, 214, 222, and 223 from the database. We 
have extracted from them 18,284 beats, 8,291 normal beats, 
3,458 LBBB beats, 3,778 RBBB beats, 867 APC beats and 
1,890 beats from the PVC type. Also for locating beats in 
ECG signals we used the annotation files from database.  

Various approaches were adopted to evaluate the 
classifier configurations. In this study, the heartbeat 
classification abilities are compared by using the following 
four statistical indices: Accuracy (Acc), Sensitivity (Se), 
Positive Predictivity (Pp) and Specificity (Sp), which are 
defined in the following Equations (5-8), respectively. 

The most crucial metric for determining overall system 
performance is, usually, accuracy. We defined the overall 
accuracy of the classifier for each file as follows: 

100T E
cc

T

N NA
N
−

= ×
  (5)  

In this equation, Acc is the accuracy, and the variables,NE 
and NT, represent the total number of classification errors 
and beats in the file, respectively. Sensitivity, Se, the ratio of 
the number of correctly detected events, TP (true positives), 
to the total number of events is given by: 

100TPSe
TP FN

= ×
+   (6) 

where FN (false negatives) is the number of missed 
events. Positive predictivity, Pp, is the ratio of the number of 
correctly detected events, TP, and the total number of events 
detected by the analyzer, and it is given by: 

100TPPp
TP FP

= ×
+   (7) 

where FP (false positives) is the number of falsely 
detected events. The specificity, Sp, the ratio of the number 
of correctly rejected nonevents, TN (true negatives) and the 
total number of nonevents is given by: 

100TNSp
TN FP

= ×
+   (8) 

IV. RESULTS 
We have conducted four various experiments. For the first 

two experiments, random 4,000 beats, 800 from each beat 
type, were selected from the all 18,284 beats. 75 beats from 
each class were used for train and the others were used to 
test the classifiers. In the third experiment, the trained 
network classified each beats of the records, respectively. 
For the forth experiment, all of 18,284 beats were used to 
obtain the overall performance of classifier. However, the 
size of training samples for each class did not changed. The 
last experiment shows the good generalization ability of our 
proposed method, because the all training set was 375 
samples, namely around 2% of all beats in experiment. In 
experiment 1, wavelet coefficients were computed by using 
the daubechies mother wavelet at level 1. Ten different RBF 
neural networks with varying number of spread parameter 
were constructed. They trained by approximate coefficients 
of daubechies wavelets at various orders. Table I presents 
the results obtained from this experiment. 

To obtain more accurate value of spread and to compare 
obtained results more in depth over all performance metrics 
for all classes, experiment 2 was performed. Results are 
displayed in Table II. Spread parameter was explored in a 
smaller range and smaller steps. 

Table III shows the file-by-file comprehensive results 
(experiment 3) for a sample feature set and RBF neural 
network (used db4 wavelet at level 1 and the network with 
the value of spread parameter of 63.9). Also this sample 
RBF 

Neural network and feature subset were used to evaluate 
the overall performance of our proposed method over all 
dataset. The last row of table III shows the performance 
metrics and Table IV proposes the confusion matrix of the 
experiment 4. 
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TABLE I. RESULTS OF EXPERIMENT 1. COMPARING THE PERFORMANCE OF THE CLASSIFIER WITH VARIOUS WAVELET AND SPREAD PARAMETERS. NUMBER OF 
TRAIN SAMPLES ARE 375 BEATS FROM ALL 4000 BEATS. 

 

 
TABLE II. RESULTS OF EXPERIMENT 2. IN DEPTH COMPARING OF THE PERFORMANCE OF THE CLASSIFIER WITH VARIOUS WAVELET AND SPREAD 

PARAMETERS. NUMBER OF TRAIN SAMPLES ARE 375 BEATS FROM ALL 4000 BEATS

 
TABLE III. FILE-BY-FILE DETAILED CLASSIFICATION RESULTS (EXPERIMENT 3 AND 4) 

 

 

V. DISCUSSION 
The large number of known wavelet families and 

functions provides a rich space in which to search for a 
wavelet which will very efficiently represent a signal of 
interest in a large variety of applications. Wavelet families 
include Daubechies, Coiflets, Symlets, Discrete Meyer, 
Biorthogonal and Reverse Biorthogonal, etc. There is no 

absolute way to choose a certain wavelet. The choice of the 
wavelet function depends on the application. Selecting a 
wavelet function which closely matches the signal to be 
processed is of utmost importance in wavelet applications 
[9]. Daubechies wavelet families are similar in shape to 
QRS complex and their energy spectrum is concentrated 
around low frequencies. For finding the best order of db 
wavelet we performed the experiment I. 

Daubechies Wavelet 
Spread 

db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 

0.1 20.01 20.01 20.01 20.01 20.01 20.01 20.01 20.01 20.01 20.01 
1 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.01 
10 69.33 69.14 69.06 69.03 68.81 68.70 68.53 68.37 68.23 68.18 
20 87.47 87.58 87.52 87.52 87.47 87.44 87.47 87.44 87.44 87.44 
30 92.35 92.22 92.41 92.49 92.63 92.74 92.69 92.63 92.63 92.63 
40 93.35 93.35 93.32 92.19 92.27 92.23 92.38 92.52 92.60 92.74 
50 94.42 94.53 94.51 94.51 93.57 93.65 93.65 93.68 93.76 93.79 
60 94.42 94.95 95.00 95.06 95.03 95.03 95.03 93.71 93.79 93.82 
70 93.49 93.76 93.76 93.90 93.90 94.01 94.09 94.15 94.15 94.26 
80 92.27 92.46 92.38 92.63 92.58 93.79 93.84 93.96 94.12 94.29 

Normal LBBB RBBB APC  PVC  
Spread Acc 

Se Sp Pp Se Sp Pp Se Sp Pp Se Sp Pp Se Sp Pp 

63.5 95.23 92.82 98.21 92.82 97.52 99.10 96.45 98.07 99.76 99.03 94.48 97.93 91.94 93.24 99.03 96.02 

63.7 95.23 92.82 98.21 92.82 97.52 99.10 96.45 98.07 99.76 99.03 94.48 97.93 91.94 93.24 99.03 96.02 

63.9 95.25 92.96 98.21 92.83 97.52 99.14 96.58 98.07 99.76 99.03 94.48 97.93 91.94 93.24 99.03 96.02 

64.1 95.25 92.96 98.21 92.83 97.52 99.14 96.58 98.07 99.76 99.03 94.48 97.90 91.81 93.10 99.03 96.01 

64.3 95.22 92.96 98.21 92.83 97.52 99.14 96.58 98.07 99.76 99.03 94.48 97.90 91.81 93.10 99.03 96.01 

64.5 95.22 92.96 98.21 92.83 97.52 99.14 96.58 98.07 99.76 99.03 94.48 97.90 91.81 93.10 99.03 96.01 

Normal LBBB RBBB APC  PVC  

R
ec

or
d Acc 

Se Sp Pp Se Sp Pp Se Sp Pp Se Sp Pp Se Sp Pp 

11
8 96.62 NaN 97.45 0 NaN 99.96 0 97.00 100.00 100.00 98.96 99.45 88.79 31.25 99.73 45.45 

12
4 96.96 NaN 98.54 0 NaN 99.24 0 98.36 87.76 99.60 0 99.62 0 55.32 99.93 96.30 

20
7 97.49 NaN 98.52 0 98.49 97.64 99.51 82.35 99.76 94.59 99.06 99.82 97.22 94.28 99.76 96.12 

20
8 98.33 97.60 99.60 99.74 NaN 99.61 0 NaN 100.00 NaN NaN 99.34 0 99.50 99.24 98.80 

20
9 97.84 97.94 97.14 99.57 NaN 99.73 0 NaN 100.00 NaN 97.13 98.32 89.42 100.00 99.93 33.33 

21
4 97.65 NaN 99.29 0 98.10 100.00 100.00 NaN 99.87 0 NaN 99.56 0 94.14 98.80 90.94 

22
2 75 73.64 92.31 98.96 NaN 93.69 0 NaN 98.99 0 88.46 83.69 35.38 NaN 97.84 0 

22
3 96.77 99.11 97.98 99.46 NaN 99.03 0 NaN 99.84 0 91.67 98.44 62.86 87.53 99.81 99.04 

Al
l 94.64 92.12 98.35 97.89 98.26 98.61 94.28 97.22 99.72 98.92 94.81 97.32 63.77 93.81 99.38 94.56 
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In table I, it can be seen that the best performance for 
RBF neural network, is achieved by the spread parameter 
with value 60 that is 95.06% (Best performance is bolded in 
Table I). The best daubechies wavelet was db4 with level 1. 
Since the steps of spread increasing are large and Accuracy 
was the only performance metric that was used, we 
performed another test (experiment 2).  

In the new experiment, steps of spread were 0.2 and the 
other performance metrics also, computed. RBF Neural 
Networks with both spread values of 63.9 and 64.1 have 
best accuracies. But spread of 63.9 has slightly better 
performance in term of other metrics. Since APC and PVC 
have most importance in clinical applications, we used the 
first spread value in the next experiments. The best results 
are bolded in table II. We attain a high overall accuracy of 
95.25% and a good sensitivity of 94.48% for APC 
arrhythmia, and a sensitivity of 93.24% for PVC heartbeat. 
Then we investigated various parameter values and 
structures, and from these we obtained networks and 
features used for next experiments. In table III the 
classification results of beats for each record can be seen. 
Table IV is the confusion matrix of all data classification 
results. As it can be seen most wrongly classified normal 
beats are those classified as APC (402 beats). If you see 
APC beats in table IV, you find that most misclassified 
APC beats, 30 samples, are classified as normal. The 
mainspring is that, Normal and APC patterns are 
morphologically similar to each other. This highlights the 
importance of three temporal features that we have used in 
feature set. These features improve the discriminating 
ability of the classifier, especially in discriminating 
morphologically similar heartbeat patterns (i.e. Normal and 
APC beats). About PVC beats this is inversely. Number of 
PVC beats that classified as normal beats and number of 
normal beats that classified as PVC beats are 58 and 24, 
respectively. Small value of misclassified beats between 
normal and PVC beats focuses on the morphological 
dissimilarities between Normal and PVC beats. The overall 
accuracy achieved in this experiment was 94.64% over 
18,284 beats (last row of table III). This is lower than the 
95.25% accuracy that we achieved over 4000 beats of 
database. This is consistent with the Inan et al [3] claim, 
that the same method will, generally, produce lower results 
when applied to a greater number of files. 

VI. CONCLUSION 
We have proposed a number of efficient methods for 

accurate classification of ECG beat for a relatively large set 
of data. These methods include three modules: an efficient 
preprocessing module, feature extraction module and 
classifier. For preprocessing module, we have normalized 

ECG beats to a mean of zero and standard deviation of 
unity. In the feature extraction module we have extracted 
morphological and pre-/post RR-interval based features as 
the effective features for differentiating various types of 
ECG beats. Then we prepared some experiments for feature 
selection. Then a number of radial basis function (RBF) 
neural networks with different values of spread parameter 
are designed and compared their ability for classification of 
five different classes of ECG signals. The mother wavelet 
was empirically selected to be daubechies with level one. In 
the first two experiments, the value of spread used in the 
RBF classifier and the order of mother wavelet, was 
empirically determined to be 63.9 and four, respectively. 
Also A classification accuracy of 95.25% for the first 
dataset (4000 beats) and an overall accuracy of detection of 
94.64% were achieved over eight files from the MIT/BIH 
arrhythmia database. 

 
TABLE IV. CONFUSION MATRIX OF EXPERIMENT 4. 

Confusion 
Matrix Normal LBBB RBBB APC PVC 

Normal 7638 167 26 402 58 

LBBB 27 3398 7 0 26 

RBBB 84 13 3673 2 6 

APC 30 2 1 822 12 

PVC 24 24 6 63 1773 
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