
Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

High-Level Models for Transformation-
Oriented Design of Hardware and Embedded

Systems
Robertas DAMASEVICIUS, Vytautas STUIKYS

Kaunas University of Technology, Lithuania
robertas.damasevicius@ktu.lt

Abstract—Evolution of design methodologies follows a

common trail: technology scaling leads to growing design
complexity and rising abstraction level in the domain.
Introduction of new (higher) abstraction levels emphasizes the
importance of reuse and transformations. The design process
can be seen as a sequence of high-level transformations from
the higher-level specification to the lower-level one. We analyze
high-level modeling and metaprogramming techniques for
supporting transformations based on domain variability
models. Next, we present a reuse evolution model for domain
component design at a higher abstraction level to support the
transformation-oriented approaches. Finally, high-level
modeling techniques (UML-domain language metamodels for
domain code generation, parameterized UML classes for
template metaprogramming, feature models for explicit
representation of variability) for specification of
transformations and metaprograms are analyzed.

Index Terms—design automation, transformation, hardware
and embedded system design

I. INTRODUCTION
In recent years, there have been two significant trends in

hardware (HW) and embedded system (ES) design domains.
The first trend is the rapid growth of complexity in the
design of extremely complex devices, such as System-on-
Chip (SoC). The second trend is the adoption of UML to
support design of real-time and embedded systems [1]. This
progress is partially due to the continuous efforts of the
electronics design automation (EDA) community to improve
design methodologies based on higher-level abstractions and
reuse [2]. Here abstraction is understood as a description of
the design problem at some level of generalization that
allows concentrating on the key aspects of the problem
without getting into details.

Moving towards high-level abstractions is a long-standing
engineering tradition in HW and ES design. In the past, a
higher-level abstraction was usually introduced every 7-10
years, but now it happens even faster. The introduction of
new abstraction levels raises the stake of various design
methodologies based on reuse and transformations, such as
platform-based design [3], because the ultimate goal of
using a higher-level abstraction is to produce a lower-level
design specification automatically. Design abstractions are
of two categories: either design problem related (e.g., logic
gates, platforms, variability models, etc.) or solution domain
related (e.g., high-level specification languages, hardware
description languages (HDLs), metamodels, etc.).

Abstractly, the design process requires that solution
domain abstractions are relevantly and correctly mapped to

design domain abstractions. The mapping is to be performed
by satisfying some constrains and requirements for a given
application. In this context, the design process can be seen
as a high-level transformation for transforming the higher-
level specification into the lower-level one.

The use of higher-level abstractions means at least two
things for a designer: 1) he/she can deal with the design
more abstractly, thus eliminating much of unnecessary
details and gaining design efficiency; 2) he/she can express
design variability, thus enabling the creation of generic
solutions for reuse. In a broader sense, the introduction of
higher-level abstractions also raises other issues, such as
unambiguous understanding of categories and terms used in
the Electronic Design Automation (EDA) community [4]
and dealing with the levels of abstractions and their
dependencies in a unified manner [5].

The paper presents an analysis of high-level models for
implementation of transformational approaches based on
higher-level abstractions in HW and ES design domains. We
motivate the importance of our research by the following
reasons: 1) The necessity of considering design at a higher
abstraction level caused by ever increasing complexity of
systems to be designed [6]; 2) The efforts of introducing
high-level languages such as UML and SystemC in the HW
and ES design practice [7]; 3) The efforts to exploit the
reuse potential in design methodologies as widely as
possible in both dimensions (component-based and
generative/transformational reuse) [2, 8]. 4) Introduction of
novel design paradigms, such as platform-based design [3],
ambient intelligence [9], product lines [10]; 5) The
increasing role of configurable components in design [8]
(configuration is a way for expressing variability at a higher
abstraction level).

The paper is organized as follows. Section 2 analyzes the
related works. Section 3 presents analyzes domain
variability and reuse models for well-understood design
domains. Section 4 analyzes the capabilities of
metaprogramming techniques within solution domain.
Section 5 describes various high level models for
specification of transformations and metaprogramming in
the domain. Finally, Sections 6 discusses the results and
presents conclusions.

II. RELATED WORKS

HW and ES modeling at a higher level of abstraction is a
hot topic [11-14], which covers UML-based modeling [15,
16], design patterns [17], meta-models and meta-modeling

 86
Digital Object Identifier 10.4316/AECE.2008.02016

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:45:54 (UTC) by 18.207.126.53. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

[18], model and metamodel taxonomies [19, 20]. A shift
towards high-level modeling of HW and ES represents a
decisive turn of the EDA community towards a meta-
dimension of design [21]. Models are used to define the
syntax, semantics and composition of domain components
using object-oriented or architecture-based abstractions [19],
extend the syntax of HDLs by providing a meta-level above
the user modeling level [22], define the relationship between
the abstract syntax and semantics domains [17], represent
the evolution and co-evolution of design artifacts [18],
describe the component reuse process [23], capture and
manage the system requirements [24], allow for formal
analysis, verification, and ES validation at the design time
[25], define platforms for creating executable applications
from system-level specifications [15], define complex
design steps such as refactorings or introduce complex
communication patterns between components [26].

Modeling is required to raise the level of abstraction
above the HDL level. As such, modeling can be used for the
high-level specification and verification of HW and ES.
However, the seamless integration of modeling into domain
design flows and the need for increased design productivity
requires a higher degree of domain automation, which can
not be achieved without defining mappings from user
models to other representations (e.g., other models, code,
storage formats, etc.). Such mappings are metamodels that
connect the problem domains and the solution domains, or
product domains and process domains [26, 27]. Metamodels
are also used for tool integration [25, 28]; specification and
generation of domain-specific modeling languages [29]; and
for specifying various aspects of the developed system [30].

The primary motivation for introducing metamodels is to
reuse models based on concepts defined in a metamodel and
to automate the production of design systems using
transformational and generative techniques. Metamodeling
defines transformations using the elements of the
metamodel, and offers algorithms to apply these
transformations using generative techniques. Metamodel-
based transformations permit descriptions of mappings
between models created using different concepts from
possibly overlapping domains. Transformation process
facilitates reuse of models specified in one domain-specific
modeling language in another context, such as using another
modeling language [31]. Various techniques can be used for
meta-modeling, but usually meta-modeling is achieved
using a subset of UML and Model-Driven Architecture
(MDA) methodology as a theoretical background [32].

Program and model transformation is a very broad
research area with a long history [33, 34, 35].
Transformations can be classified into two main categories:
program source code transformations (not considered in this
paper) and model transformations [35]. Transformations
commonly used by designers can be defined as
transformation patterns [36] or generic transformations [37]
that capture intelligent and well-proven design techniques.
Generic transformations represent a link between source-
level program transformations and model transformations.
Model transformations have the direct relation with the
UML and MDA concept [32]. It is also recognized and
accepted in HW and ES domains [4].

Conceptually, model transformation is similar to program

transformation, but is applied to models instead of
programs. It provides capability for describing relationships
and mappings between model concepts (i.e. metamodel
elements) and sets of models, where a mapping defines a
correspondence between elements of the source and target
model. Model transformations can be classified as
endogenous and exogenous [38]. Endogenous
transformations are between models expressed in the same
language, e.g., code generation, reverse engineering,
migration. Exogenous transformations are between models
expressed using different languages, e.g., optimization,
refactoring, simplification. Also a distinction can be made
between horizontal transformations, where the source and
target models reside at the same abstraction level, and
vertical transformation, where the source and target models
reside at different abstraction levels.

The domain of model transformations is closely related to
the modeling domain. Transformations itself can be
modeled using models and metamodels [39].
Transformations can be treated as captured executable
designs and architectural patterns or metamodels that can be
applied in many contexts to solve a narrow specific design
task [40]. Specifying the transformations as metamodels
allows development of tools that support the controlled
evolution of models [41]. Furthermore, transformations also
can be used to support variability within system product
lines at the model level [42].

Summarizing, the role of transformation processes in
design of complex electronic systems is increasing due to a
common trend to raise the abstraction level in HW/ES
design by introducing high-level specification languages
(such as UML), which underscores the need of design
automation in the domain.

III. VARIABILITY AND REUSE MODELS IN WELL-
UNDERSTOOD DESIGN DOMAINS

A. Context of research

We assume that the design is specified at a higher
abstraction level using higher-level abstractions such as
UML and meta-languages and a lower-level representation
of the design using HDLs such as VHDL, Verilog or
SystemC [7]. Furthermore, high-level design is not only
directed to produce a specific solution (lower-level
representation) from a given high-level specification, but
rather it is oriented to describe a family of related solutions,
i.e., the design is variability-oriented.

We define the design process at a higher abstraction level
as a set of interrelated transformation tasks. A
transformation task is a transformation from a design
problem specification described at the higher abstraction
level to the lower abstraction level. In our case, higher-level
abstractions are metamodels, UML, metalanguage and
metaprogramming techniques [43]. Lower-level abstractions
are system/component specifications in a HDL.
Transformations usually are performed automatically, but
for some kind of higher-level abstractions, such as meta-
metamodels, can be performed manually.

We define transformation in well-understood design
domains (WUDD). A WUDD is (1) a sub-domain of a larger
design domain; (2) it has well-defined and well-proven

 87

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:45:54 (UTC) by 18.207.126.53. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

models; (3) it is narrow enough but has multiple
applications; and (4) it may require an analysis of different
characteristics (aspects, models, etc.) for different
applications, thus the commonalities, specificity, and
variability can be easily captured using ad hoc (the usual
design practice) or systematic domain analysis methods such
as those overviewed in [44].

The primary motivations for introducing a concept of
WUDD are: (1) to achieve a higher extent of reuse; (2) to
facilitate the implementation of transformation/generative
reuse; (3) to achieve some unification in the provided study
and experiments. Note that it is not necessary to analyze the
domains only while considering application of UML
(model-based) and metaprogramming technologies because
these technologies are domain independent. But on the other
hand, to implement metaprogramming is much easier for the
WUDDs.

HW and ES domains contain a wide variety of WUDDs.
Examples are: soft IP computational models [46],
communication-based design [46], interface-based design
[47], reliable design based on redundancy models [48], and
algorithms for embedded software [49]. After we have
selected a particular WUDD, the next step is to define a
variability model for this domain.

B. Variability model for coarse-grained soft IPs
The variability model is a key point for implementing

transformations. A WUDD is described as a set of features
or aspects which are to be expressed through parameters.
Parameters may be different for some aspects, thus the
parameters may have different values. The aspects belong to
basic categories, expressing commonalities, specificity,
variability, functional, structural or other aspects. As the
variability aspects are most important, the dependencies
between different variability aspects are taken into account,
too. Dependencies within variability are the most crucial
part of the model because they may require in-depth analysis
or may depend upon the context of an application domain.
Furthermore, in some cases dependencies can be very
complex, thus requiring the vast amount of modeling efforts.

An example of such variability model is presented in
Table I (taken from [50]). The model consists of variability
and commonality only. It is assumed that the variability
dependencies, i.e. dependencies between different parameter
values, are a separate issue. A similar model for the
configurable processor is outlined in [8] without explicit
representation of parameters for alternatives.

Implementation of the variability model can be carried
out differently. For example, one alternative is to develop a
set of reusable components, where each component
represents some aspects of the model. The other alternative
is the integration of all anticipated aspects of the model into
a generic specification, thus developing a generic
component as a specific kind of the transformation system
(or generator). Such a system then can be used for
generating an instance for the concrete application when it is
actually to be designed. In general, the development and
implementation of the generator and the use of the generator
can be viewed as a twin life cycle model [51], the higher-
level model which combines design for reuse (the
development of generators) and design with reuse (the use

of generators). Actually this concept is implemented in
design repositories already exploited in the EDA community
for soft IP (Intellectual Property) exchange [52].

TABLE I. VARIABILITY MODEL FOR DSP MICROPROCESSOR

DESIGN (ACCORDING TO [50])

Parameter Range Default Description

Data word 8-64 bits 16 bits Data word length

Data address 8-23 bits 16 bits < = data word (dependency)

Program word 32-… 32 bits Commonality of the model

Program
address

8-19 bits 16 bits <= data word (dependency)

Multiplier
width

8-64 bits Data word
Word length of multiplier
operands (dependency)

MUL guard
bits

0- 16 bits 8 bits
<= data word – 2
(dependency)

MAC type 0-…
0 (basic
unit)

Commonality of the model

Shifter type 0-…
0 (basic
unit)

Commonality of the model

ALU type 0-…
0 (basic
unit)

Commonality of the model

Index registers 8 or 16 8 Number of index registers

Accumulators 2, 3 or 4 4 Number of accumulators

Enable C & D 0 or 1
0 (not
enable)

Use of C and D registers as
ALU operands

Modifier only 0 or 1
0 (not
enable)

Only odd-numbered index
registers can be modifiers

Loop registers 0-8
0 (no loop
HW)

Number of HW looping
units

Address modes 0-3 0
Supported data-addressing
modes

C. Reuse evolution model

At the core of the transformation-oriented approach to
system design are two models: reuse evolution model
(REM) and variability model. While the variability model is
applied only when design entities are modified (e.g., for the
product line design), the REM is applied throughout the
entire life cycle of the design entity. The REM is seen as a
framework for understanding of the soft IP-based system
design and evolution processes based on the design for reuse
and design for change paradigms.

The primary concept of the REM is simple: the systems
(components) must evolve from the already existing ones
rather than being developed from scratch. The evolution is
achieved by change (customization, adaptation, etc.) of the
existing systems, transformation of the existing high-level
models and low-level code artefacts, reuse of models,
components (soft IPs) and subsystems. Although the
introduced model does not restrict the kind of changes, only
minor changes (e. g., adding a minor glue code to the
coarse-grained soft IP through an external composition [53])

 88

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:45:54 (UTC) by 18.207.126.53. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

are usually allowed. Therefore, grey-box reuse is the central
point in the proposed model.

The idea of the REM is borrowed from the Spiral model
[54] well-known in software engineering, which is used to
describe a software development process iteratively. The
evolution of reuse models, as the REM suggests, is a
continuous process that has three phases: search/analysis,
understanding and adaptation/ modification (Fig. 1).

1) At the search/analysis phase, the component candidates
(instances), which are considered as black-box soft IPs, are
searched and selected for usage.

2) At the understanding phase, the components are
analyzed as glass-box entities. Their functionality,
architecture and potential for reuse and modification is
understood.

3) At the adaptation/modification phase, a designer
performs adaptation (extension of functionality), as well as
modifications (introduction of variations) based on grey-box
reuse. The modified component is used in the currently
designed system or can be used again as the black-box entity
in the other context of an application, and thus the evolution
process repeats itself in a spiral-like cycle.

Design
phases

Black-box
reuse

Glass-box
reuse

Gray-box
reuse

Reuse
dimensions

Reuse
dimensions

Reuse
dimensions

Search/
analysis

Understanding Modification

Figure 1. Reuse Evolution Model: Designer’s Viewpoint.

However, the REM differs from the Spiral model

significantly as follows:
1) REM explicitly focuses on the reuse process in design.

It describes three different stages of reuse, reuse models
used and the particular actions of the designer.

2) It combines the ideas of design-for-reuse and design-
for-change. Design-for-reuse promotes the development of
reusable components. Design-for-change promotes the
development of components while foreseeing and
anticipating future modifications and changes. The
combination of two paradigms requires the development of
modifiable and changeable components using open
transformation environments and catalogues of design
transformations in the same way as the design patterns are
catalogued.

3) The process of evolution is continuous, uninterrupted
and possibly everlasting. No component is being ever

finished, finally released or disposed after the end of its life
cycle. The usage of a particular design entity may be
discontinued in a certain context of an application, but it is
preserved for possible future uses and modifications in other
contexts of application.

IV. METAPROGRAMMING METHODOLOGY

Metaprogramming is a methodology which allows
manipulations with programs as data [55]. The methodology
allows representing generic specifications for reuse. The
generic specification represents domain variability either
implicitly or explicitly. Once the domain is expressed as a
metaprogram, the metaprogram and its processing tool is a
vehicle for generating the domain program instances.

There are two kinds of metaprogramming: homogeneous
and heterogeneous ones. Homogeneous metaprogramming
deals with program transformations within the endogeneous
environments. Heterogeneous metaprogramming deals with
program transformations within the exogeneous
environments (usually two).

Homogeneous metaprogramming depends on the
capabilities of the given domain language. The key point is
that the domain language should provide a support for
realization of the metaprogramming concept. More
precisely, such a language should allow the decomposition
of its constructs into two levels as follows. The first level
represents the lower-level constructs for expressing basic
domain functionality. The second level represents higher
(meta)-level constructs for expressing variability and
generalization. Homogeneous metaprogramming is typically
used for describing generic domain components. Two
standard hardware languages (VHDL and SystemC) support
homogeneous metaprogramming: VHDL has Generic
statement and SystemC has class template.

 Heterogeneous metaprogramming depends on the
capabilities of a metalanguage, which has metaconstructs
(such as meta-if, meta-for) and provides support for
implementing the metaprogramming techniques. The main
aim is to create a metaprogram – a program generator for a
narrow domain of application. Conceptually, a metaprogram
is based on the domain variability model [56]. Structurally, a
metaprogram consists of a generic interface, domain code
instances and a modification algorithm that describes
generation of a particular domain program depending upon
values of the generic parameters (Fig. 2).

Metaspecification

Generic interface

has has

Generic parameter

contains
1

*
Modification algorithm

contains

Program instance

1

*

Metaconstruct
implements

Metalanguage
describes

Domain language

describes
depends

Metacode contains

Figure 2. Structure of a Metaprogram.

 89

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:45:54 (UTC) by 18.207.126.53. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

Heterogeneous metaprogramming uses two different

languages in the same metaprogram. The lower-level
language (domain language) is used for expressing the basic
domain functionality. The higher-level language
(metalanguage) is used for expressing generalization and
describing domain program modifications. A general-
purpose programming language (such as C++, Java) can be
used as a metalanguage for implementing component
generators. An alternative is to use a dedicated
metalanguage (such as Open PROMOL [57]), which is
dedicated to generic component parameterization and
component instance generation. Though there are no
essential differences between both methods, the second has
some advantages from the user's perspective. A dedicated
metalanguage processor can better ensure the explicit
separation of concerns when implementing external
parameterization, thus giving some advantages for a user.

The capabilities of homogeneous and heterogeneous
metaprogramming are compared in Table II. The particular
advantage of heterogeneous metaprogramming is its
suitability for developing domain code generators. For more
information concerning heterogeneous metaprogramming,
see [44, 53, 56, 57, 58].

TABLE II. HOMOGENEOUS METAPROGRAMMING VS.

HETEROGENEOUS METAPROGRAMMING

 Criteria Homogeneous
metaprogramming

 Heterogeneous
metaprogramming

Need of an external
metalanguage No Yes

Kind of languages Domain (target)
only

Meta and domain
(target)

Type of
metalanguage

Domain language
subset

Metalanguage or
programming language
as a metalanguage

Dependency upon
target language Dependent Independent

Separation of
instances within
generic specification

Implicit within
compiler (user
inaccessible)

Explicit (user visible&
accessible) via external
processor

Scope of
components

Fine-grained
components

From fine- to coarse-
grained

Scope of variability
expression Restricted From grey- to white-

box reuse

Adaptation to
hardware synthesis
limitations

Limited adaptation No limitations

Verification
problem Moderate Difficult

V. HIGH-LEVEL MODELS FOR SPECIFICATION OF
TRANSFORMATION AND METAPROGRAMMING

A. Concept of model and metamodel
Models are abstract views of a system that describe the

structure and behavior of the system and the relationship
between the parts of the system. Models underline the
features of a system that are important to the designer, while
other (unimportant) features are not represented. Models are
implemented using a domain language (e.g., a HDL). Such
implementations are specific domain systems performing a

particular domain task. What lies behind a model is the
relationship between modeling language constructs and
domain language constructs. Such relationship can be
defined in a metamodel that represents an abstract view on
system description notations and describes a mapping
between particular elements of these notations. Metamodel
relates to the model of a system, as the model of the system
relates to the system itself. Therefore, the model-based
design allows to build a hierarchy of models (metamodels,
meta-metamodels, etc.) which allows to model domain
systems at multiple levels of abstraction and detail.

The process of model-based design of a system from the
abstract representation to the low level implementation
involves the usage of two languages: 1) model-based design
languages (such as UML) are used explicitly to describe a
model of the system, while 2) domain language (such as
VHDL, SystemC) is used implicitly when a system (or parts
thereof) are generated from the model. Generally, this
means that model-based design requires two metamodels: 1)
a metamodel of a model-based design language (e.g., MOF
[59] for UML) and 2) a metamodel of a relationship
between abstractions of a model-based design language and
a domain language (e.g., UML-VHDL metamodel).

B. Metamodel as a bridge between models and
metaprograms

The practical application of metamodels is the description
of transformation from high-level system specification in a
modeling language to a specific implementation in a HDL.
An example of such metamodel, describing generation of
VHDL component from UML state diagrams is given in
Fig. 3. UML state diagrams are composed of states and
transitions. UML states are always mapped to a case
statement within a VHDL process. A special internal signal
“state” is used to activate the process. Then depending upon
a value of the signal “state”, the particular actions are
selected and executed. UML events correspond to VHDL
signals. UML actions are represented in VHDL as sequential
statements selected using the case statement and are
executed within the process.

Figure 3. A Relationship Metamodel Between UML State Diagram and
VHDL Abstractions.

Such transformation between UML and VHDL van be
performed manually or can be automated using the
heterogeneous metaprogramming techniques. In the latter
case, the metamodel serves as a guideline for developing a
metaprogram. For example, a metamodel shown in Fig. 2
was used to develop a VHDL code generator [27] in a
PragScript scripting language used by the UMLStudio
package [60]. PragScript is a LISP-like language and in this

 90

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:45:54 (UTC) by 18.207.126.53. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

context can be treated as a metalanguage. A PragScript
script encapsulates two levels of abstraction: meta-level
provides access to the data stored by UMLStudio projects
and describes generation of VHDL code, which is at the
domain level of abstraction.

C. Generic model as a high level specification of
metaprograms

Another view to metamodeling considers metamodels as
generic models that captures aspects specific to the domain
at hand. The model-based design provides several
mechanisms for describing genericity in the domain. 1)
Generalization (inheritance) relationship: abstract class
(super-class) is a generic representation of its subclasses. 2)
Template classes: parameterized classes in UML class
diagrams. 3) Design patterns that can be seen as a generic
representation of a class of design solutions or design
activities [27, 61]. 4) Feature models that describe
mandatory and optional features of a system using Feature
Diagrams [62, 63].

Such generic models can be directly or indirectly
implemented as metaprograms. The main mechanism of
metaprogramming for describing genericity is the
metalanguage itself. It allows representing common as well
as variable parts of a domain system in a generic fashion.
Here we focus on the implementation of template classes
and feature models.

A template class defines a family of classes in UML
models. Template classes can be implemented in SystemC
using the template metaprogramming [64] technique, which
is a special case of homogeneous metaprogramming.
Template keyword is used to specify a generic skeleton for a
class parameterized by generic parameters or types. To
complete the declaration, a programmer must supply a
concrete value for each of the template’s parameters, which
must be known at compile time. Specification of parameter
values causes the template to be instantiated: replacing all
occurrences of the parameter with its value creates an
instance of the template. An example of template-based
metaprogramming is presented in Fig. 4, where a
parameterized gate class in UML and the corresponding
SystemC generic gate module is presented. Template
parameter T is used to select, whether the AND gate, or the
OR gate will be implemented.

 template <int T>
SC_MODULE(gate) {

sc_in <bool > x, y;
sc_out<bool > z;

void process (void) {
if (T == 1)

z = x & y;
else if (T == 2)

z = x | y;
};

gate (sc_module_name nm):

sc_module(nm){
SC_METHOD (process);
sensitive << x << y;

};
};

 (a) (b)

Figure 4. An example of a) parameterized class in UML, and b) template-
based metaprogramming in systemc.

The reasons behind the introduction of the generic

parameters are as follows: (1) to express the generalization

of a model, when new generic parameters are introduced,
and (2) to perform the customization of a model, when a
specific instance is derived depending on the values of the
generic parameters. For example, a parameter T (Fig. 4)
generalizes expressions regardless of the implementation,
whether it is a variable or a generic parameter. However, in
case of the generic implementation, only one specific gate is
instantiated (AND gate or OR gate), whereas in a non-
generic implementation both gates will be created.
Therefore, genericity allows achieving larger reusability, as
well as better performance.

D. Feature model as a domain variability model
Feature models specify hierarchies of system features

(external characteristics) in terms of commonality and
variability, rather than describing all details. As such feature
modeling is important for describing domain variability
models. Features are primarily used in order to discriminate
between system instances. Common features among
different systems are modeled as mandatory features, while
different features among them may be optional or
alternative. Optional features represent selectable features
for systems and alternative features indicate that no more
than one feature can be selected for a system. The derivation
of a system consists of traversing the feature tree in an
orderly manner and selecting the optional features. The
result is a system description containing all features in the
system (a feature configuration).

As there can be many different configurations of a system
encapsulated by a feature model, such model can be seen as
a high-level specification of a metaprogram that specifies
different variants of system implementation. Feature models
can be used as domain variability models specifying system
commonalty and variability and their relationship, whereas
metaprogramming can be used to specify implicitly common
parts of a system using domain language and variable parts
of a system using metalanguage abstractions.

An example of such application of feature models is
presented in Fig. 5 and Fig. 6. Fig. 5 shows feature model of
a combinatorial circuit that necessarily has the following
design characteristics: chip area, delay and power
consumption. When considering circuit implementation,
only one of the above-mentioned characteristics can be used
as a design criterion. When developing a metaprogram for
this circuit, the generic interface of a metaprogram can
contain the evaluation of any of these characteristics
allowing the user to select and generate the implementation
satisfying the design constraints. Fig. 6 presents a
metaprogram developed from such feature model. It
encapsulated three different implementations of 2-bit
comparator in VHDL optimized with three different design
criteria in mind and the corresponding metadata for each
implementation. However, only one implementation can be
selected for generation by the user.

Circuit

Characteristics MetadataDesign
criterion

PowerArea Area Power Area PowerDelay Delay Delay

Figure 5. Feature model of a circuit.

 91

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:45:54 (UTC) by 18.207.126.53. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

A combination of feature modeling and meta-
programming is especially useful for developing product
lines of embedded systems [10], where the aims are to
achieve greater configurability, variability and adaptability
to particular user and application requirements. A
configurable product family may include millions of
variants from that individual products are configured to
meet particular customer needs. Therefore, the designers
must use high-level models and abstractions to specify
systems and their variants.

 $

"Select design criterion:
 1 - area (area=1151 um2; delay=0.51 ns; power=1.828 uW/MHz)
 2 - delay (area=1553 um2; delay=0.49 ns; power=2.697 uW/MHz)
 3 - power (area=1370 um2; delay=0.67 ns; power=1.784 uW/MHz)"

{1,2,3} sel:=1;
$
entity system_@case[sel,{area},{power},{delay}] is
 port(X0,X1,X2,X3: in bit;
 Y0,Y1,Y2: out bit);
end system_@case[sel,{area},{power},{delay}];

architecture behave of system_@case[sel,{area},{power},{delay}] is
begin
@case[sel,{
 Y0 <= (not ((X1 nor (X3 nand X2)) nor
((((X3 nor X2) nor X1) nor X2) nor X0)));
 Y1 <= ((X0 xor X2) nor (X3 xor X1));
 Y2 <= ((((X0 nand X1) nand X2) nand (X3 nand
((not X2) nand X0))) nor (X0 nor X1));
},{
 Y0 <= ((((X0 nand X2) nor X1) nor (X0 nor X0)) nor
((not ((X1 nand X3) nand X3)) nor ((X2 nor X2) nor X0)));
 Y1 <= ((X0 xor X2) nor (X3 xor X1));
 Y2 <= (((((X3 nand X2) nand X0) nand X2) nand (X3 nand (X0 nand X0)))

nor ((X2 nand (not X1)) nand ((not X0) nand (not X1))));
},{
 Y0 <= (not ((X0 nor (((X3 nor X2) nor X1) nor X2)) xnor
((X2 nor X1) nor (((not X3) nor X1) nand X0))));
 Y1 <= ((X0 xor X2) nor (X1 xor X3));
 Y2 <= ((((X0 nand X1) nand X2) nand (X3 nand X2)) nor
(((X0 nor X1) nor X3) nor X0));
}]
end behave;

Figure 6. Open promol metaprogram of 2-bit comparator.

Table III summarizes the capabilities of model-based
design and metaprogramming for implementing
transformational design processes.

TABLE III. CAPABILITIES OF MODEL-BASED DESIGN AND

METAPROGRAMMING FOR IMPLEMENTING
TRANSFORMATIONAL DESIGN

Capability Model-based design Metaprogramming
methodology

Parameteriza-
tion

Implemented using
parameterized classes
and represented using
template parameters

Implemented using generic
parameters represented at
generic interface

Representation Real-world entities Domain program families

Abstraction
Class is an abstract
representation of a
family of objects

Metaprogram is an abstract
representation of a family
of programs

Generalization
Two mechanisms:
through inheritance
and via templates

Via generic parameters
represented at generic
interface

Specialization Via sub-classing
hierarchies

By instantiating a
metaprogram

Modification
May be implemented
using parameterized
template

Performed automatically
using metalanguage
abstractions

Generation

Class instances are
generated from class
templates at compile
time

Domains programs are
generated from
metaprograms at
construction time

Reuse

Implemented using
inheritance: subclasses
reuse attributes and
methods of the
superclass

Implemented by selecting
values of generic
parameters and generating
domain programs

Separation of
concerns

Class header is
separated from class
implementation; class
attributes – from class
methods; class – from
its objects

Generic interface is
separated from
metaprogram body;
metaprogram – from
domain programs

Variability

Implemented using
class constructor(s)
that modify the values
of class attributes

Implemented using
metalanguage abstractions
that modify domain
programs

VI. DISCUSSION AND CONCLUSIONS
The metaprogramming methodology and its elements

(variability model, reuse evolution model, modeling
language and domain language relationship metamodels,
transformational design techniques) have been supported by
numerous case studies [21, 27, 43, 44, 49, 53, 56, 57, 58, 61,
63]. Based on these case studies and the research presented
in this paper we can conclude that the higher abstraction
level is used, the larger is the role of various transformation
processes in the design. However, the effective
specification, implementation and automation of
transformation processes in the domain requires introduction
of 1) high level transformation model (metamodel), and 2)
generative technology for derivation of lower-level domain
programs from higher-level design task specifications.

Heterogeneous metaprogramming is a domain language
independent generative technology, which when compared
to homogeneous metaprogramming better fits for wide scale
domain generators (e.g., for product line oriented designs
and huge soft IP repositories). The cost we need to pay for
this is the need of a metalanguage and its environment and
much more complicated verification. The use of the grey-
box-based reuse evolution model within this technology can
significantly reduce its deficiencies. The dedicated
metalanguage as compared to the general-purpose
programming language allows expressing
metaspecifications more concisely, but a designer should
learn yet another language and be confident in its reliability.

Metaprogramming per se requires the definition of a high-
level domain model (metamodel or domain variability
model) for its implementation. Such models describe high-
level abstractions can be mapped to the lower level of
abstraction and can serve both as a guideline for manual
development of metaprograms or executable specifications

 92

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:45:54 (UTC) by 18.207.126.53. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

for producing domain programs or at least parts of
metaprograms.

Due to increasing complexity of designed systems in the
embedded system and hardware design domains and the
complexity of the design process itself, design of modern
systems require design automation and management of
domain variability. Domain variability at best can be
modeled using feature diagrams and other relationships
within the domain can be modeled using a subset of UML
(though UML allows specifying variability at a certain
degree, too). These technologies introduce new layers of
abstraction above traditional HDL specifications.
Heterogeneous metaprogramming brings the expressive
power to bridge the gap between different levels of
abstraction and to describe genericity and variability in the
domain explicitly.

REFERENCES
[1] L. Lavagno, G. Martin, B. Selic (eds.). UML for Real: Design of

Embedded Real-Time Systems. Kluwer Academic Publishers, 2003.
[2] M. Keating, P. Bricaud. Reuse Methodology Manual for System-on-a-

Chip Designs. Kluwer Academic Publishers, 2001.
[3] A. Sangiovanni-Vincentelli, G. Martin, “Platform-based design and

software design methodology for embedded systems”, IEEE Design
and Test of Computers, 18(6), 2001, pp. 23-33.

[4] B. Bailey, G. Martin, T. Anderson (eds.). Taxonomies for the
Development and Verification of Digital Systems. Springer, 2005.

[5] A. Jantsh, S Kumar, A. Hemani, “Ruby: A metamodel to study
concepts in electronic system design”, IEEE Design & Test of
Computers, 2001.

[6] L.P. Carloni, F. De Bernardinis, A. L. Sangiovanni-Vincentelli, M.
Sgroi, “The art and science of integrated systems design”,
Proceedings of the 28th European Solid-State Circuits Conference
ESSCIRC, 2002, pp. 25-36.

[7] W. Műller, W. Rosenstiel, J. Ruf. SystemC: Methodologies and
Applications. Kluwer Academic Publishers, 2003.

[8] G. Martin, “IP reuse and integration in MPSoC: Highly configurable
processors”, MPSoC’04, 8 July 2004.

[9] E. Aarts, R. Roovers, “IC design challenges for ambient intelligence”,
Proc. of Design, Automation and Test in Europe Conf. (DATE 03),
Munchen, Germany, 3-7 March 2003, pp. 2-7.

[10] H.-K. Kim, “Applying Product Line to the Embedded Systems”, Proc.
of Int. Conf. on Computational Science and Its Applications, ICCSA
2006, Glasgow, UK, May 8-11, 2006. LNCS 3982 Springer 2006,
Part 3, pp. 163-171, 2006.

[11] G. Martin, “UML for embedded systems specification and design:
motivation and overview”, Proc. of Design Automation and Test in
Europe (DATE 2002), 4-8 March 2002, Paris, France, pp. 773-775.

[12] M. Edwards, P. Green, “UML for hardware and software object
modeling”, in L. Lavagno, G. Martin, B. Selic (eds.), UML for Real,
Kluwer Academic Publishers, 2003, pp. 127-148.

[13] G. Jong, “A UML-based design methodology for real-time and
embedded systems”, Proc. of Design Automation and Test in Europe
(DATE 2002), 4-8 March 2002, Paris, France, pp. 776-778.

[14] Q. Zhu, A. Matsuda, S. Kuwamura, T. Nakata, M. Shoji, “An object-
oriented design process for System-on-Chip using UML”, Proc. of the
15th Int. Symp. on System Synthesis (ISSS 2002), October 2-4, 2002,
Kyoto, Japan, pp. 249-254.

[15] T. Beierlein, D. Frvhlich, B. Steinbach, “Model-Driven compilation
of UML-models for reconfigurable architectures”, in 2nd RTAS
Workshop on Model-Driven Embedded Systems (MoDES '04),
Toronto, Ontario, Canada, May 25-28, 2004.

[16] T. Schattkowsky, W. Müller, “Model-based design of embedded
systems”, Proc. of 7th IEEE Int. Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC'04), May 12 - 14, 2004,
Vienna, Austria, pp. 121-128.

[17] D.H. Akehurst and S.J.H. Kent, “A relational approach to defining
transformations in a metamodel”, in J.-M. Jezequel, H. Hussmann, S.
Cook, eds. UML 2002 – The Unified Modeling Language: 5th
International Conference, Springer-Verlag, 2002, pp. 243 – 258.

[18] J.M. Favre, “Metamodels and models co-evolution in the 3D software
space”, In ELISA 2003, associated with ICSM 2003, Amsterdam, The
Netherlands, September, 2003.

[19] K.-K. Lau and Z. Wang, “A Taxonomy of software component
models”, in 31st Euromicro Conference on Software Engineering and
Advanced Application, August 31–September 2, Porto, Portugal,
2005.

[20] R. Gitzel, T. Hildenbrand. A Taxonomy of metamodel hierarchies.
Research Report, Department of Information Systems. University of
Mannheim, 2005.

[21] R. Damaševičius, “On the Application of Meta-Design Techniques in
Hardware Design Domain”, International Journal of Computer
Science (IJCS), Vol. 1, No. 1, pp. 67-77, 2006.

[22] F. Doucet, S. Shukla, R. Gupta, “Introspection in System-Level
Language Frameworks: Meta-level vs. Integrated”, Proc. of Design
Automation and Test in Europe Conference (DATE 2003), 3-7 March
2003, Munich, Germany, 382-387.

[23] F. Seyler, P. Aniorte, “A Component metamodel for reuse-based
system engineering”, Workshop in Software Model Engineering,
October 1st 2002, Dresden, Germany.

[24] D. Orr, “Model driven software development through the integration
of three models”, OOPSLA Workshop on Best Practices for Model
Driven Software Development, 2005.

[25] G. Karsai, M. Maroti, A. Ledeczi, J. Gray, J. Sztipanovits,
“Composition and cloning in modeling and Metamodeling”, IEEE
Trans. on Control Systems Technology 12 (2004), pp. 263–278.

[26] B. Schätz, A. Pretschner, F. Huber, J. Philipps, “Model-based
development of embedded systems”, in J.-M. Bruel, Z. Bellahsene
(Eds.), Advances in Object-Oriented Information Systems
(OOIS’2002) Workshops, Montpellier, France, Springer LNCS, 2002.

[27] R. Damaševičius, V. Štuikys, “Application of UML for Hardware
Design Based on Design Process Model”, Asia South Pacific Design
Automation Conference (ASP-DAC 2004), January 27-30, 2004,
Yokohama, Japan, pp. 244-249.

[28] L. Tratt, “Model transformations and tool integration”, Journal of
Software and Systems Modelling, 4(2), May 2005, pp. 112-122.

[29] A. Lédeczi, G. Nordstrom, G. Karsai, P. Völgyesi, M. Maróti, “On
metamodel composition”, Proc. of the IEEE Int. Conference on
Control Applications, CCA 2001, Mexico City, Mexico, pp. 756-760.

[30] P.-A. Muller, P. Studer, J.-M. Jézéquel, “Model-driven generative
approach for concrete syntax composition”, OOPSLA & GPCE
Workshop on Best Practices for Model Driven Software
Development, Vancouver, 2004.

[31] T. Levendovszky, G. Karsai, M. Maroti, A. Ledeczi, H. Charaf,
“Model reuse with metamodel-based transformations”, in C. Gacek,
(ed.), Proc. of 7th Int. Conf. on Software Reuse: Methods,
Techniques, and Tools, ICSR, LNCS vol. 2319. Springer, 2002, pp.
166-178.

[32] S. Deelstra, M. Sinnema, J. van Gurp, J. Bosch, “Model driven
architecture as approach to manage variability in software product
families”, Proc. of Workshop on Model Driven Architecture:
Foundations and Applications (MDAFA’2003), June 2003, pp. 109-
114.

[33] J. van Wijngaarden, E. Visser. Program Transformation Mechanics: A
Classification of Mechanisms for Program Transformation with a
Survey of Existing Transformation Systems. Technical Report UU-
CS-2003-048, Institute of Information and Computing Sciences,
Utrecht University, May 2003.

[34] L. Kuzniarz, M. Staron, “On model transformations in UML-based
software development process”, Software Engineering and
Applications’03, Marina del Rey, CA, 2003.

[35] K. Czarnecki, S. Helsen, “Classification of model transformation
approaches”, OOPSLA’03 Workshop on Generative Techniques in
the Context of Model-Driven Architecture, 2003.

[36] W. Wu, I., Sander, A. Jantsch, “Transformational system design based
on a formal computational model and skeletons”, Forum on Design
Languages (FDL’2000), September 4-8, 2000, Tübingen, Germany.

[37] O. de Moor, G. Sittampalam, “Generic program transformation”,
Proc. of the 3rd Int. Summer School on Advanced Functional
Programming, Braga, Portugal, September 12-19, 1998, Springer
LNCS 1608, pp. 116-149, 1999.

[38] T. Mens, K. Czarnecki, P. van Gorp, “A Taxonomy of Model
Transformations”, in J. Bézivin, R. Heckel (Eds.), Proc. of Language
Engineering for Model-Driven Software Development, 29 February -
5 March 2004. Dagstuhl Seminar Proceedings 04101, Schloss
Dagstuhl, Germany 2005.

[39] M. Gogolla, A. Lindow, M. Richters, P. Ziemann, “Metamodel
Transformation of Data Models”, Workshop in Software Model
Engineering, October 1st 2002, Dresden, Germany.

[40] S. Nedunuri, W. Cook, “Transforming Declarative Models Using
Patterns in MDA”, OOPSLA & GPCE Workshop on Best Practices
for Model Driven Software Development. Vancouver, 2004.

 93

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:45:54 (UTC) by 18.207.126.53. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

[41] S.R. Judson, R.B. France, D.L. Carver, “Specifying model

transformations at the metamodel level”, WiSME@UML'2003 - UML
Workshop in Software Model Engineering, October 21, 2003, San
Francisco, USA.

[52] A. Gerstlauer, D.D. Gajski, “System-level abstraction semantics”,
Proc. of 15th Int. Symposium on System Synthesis (ISSS'02), October
2-4, 2002, Kyoto, Japan, pp. 231-236.

[53] R. Damaševičius, V. Štuikys, “Wrapping of Soft IPs for Interface-
based Design Using Heterogeneous Metaprogramming”,
INFORMATICA, 2003, Vol. 14, No. 1, pp. 3-18.

[42] J. Kovse, “Generic model-to-model transformations in MDA: Why
and How?”, in OOPSLA 2002 Workshop on Generative Techniques
in the context of Model Driven Architecture. Seattle, November 4-8,
2002.

[54] B.W. Boehm, “A spiral model of software development and
enhancement”, IEEE Computer, 1988, 21(5):61-72.

[43] R. Damaševičius, V. Štuikys, “Soft IP customization models based on
high-level abstractions”, Information Technology and Control, 2005,
Vol. 34, No. 2, pp. 125-134.

[55] T. Sheard, “Accomplishments and research challenges in meta-
programming”, in 2nd Int. Workshop on Semantics, Application, and
Implementation of Program Generation (SAIG’2001), Florence, Italy.
LNCS, vol. 2196, 2001, Springer, pp. 2-44. [44] V. Štuikys, R. Damaševičius, “Metaprogramming techniques for

designing embedded components for ambient intelligence”, in T.
Basten, M. Geilen, H. de Groot (eds.), Ambient Intelligence: Impact
on Embedded System Design. Kluwer Academic Publishers, 2003,
pp. 229-250.

[56] V. Štuikys, R. Damaševičius, “Variability-Oriented Embedded
Component Design for Ambient Intelligence Systems”, Information
Technology and Control, 36(1), pp. 16-29, 2007.

[57] V. Štuikys, R. Damaševičius, G. Ziberkas, “Open PROMOL: An
experimental language for domain program modification”, in A.
Mignotte, E. Villar, L. Horobin (Eds.), System on Chip Design
Languages, Kluwer Academic Publishers, 2002, pp. 235-246.

[45] E.A. Lee, A. Sangiovanni-Vincentelli, “A Framework for comparing
models of computation”, IEEE Transactions on CAD, Vol. 17, No.
12, 1998, pp. 1217-1229.

[58] V. Štuikys, R. Damaševičius, “Soft IP customization model based on
metaprogramming techniques”, INFORMATICA Vol. 15, No. 1,
2004, pp. 111-126.

[46] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, A.
Sangiovanni-Vincentelli, “Addressing the system-on-a-chip
interconnect woes through communication-based design”, Proc. of
Design Automation Conference, 18-22 June 2001, pp. 667-672. [59] Object Management Group (OMG). MOF: MetaObject Facility.

http://www.omg.org/mof/ [47] J. Rowson, A. Sangiovanni-Vincentelli, “Interface-based design”,
Proc. of the 34th Design Automation Conference (DAC 97), June 9-
13, 1997, Anaheim, CA, USA, pp. 178-83.

[60] UMLStudio. http://www.pragsoft.com.
[61] R. Damaševičius, G. Majauskas, V. Štuikys, “Application of Design

Patterns for Hardware Design”, Proc. of 40th Design Automation
Conference DAC 2003, June 2-6, Anaheim, CA, USA, pp. 48-53.

[48] L. Entrena, C. Lopez, E. Olias, “Automatic generation of fault tolerant
VHDL designs in RTL”, Forum on Design Languages FDL’2001,
Lyon, France, 2001. [62] K.C. Kang, J. Lee, and P. Donohoe, “Feature-Oriented Product Line

Engineering”, IEEE Software, 19(4):58–65, 2002. [49] R. Damaševičius, V. Štuikys, E. Toldinas, “Embedded program
specialization for multiple criteria trade-offs”, Electronics and
Electrical Engineering, 8(88), pp. 9-14, 2008.

[63] R. Damaševičius, V. Štuikys, E. Toldinas, “Domain Ontology-Based
Generative Component Design Using Feature Diagrams and Meta-
Programming Techniques”, in R. Morrison, D. Balasubramaniam, and
K. Falkner (Eds.), Proc. of 2nd European Conference on Software
Architecture ECSA 2008, September 29 - October 1, Paphos, Cyprus.
LNCS 5292, pp. 338-341. Springer-Verlag, 2008.

[50] M. Kuulusa, J. Nurmi, J. Takala, P. Ojala, H. Herranen, “A flexible
DSP core for embedded systems”, IEEE Design & Test of Computers,
October-December, 1997, pp. 60-68.

[51] Domain Engineering and Domain Analysis, Software Technology
Roadmap. http//www.sci.cmu.edu/str/descriptions/deda_body.html,
2005.

[64] D. Abrahams, A. Gurtovoy. C++ Template Metaprogramming:
Concepts, Tools, and Techniques from Boost and Beyond. Addison-
Wesley, 2004.

 94

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:45:54 (UTC) by 18.207.126.53. Redistribution subject to AECE license or copyright.]

