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Abstract—This paper investigates a novel approach for 
constructing a family of ISI-free pulses produced by improved 
Nyquist filters with a transfer characteristic derived from an 
ideal staircase frequency characteristic using interpolation 
with sine functions. They equal or outperform some recently 
proposed pulses in terms of ISI performance in the presence of 
sampling errors. The results for error probability outperform 
the 4th degree polynomial pulse for a reasonable number of 
interpolation intervals. The proposed pulses were also 
investigated for OFDM use including DVB systems in order to 
reduce their sensitivity to frequency offset. The results 
presented in this paper equal those of recently found pulses in 
terms of intercarrier interference (ICI) power. 

 
Index Terms—DVB, Nyquist filter, Improved impulse 

response, Inter-Symbol-Interference, OFDM 

I. INTRODUCTION 
Recent works [1], [13], [5] have reported and examined 

new families of pulses which are inter-symbol interference 
(ISI)-free and that asymptotically decay as t-3, t-2 and t-k for 
any integer value of k, respectively [5]. 

Recently, new improved Nyquist pulses were introduced 
[3], [9], [4] and [11], showing smaller maximal distortion, a 
more open eye diagram at the receiver  and a smaller error 
rate in the presence of synchronization errors, i.e. sampling 
the received signal with an offset with regard to ideal 
sampling instants.  

In [1], [13] and [5], G(f) was chosen to be described  by a 
particular waveform in the frequency interval B(1-α) ≤  | f |  
≤ B in order to transfer spectral energy to the higher 
frequencies. This results in a pulse that decreases 
asymptotically as t-2, as compared with t-3 for the RC pulse.  

The resulted time domain pulses, denoted in the sequel 
improved Nyquist pulses have a decreased size first side 
lobe at the expense of a slight increase in the size of 
remaining lobes.    

In a real transmission the received signal is sampled with 
an offset with regard to ideal sampling instants and due to 
the decrease of the first side lobe this results in a decrease of 
the intersymbol interference and a smaller value for the 
probability of error. 

In order to have an asymptotic decay rate ADR of the 
impulse response of t-2, the first derivative of the transfer 
function should have one or more finite amplitude 
discontinuities. 

II. STAIRCASE CHARACTERISTIC 
In a previous paper [9] a low-pass filter with ideal piece-

wise rectangular transfer characteristic showing odd 
symmetry about the corresponding ideally band-limited cut-
off frequency was proposed and investigated. 

Here one started from an ideal frequency characteristic 
composed of rectangles of equal width and obeying an odd-
symmetry law, denoted as Xk(f).  

This frequency characteristic is denoted as staircase 
characteristic and is defined for positive frequencies by 
equation (1) and is illustrated in Figure 1 for a particular 
case.  

 

 
 

Figure 1. Frequency characteristic number 1 (i = 1). 
 

We shall consider as an example a staircase transfer 
function of the improved Nyquist filter Xk(f) defined by two 
parameters a1 and a2 (k = 2)  

)a,a,F(α(f)X 212 =   (1) 

The frequency characteristic of the Nyquist filter with a 
staircase transfer function is defined by relation (2) and is 
dependent on the parameters α, a1 and a2. 

The transfer function X2(f) is constant over seven 
intervals in the filter bandwidth for positive frequency, as 
shown in figure 2 for the particular case α = 0.5. 
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Because the ideal staircase frequency characteristic is 

physically unrealizable, several interpolation techniques can 
be used in order that the filter transfer characteristic should 
be physically implemented. 

The interpolation points are marked with circles. Several 
choices were made regarding the frequency characteristic 
implementation, as shown in figures 2 and 3 for α = 0.5, 
denoted as 1 and 2, respectively.  

III. INTERPOLATION METHOD 
The method for constructing the filter characteristics 

proposed and investigated here uses sine functions 
approximation.  

We approximated the staircase characteristic by n pieces 
of sine functions that link the interpolation points chosen on 
the staircase characteristic. 

The idea is to link two points of coordinates (x1, y1) and 
(x2, y2) by a piece of a sine function, as shown in Figure 2 
for a piece-wise rectangular transfer characteristic composed 
of  7 rectangles (k = 2), or using another arrangement. 

 

       
Figure 2. Frequency characteristic number 2 (α = 0.5). 

 
In a previous paper [9] it was shown that if the frequency 

characteristic is flat around Nyquist frequency, this results in 
improved performance regarding error probability, when the 
impulse response is sampled with a timing offset, as it 
happens in real life.  

So, we chose that the sine function should have a phase of 
3π/2 at the point defined by the coordinates (x2, y2).  

There are 3 parameters that can be used in order to adjust 
the sine function to the imposed task, namely frequency, 
amplitude and phase.  

Let us denote by m the frequency of sine function that 
passes through the points defined by (x1, y1) and (x2, y2) 
where m is not restricted to be an integer, by b the amplitude 
of sine function, by a the offset on vertical axis and by φ the 
phase.  

So, 
)xmsin(2baf(x) ϕπ +⋅+=   (3) 

So, it is obvious that 

11 y)f(x =  (4) 

22 y)f(x =   (5) 

Imposing that the sine function should be maximal flat in 
the interpolation point, so that the limit to the right of the 
derivative of sine function is zero, we get relation (6): 

222 yabyba)f(x −=→=−=   (6) 

Also 

22 xm2π-/23π/23πxm2π =→=+ ϕϕ  (7) 

This condition was imposed in order for the interpolated 
characteristic to present discontinuities of the first derivative 
at the interpolation points. Also, the interpolated 
characteristic is closer to the ideal one.  

As the pieces of sine functions used for interpolations do 
not encompass an integer number of half-periods, the value 
of the first derivative evaluated at the other end of 
interpolation interval will not be zero. This results in an 
impulse response that decays as t-2, as shown in [4].  

1y/2]3π)xm(x[2πsinbaf(x) 2 =+−⋅+=   (8) 

or  
[ ]/23π)x(xm2πsin)y(aaf(x) 22 +−⋅−+=  (9) 

Then evaluating f(x) at 1xx =  

[ ] 12121 y/23π)x(xm2πsin)y(aa)f(x =+−⋅−+=  (10) 

 

 
Figure 3. Sine functions that pass through the points (0.4, 0.8) and (0.7, 

0.1) for three values of m. 
 

Solving eq.(3) for a, we get eq. (11) and (12): 
[ ]
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An example of sine functions that pass through two 
particular points of coordinates (0.4, 0.8) and (0.7, 0.1) for 
three values of m, namely 0.7, 1 and 2 and have a phase of 
3π/2 at the point defined by the co-ordinates (0.7, 0.1) is 
illustrated in Fig. 3. 

 
TABLE I. 

COORDINATES OF INTERPOLATION POINTS (K = 2) 
Ends of 

interpolation 
interval 

Interval 
width 

Coordinates of 
interpolation points 

No interpolation 
(0, 1 α)−  

1 α−  (0, 1 α)− , 
(1 α, 1)−  

(1 α,  1 4α/5)− −  α/5  1)α,(1− , 

1(1 4α/5, a )−  
/5)3α1/5,4α(1 −−

 
α/5  1(1 4α/5, a )−

(1 3α/5, )b−  
(1 3α/5, 1 2α/5)− −  α/5  (1 3α/5, )b−  

2(1 2α/5, )a−  
(1 2α/5, 1 α/5)− −  α/5  2(1 2α/5, )a−  

(1 α/5, 0.5)−  
No interpolation 
(1 α/5,1 α/5)− +  

2α/5  (1 α/5,0.5)− , 
(1 α/5,0.5)+  

(1 α/5,1 2α/5)+ +  α/5  (1 α/5,0.5)+ , 

2(1 2α/5,1 a )+ −  
(1 2α/5,1 3α/5)+ +  α/5  2(1 2α/5,1 a )+ − , 

(1 3α/5, )c+  
(1 3α/5,1 4α/5)+ +  α/5  (1 3α/5, )c+ , 

1(1 4α/5,1 )a+ −  
(1 4α/5,1 α/5)+ +  α/5  1(1 4α/5,1 )a+ − , 

0)α,(1+  

where .
2

aa2
cand

2
aa

b 2121 −−
=

+
=  

The interpolation will result in a new characteristic that is 
close to the staircase characteristic. This behavior will be 
reflected in the results obtained in terms of error probability. 
Increasing the number k of interpolation points will also 
determine the shape of the new characteristic to be closer to 
the ideal staircase characteristic.  

The same is valid for decreasing m. For k = 2, the pair of 
interpolation points for sine functions are illustrated in 
Tables 1 and 2. 

As an example we shall write the equation of a sine 
function of phase /23π  at 1(1 4α/5,a )−  that passes through 
the points of coordinates 1)α,(1−  and 1(1 4α/5,a )− .  

 

121 ay1,y ==       1 21 , 1 4 / 5x xα α= − = −   

[ ]
[ ]

[ ]
[ ]

[ ]

1
1

1
1

1 a sin 2πmα/5 3π/2
f (x)

1 sin 2πmα/5 3π/2

1 a sin 2πmα/5 3π/2
a

1 sin 2πmα/5 3π/2

sin 2πm(x 1 4α/5) 3π/2

+ ⋅ − +
= +

+ − +

⎛ ⎞+ ⋅ − +
+ − ⋅⎜ ⎟⎜ ⎟+ − +⎝ ⎠
⋅ − + +

 (13) 

TABLE II.  
COORDINATES OF INTERPOLATION POINTS (K = 2) 
Ends of 

interpolation 
interval 

Interval 
width 

Coordinates of 
interpolation points 

No interpolation 
(0, 1 α)−  

1 α−  (0, 1 α)− , 
(1 α, 1)−  

(1 α,  1 4α/5)− −  α/5  1)α,(1− , 

1(1 4α/5, a )−  
No interpolation 

(1 4α/5, 1 3α/5)− −  
α/5  1(1 4α/5, a )− , 

1(1 3α/5, a )−  
 

(1 3α/5, 1 2α/5)− −  α/5  1(1 3α/5, a )− , 

2(1 2α/5, a )−  
(1 2α/5, 1 α/5)− −  α/5  2(1 2α/5, a )− , 

(1 α/5, 0.5)−  
No interpolation 

α/3)1/3,α(1 +−  
2α/5  (1 α/5, 0.5)− , 

(1 α/5, 0.5)+  
(1 α/5, 1 2α/5)+ +  α/5  (1 α/5, 0.5)+ , 

2(1 2α/5, 1 a )+ −  
(1 2α/5, 1 3α/5)+ +  α/5  2(1 2α/5, 1 a )+ − , 

1(1 3α/5, 1 a )+ −  
No interpolation 

(1 3α/5, 1 4α/5)+ +  
α/5  1(1 3α/5, 1 a )+ − , 

1(1 4α/5, 1 a )+ −  
(1 4α/5, 1 α)+ +  α/5  1(1 4α/5, 1 a )+ − , 

(1 α, 0)+  
 
 
The impulse response p(t) is obtained by performing  the 

inverse Fourier transform of several pieces of sine function 
that pass through successive interpolation points.  

For instance, in the interval (1 α,  1 4α/5)− − , the 
associated piece of sine function is given by rel. (13), and its 
contribution to the impulse response p(t) is eq. (14): 

1 4α /5
j2πxt

1 1
1 α

p (t) f (x)e dx
−

−

= ∫   (14) 

 

Performing the inverse Fourier transform results in eq. 
(15): 

(

[ ]

2
2 2

1 12 2

2 2
1

2 2
1

1

1 πmαp (t) cosec 2 m a t
8πt(t m ) 5

2πmα 2a (m t ) cos sin (5 4α)πt
5 5

2πmα2(m t ) a cos 1 sin 2(α 1)πt
5

2π(a 1) t (m+t) sin (α(m-5t)+5t)
5

2α( )sinm t

⎛ ⎡ ⎤= ⋅ ⋅ ⋅ − + +⎜ ⎢ ⎥⎜− ⎣ ⎦⎝
⎞⎡ ⎤ ⎡ ⎤+ − ⋅ ⋅ ⋅ − +⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎠

⎛ ⎞⎡ ⎤+ − ⋅ ⋅ − ⋅ − −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
⎡ ⎤− − ⋅ ⋅ ⋅ +⎢ ⎥⎣ ⎦

+ −
mπ 2(α 1)πt
3

⎡ ⎤+ −⎢ ⎥⎣ ⎦

 (15) 
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Also, for the interval (1 α/5, 1 α/5)− + , as f(x) = 0.5 we 
get eq. (16): 

4

α αsin 2(1 ) π t sin 2 1 π t
5 5

p (t)
4πt

⎡ ⎤⎡ ⎤ ⎛ ⎞+ − −⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦=   (16) 

The impulse response hi(t) results from a sum of ten 
Fourier transforms, for both cases i = 1 and i = 2, and suffers 
a time scaling, 2/tt →  taking into account the constraints 
imposed by Nyquist I criterion for ISI-free signaling. 

∑
=

=
10

1k
ki (t)p(t)h   (17) 

The impulse response h2(t) is illustrated in Fig. 4 for 
0.5α =  together with impulse response g(t) defined in [4] 

by a2 = 25, a3 = -64, a4 = 55 for poly pulse. 
 

    

 
Figure 4. Impulse responses of new filter (i = 2, a1 = 0.68, a2 = 0.6) and 

poly filter [4] for 0.5α = . 

 

The impulse responses h1(t) and h2(t) are quite similar, 
and show no significant difference.  

The optimal value of parameters a1, a2 were determined 
for the piece-wise rectangular improved Nyquist 
characteristic in a previous paper [9] and are presented in 
Tables 3 to 5, together with the values of the error 
probability for  poly [5] characteristic defined by a2, a3 and 
a4.  

We worked with k = 2, a total number of intervals equal 
to 10 and a number of interpolation intervals 8 and 6, 
respectively, as illustrated in figures 1 and 2 and Tables 1 
and 2. 

Performing inverse Fourier transforms on the pieces of 
sine functions defined on 8 intervals plus 2 rectangular 
functions defined in Table 1 and 2 and summing all the 
contributions resulted in the impulse response h(t). 

This is illustrated in figures 4, 5 and 6 together with poly 
pulse, taken as a reference. 

 

 
Figure 5. Impulse responses of poly and new filter (i = 1, a1 = 0.69, a2 = 

0.62) for α = 0.35. 
 

 
Figure 6. Impulse responses of poly and new filter (i = 1, a1 = 0.62, a2 = 

0.58) for α = 0.25. 

IV. OFDM USE 
The OFDM technique is very sensitive to carrier 

frequency offset caused by the jitter of carrier wave and 
phase errors between the transmitter and receiver. In the 
sequel we present and investigate the use of the new ISI-free 
pulses derived above in a 64-carrier OFDM system. 

The complex envelope of one radio frequency (RF) N-
subcarrier OFDM block with pulse-shaping [11] is 
expressed as: 

( ) ( )∑
−

=

=
1N

0k

tf2πj
k

tf2πj kc etpaetx  (18) 

where: 1j −= , fC is the carrier frequency, fk is the 
subcarrier frequency of the k-th subcarrier, ( )tp  is the time-
limited pulse shaping function and ka  is the data symbol 
transmitted on the k-th subcarrier and has mean zero and 
normalized average symbol energy; data symbols are 
uncorrelated. 

Frequency offset, ( )0ΔfΔf ≥ , and phase error θ , are 
introduced during transmission because of channel 
distortion or receiver crystal oscillator inaccuracy. 

The average ICI power, averaged across different 
sequences [11] is: 
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∑
−

=
≠

+⎟
⎠
⎞

⎜
⎝
⎛ −

=
1N

0k
mk

2
m
ICI Δf

T
mkPσ

 (19) 

The average ICI power depends not only on the desired 
symbol location m, and the transmitted symbol sequence, 
but also on the pulse-shaping function at the frequencies 
( )( )( ) m,k,Δf/Tmk ≠+− where k = 0, 1, …, N -1 and the 

number N of subcarriers.  
The ratio of average signal power to average ICI power is 

denoted as SIR and expressed in equation (20). 

( ) ( )( )∑
−

=
≠

+−=
1N

0k
mk

22 Δf/TmkP/ΔFPSIR  (20) 

 
Relation (20) was evaluated for a number N = 64 

subcarriers both for the poly pulse [5] and the new pulse 
produced by sine interpolation, defined by k = 2. Almost 
perfect overlapping of the SIR characteristics was found, as 
inferred from figure 7, where SIR is represented as a 
function of frequency offset. 

 

 
Figure 7. SIR for proposed pulses and poly pulse in a 64-subcarrier OFDM 

system. 
 

V. SIMULATION RESULTS  
In this section, the pulses produced by the improved 

Nyquist low-pass filters defined above  are studied in terms 
of ISI error probability. 

The probability of error measures the performances of the 
pulses regarding inter-symbol interferences and includes the 
effects of noise, synchronization error and distortion. The 
probability of error eP  was evaluated as in [2] using Fourier 
series. 

( ) ( )

( )
2

1

2 2M 0
e

m 1
Modd

N

k
k N

exp m ω /2 sin mωg1 2P
2 π m

cos mωg

=

=

⎛ ⎞−
⎜ ⎟= − ⋅
⎜ ⎟
⎝ ⎠

⋅

∑

∏

 (21) 

Here M represents the number of coefficients considered 
in the approximate Fourier series of noise complementary 
distribution function; f/Tπ2ω =  -angular frequency; fT  is 
the period used in the series; N1 and N2 represent the 

number of interfering symbols before and after the 
transmitted symbol; kT)p(tgk −=  where p(t) is the pulse 
shape used and T is the bit interval.  

The results are computed using 40Tf =  and M = 61 for 
N = 210 interfering symbols and a signal to noise ratio SNR 
= 15 dB, for all the cases.  

The values of the parameters k1 a....,,a , are determined 
so that the error probability should be minimized. 

The results are reported in Tables 3 to 5 together with 
those for 2X (f)  and poly [5] pulse, taken as a reference. 

 
TABLE III.  

ISI ERROR PROBABILITY OF THE PROPOSED NYQUIST PULSES (K 
= 2) AND POLY  FOR N = 210 INTERFERING SYMBOLS AND SNR = 15 

DB 
                  t/TB = 0.05 

X2(f) 
a1 a2 Pe 

   X2(f) 0.62 0.58 4.53042 × 10-8 

1 0.62 0.58 4.688 × 10-8 new 
(k=2) 2 0,65 0.57 4.714 ×10-8 

0.25α =  

     poly (40, -100, 85) 4.734 × 10-8 
   X2(f) 0.64 0.58 3.0597 × 10-8 
new  1 0.69 0.6 3.180 × 10-8 

(k=2) 2 0.65 0.59 3.156 × 10-8 
0.35α =  

poly ( 32, -80, 69) 3.290 × 10-8 

   X2(f) 0.68 0.6 1.9494 × 10-8 
1 0.69 0.62 1.985 × 10-8 new  

(k=2) 2 0.68 0.6 1.985 × 10-8 
0.5α =  

poly (25, -64, 55) 2.057 × 10-8 
 

TABLE IV.  
ISI ERROR PROBABILITY OF THE PROPOSED NYQUIST PULSES (K 
= 2) AND POLY  FOR  N = 210 INTERFERING SYMBOLS AND SNR = 15 

DB 

                  t/TB = 0.1 
X2(f) 

a1 a2 Pe 
   X2(f) 0.64 0.58 8.261 × 10-7 

1 0.65 0.58 8.735 × 10-7 new  
(k=2) 2 0.66 0.59 8.715 × 10-7 

0.25α =  

poly (40, -100, 85) 8.834 × 10-7 
   X2(f) 0.68 0.6 3.568 × 10-7 

1 0.69 0.62 3.735 × 10-7 new  
(k=2) 2 0.68 0.61 3.733 × 10-7 

0.35α =  

poly ( 32, -80, 69) 3.839 × 10-7 

   X2(f) 0.68 0.6 1.332 × 10-7 
1 0.71 0.63 1.318 × 10-7 new  

(k=2) 2 0.7 0.62 1.319 × 10-7
 

0.5α =  

poly (25, -64, 55) 1.354 × 10-7 
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TABLE V.  
ISI ERROR PROBABILITY OF THE PROPOSED NYQUIST PULSES 

(K=2) AND POLY FOR  N = 210 INTERFERING SYMBOLS AND SNR = 
15 DB 
                  t/TB = 0.2 

X2(f) 
a1 a2 Pe 

   X2(f) 0.66 0.6 2.038 × 10-4 

1 0.67 0.60 2.166 × 10-4 new  
(k=2) 2 0.67 0.61 2.166 × 10-4 

  0.25α =  

poly (40, -100, 85) 2.241 × 10-4 
   X2(f) 0.7 0.62 6.453 × 10-5 

1 0.72 0.63 6.560 × 10-5 new  
(k=2) 2 0.71 0.63 6.563 × 10-5 

 0.35α =  

poly ( 32, -80, 69) 6.563 × 10-5 

   X2(f) 0.72 0.62 1.807 × 10-5 
1 0.755 0.65 1.575 × 10-5 new 

(k=2) 2 0.75 0.65 1.590 × 10-5
 

   0.5α =  

poly (25, -64, 55) 1.520 × 10-5 

VI. CONCLUSION 
We proposed and evaluated a new type of a Nyquist 

transfer function that approximates an ideal staircase 
frequency characteristic with 6 levels using pieces of sine 
functions that pass through interpolation points in terms of 
inter-symbol interference.  

We found the minimal values for error probability that are 
listed in Tables 3 to 5. The proposed pulses outperform the 
poly pulse for timing offset values t/TB = 0.05 and t/TB = 0.1 
and are slightly outperformed by the poly pulse only for 0.5α =  
and t/TB = 0.2. 

Better values of the error probability could be obtained if 
the number k of rectangles in the staircase characteristic and 
the number n of interpolation points are increased, e.g. for k 
> 2 and  n > 10. 

The results for error probability in the presence of symbol 
timing error for the same excess bandwidth outperform the 
4th degree polynomial pulse [5] in most cases and are 
comparable with it for k = 2, 0.5α = and t/TB = 0.2.  

The new pulses and poly pulse and are equal in terms of 
SIR (ratio of average signal power to average ICI power) for 
OFDM use in the presence of frequency offset. 

The new pulses are also suitable for use in DVB systems. 
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