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Abstract—Evolution of design methodologies follows a 

common trail: technology scaling leads to growing design 
complexity and rising abstraction level in the domain. 
Introduction of new (higher) abstraction levels emphasizes the 
importance of reuse and transformations. The design process 
can be seen as a sequence of high-level transformations from 
the higher-level specification to the lower-level one. We analyze 
high-level modeling and metaprogramming techniques for 
supporting transformations based on domain variability 
models. Next, we present a reuse evolution model for domain 
component design at a higher abstraction level to support the 
transformation-oriented approaches. Finally, high-level 
modeling techniques (UML-domain language metamodels for 
domain code generation, parameterized UML classes for 
template metaprogramming, feature models for explicit 
representation of variability) for specification of 
transformations and metaprograms are analyzed. 
 

Index Terms—design automation, transformation, hardware 
and embedded system design 

I. INTRODUCTION 
In recent years, there have been two significant trends in 

hardware (HW) and embedded system (ES) design domains. 
The first trend is the rapid growth of complexity in the 
design of extremely complex devices, such as System-on-
Chip (SoC). The second trend is the adoption of UML to 
support design of real-time and embedded systems [1]. This 
progress is partially due to the continuous efforts of the 
electronics design automation (EDA) community to improve 
design methodologies based on higher-level abstractions and 
reuse [2]. Here abstraction is understood as a description of 
the design problem at some level of generalization that 
allows concentrating on the key aspects of the problem 
without getting into details.  

Moving towards high-level abstractions is a long-standing 
engineering tradition in HW and ES design. In the past, a 
higher-level abstraction was usually introduced every 7-10 
years, but now it happens even faster. The introduction of 
new abstraction levels raises the stake of various design 
methodologies based on reuse and transformations, such as 
platform-based design [3], because the ultimate goal of 
using a higher-level abstraction is to produce a lower-level 
design specification automatically. Design abstractions are 
of two categories: either design problem related (e.g., logic 
gates, platforms, variability models, etc.) or solution domain 
related (e.g., high-level specification languages, hardware 
description languages (HDLs), metamodels, etc.).  

Abstractly, the design process requires that solution 
domain abstractions are relevantly and correctly mapped to 

design domain abstractions. The mapping is to be performed 
by satisfying some constrains and requirements for a given 
application. In this context, the design process can be seen 
as a high-level transformation for transforming the higher-
level specification into the lower-level one.  

The use of higher-level abstractions means at least two 
things for a designer: 1) he/she can deal with the design 
more abstractly, thus eliminating much of unnecessary 
details and gaining design efficiency; 2) he/she can express 
design variability, thus enabling the creation of generic 
solutions for reuse. In a broader sense, the introduction of 
higher-level abstractions also raises other issues, such as 
unambiguous understanding of categories and terms used in 
the Electronic Design Automation (EDA) community [4] 
and dealing with the levels of abstractions and their 
dependencies in a unified manner [5]. 

The paper presents an analysis of high-level models for 
implementation of transformational approaches based on 
higher-level abstractions in HW and ES design domains. We 
motivate the importance of our research by the following 
reasons: 1) The necessity of considering design at a higher 
abstraction level caused by ever increasing complexity of 
systems to be designed [6]; 2) The efforts of introducing 
high-level languages such as UML and SystemC in the HW 
and ES design practice [7]; 3) The efforts to exploit the 
reuse potential in design methodologies as widely as 
possible in both dimensions (component-based and 
generative/transformational reuse) [2, 8]. 4) Introduction of 
novel design paradigms, such as platform-based design [3], 
ambient intelligence [9], product lines [10]; 5) The 
increasing role of configurable components in design [8] 
(configuration is a way for expressing variability at a higher 
abstraction level). 

The paper is organized as follows. Section 2 analyzes the 
related works. Section 3 presents analyzes domain 
variability and reuse models for well-understood design 
domains. Section 4 analyzes the capabilities of 
metaprogramming techniques within solution domain. 
Section 5 describes various high level models for 
specification of transformations and metaprogramming in 
the domain. Finally, Sections 6 discusses the results and 
presents conclusions. 

II. RELATED WORKS 

HW and ES modeling at a higher level of abstraction is a 
hot topic [11-14], which covers UML-based modeling [15, 
16], design patterns [17], meta-models and meta-modeling 
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[18], model and metamodel taxonomies [19, 20]. A shift 
towards high-level modeling of HW and ES represents a 
decisive turn of the EDA community towards a meta-
dimension of design [21]. Models are used to define the 
syntax, semantics and composition of domain components 
using object-oriented or architecture-based abstractions [19], 
extend the syntax of HDLs by providing a meta-level above 
the user modeling level [22], define the relationship between 
the abstract syntax and semantics domains [17], represent 
the evolution and co-evolution of design artifacts [18], 
describe the component reuse process [23], capture and 
manage the system requirements [24], allow for formal 
analysis, verification, and ES validation at the design time 
[25], define platforms for creating executable applications 
from system-level specifications [15], define complex 
design steps such as refactorings or introduce complex 
communication patterns between components [26]. 

Modeling is required to raise the level of abstraction 
above the HDL level. As such, modeling can be used for the 
high-level specification and verification of HW and ES. 
However, the seamless integration of modeling into domain 
design flows and the need for increased design productivity 
requires a higher degree of domain automation, which can 
not be achieved without defining mappings from user 
models to other representations (e.g., other models, code, 
storage formats, etc.). Such mappings are metamodels that 
connect the problem domains and the solution domains, or 
product domains and process domains [26, 27]. Metamodels 
are also used for tool integration [25, 28]; specification and 
generation of domain-specific modeling languages [29]; and 
for specifying various aspects of the developed system [30]. 

The primary motivation for introducing metamodels is to 
reuse models based on concepts defined in a metamodel and 
to automate the production of design systems using 
transformational and generative techniques. Metamodeling 
defines transformations using the elements of the 
metamodel, and offers algorithms to apply these 
transformations using generative techniques. Metamodel-
based transformations permit descriptions of mappings 
between models created using different concepts from 
possibly overlapping domains. Transformation process 
facilitates reuse of models specified in one domain-specific 
modeling language in another context, such as using another 
modeling language [31]. Various techniques can be used for 
meta-modeling, but usually meta-modeling is achieved 
using a subset of UML and Model-Driven Architecture 
(MDA) methodology as a theoretical background [32]. 

Program and model transformation is a very broad 
research area with a long history [33, 34, 35]. 
Transformations can be classified into two main categories: 
program source code transformations (not considered in this 
paper) and model transformations [35]. Transformations 
commonly used by designers can be defined as 
transformation patterns [36] or generic transformations [37] 
that capture intelligent and well-proven design techniques. 
Generic transformations represent a link between source-
level program transformations and model transformations. 
Model transformations have the direct relation with the 
UML and MDA concept [32]. It is also recognized and 
accepted in HW and ES domains [4]. 

Conceptually, model transformation is similar to program 

transformation, but is applied to models instead of 
programs. It provides capability for describing relationships 
and mappings between model concepts (i.e. metamodel 
elements) and sets of models, where a mapping defines a 
correspondence between elements of the source and target 
model. Model transformations can be classified as 
endogenous and exogenous [38]. Endogenous 
transformations are between models expressed in the same 
language, e.g., code generation, reverse engineering, 
migration. Exogenous transformations are between models 
expressed using different languages, e.g., optimization, 
refactoring, simplification. Also a distinction can be made 
between horizontal transformations, where the source and 
target models reside at the same abstraction level, and 
vertical transformation, where the source and target models 
reside at different abstraction levels. 

The domain of model transformations is closely related to 
the modeling domain. Transformations itself can be 
modeled using models and metamodels [39]. 
Transformations can be treated as captured executable 
designs and architectural patterns or metamodels that can be 
applied in many contexts to solve a narrow specific design 
task [40]. Specifying the transformations as metamodels 
allows development of tools that support the controlled 
evolution of models [41]. Furthermore, transformations also 
can be used to support variability within system product 
lines at the model level [42]. 

Summarizing, the role of transformation processes in 
design of complex electronic systems is increasing due to a 
common trend to raise the abstraction level in HW/ES 
design by introducing high-level specification languages 
(such as UML), which underscores the need of design 
automation in the domain. 

III. VARIABILITY AND REUSE MODELS IN WELL-
UNDERSTOOD DESIGN DOMAINS 

A. Context of research 

We assume that the design is specified at a higher 
abstraction level using higher-level abstractions such as 
UML and meta-languages and a lower-level representation 
of the design using HDLs such as VHDL, Verilog or 
SystemC [7]. Furthermore, high-level design is not only 
directed to produce a specific solution (lower-level 
representation) from a given high-level specification, but 
rather it is oriented to describe a family of related solutions, 
i.e., the design is variability-oriented. 

We define the design process at a higher abstraction level 
as a set of interrelated transformation tasks. A 
transformation task is a transformation from a design 
problem specification described at the higher abstraction 
level to the lower abstraction level. In our case, higher-level 
abstractions are metamodels, UML, metalanguage and 
metaprogramming techniques [43]. Lower-level abstractions 
are system/component specifications in a HDL. 
Transformations usually are performed automatically, but 
for some kind of higher-level abstractions, such as meta-
metamodels, can be performed manually.  

We define transformation in well-understood design 
domains (WUDD). A WUDD is (1) a sub-domain of a larger 
design domain; (2) it has well-defined and well-proven 

          87

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:45:54 (UTC) by 18.207.126.53. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                       Volume 8, Number 2, 2008 
 
models; (3) it is narrow enough but has multiple 
applications; and (4) it may require an analysis of different 
characteristics (aspects, models, etc.) for different 
applications, thus the commonalities, specificity, and 
variability can be easily captured using ad hoc (the usual 
design practice) or systematic domain analysis methods such 
as those overviewed in [44].  

The primary motivations for introducing a concept of 
WUDD are: (1) to achieve a higher extent of reuse; (2) to 
facilitate the implementation of transformation/generative 
reuse; (3) to achieve some unification in the provided study 
and experiments. Note that it is not necessary to analyze the 
domains only while considering application of UML 
(model-based) and metaprogramming technologies because 
these technologies are domain independent. But on the other 
hand, to implement metaprogramming is much easier for the 
WUDDs.  

HW and ES domains contain a wide variety of WUDDs. 
Examples are: soft IP computational models [46], 
communication-based design [46], interface-based design 
[47], reliable design based on redundancy models [48], and 
algorithms for embedded software [49]. After we have 
selected a particular WUDD, the next step is to define a 
variability model for this domain. 

B. Variability model for coarse-grained soft IPs 
The variability model is a key point for implementing 

transformations. A WUDD is described as a set of features 
or aspects which are to be expressed through parameters. 
Parameters may be different for some aspects, thus the 
parameters may have different values. The aspects belong to 
basic categories, expressing commonalities, specificity, 
variability, functional, structural or other aspects. As the 
variability aspects are most important, the dependencies 
between different variability aspects are taken into account, 
too. Dependencies within variability are the most crucial 
part of the model because they may require in-depth analysis 
or may depend upon the context of an application domain. 
Furthermore, in some cases dependencies can be very 
complex, thus requiring the vast amount of modeling efforts.  

An example of such variability model is presented in 
Table I (taken from [50]). The model consists of variability 
and commonality only. It is assumed that the variability 
dependencies, i.e. dependencies between different parameter 
values, are a separate issue. A similar model for the 
configurable processor is outlined in [8] without explicit 
representation of parameters for alternatives. 

Implementation of the variability model can be carried 
out differently. For example, one alternative is to develop a 
set of reusable components, where each component 
represents some aspects of the model. The other alternative 
is the integration of all anticipated aspects of the model into 
a generic specification, thus developing a generic 
component as a specific kind of the transformation system 
(or generator). Such a system then can be used for 
generating an instance for the concrete application when it is 
actually to be designed. In general, the development and 
implementation of the generator and the use of the generator 
can be viewed as a twin life cycle model [51], the higher-
level model which combines design for reuse (the 
development of generators) and design with reuse (the use 

of generators). Actually this concept is implemented in 
design repositories already exploited in the EDA community 
for soft IP (Intellectual Property) exchange [52]. 

 
TABLE I. VARIABILITY MODEL  FOR DSP MICROPROCESSOR 

DESIGN (ACCORDING TO [50]) 

Parameter Range Default Description 

Data word 8-64 bits 16 bits Data word length 

Data address 8-23 bits 16 bits < = data word (dependency) 

Program word 32-… 32 bits Commonality of the model 

Program 
address 

8-19 bits 16 bits <= data word (dependency) 

Multiplier 
width 

8-64 bits Data word 
Word length of multiplier 
operands (dependency) 

MUL guard 
bits 

0- 16 bits 8 bits 
<= data word – 2 
(dependency) 

MAC type 0-… 
0 (basic 
unit) 

Commonality of the model 

Shifter type 0-… 
0 (basic 
unit) 

Commonality of the model 

ALU type 0-… 
0 (basic 
unit) 

Commonality of the model 

Index registers 8 or 16 8 Number of index registers 

Accumulators  2, 3 or 4 4 Number of accumulators 

Enable C & D 0 or 1 
0 (not 
enable) 

Use of C and D registers as 
ALU operands 

Modifier only 0 or 1 
0 (not 
enable) 

Only odd-numbered index 
registers can be modifiers 

Loop registers 0-8 
0 (no loop 
HW) 

Number of HW looping 
units 

Address modes 0-3 0 
Supported data-addressing 
modes 

 

C. Reuse evolution model 

At the core of the transformation-oriented approach to 
system design are two models: reuse evolution model 
(REM) and variability model. While the variability model is 
applied only when design entities are modified (e.g., for the 
product line design), the REM is applied throughout the 
entire life cycle of the design entity. The REM is seen as a 
framework for understanding of the soft IP-based system 
design and evolution processes based on the design for reuse 
and design for change paradigms.  

The primary concept of the REM is simple: the systems 
(components) must evolve from the already existing ones 
rather than being developed from scratch. The evolution is 
achieved by change (customization, adaptation, etc.) of the 
existing systems, transformation of the existing high-level 
models and low-level code artefacts, reuse of models, 
components (soft IPs) and subsystems. Although the 
introduced model does not restrict the kind of changes, only 
minor changes (e. g., adding a minor glue code to the 
coarse-grained soft IP through an external composition [53]) 
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are usually allowed. Therefore, grey-box reuse is the central 
point in the proposed model. 

The idea of the REM is borrowed from the Spiral model 
[54] well-known in software engineering, which is used to 
describe a software development process iteratively. The 
evolution of reuse models, as the REM suggests, is a 
continuous process that has three phases: search/analysis, 
understanding and adaptation/ modification (Fig. 1).  

1) At the search/analysis phase, the component candidates 
(instances), which are considered as black-box soft IPs, are 
searched and selected for usage.  

2) At the understanding phase, the components are 
analyzed as glass-box entities. Their functionality, 
architecture and potential for reuse and modification is 
understood.  

3) At the adaptation/modification phase, a designer 
performs adaptation (extension of functionality), as well as 
modifications (introduction of variations) based on grey-box 
reuse. The modified component is used in the currently 
designed system or can be used again as the black-box entity 
in the other context of an application, and thus the evolution 
process repeats itself in a spiral-like cycle. 

  
 

 

Design 
phases 

Black-box 
reuse 

Glass-box 
reuse 

Gray-box 
reuse 

Reuse 
dimensions

Reuse 
dimensions 

Reuse 
dimensions 

Search/ 
analysis

Understanding Modification

 
 

Figure 1. Reuse Evolution Model: Designer’s Viewpoint. 
  
However, the REM differs from the Spiral model 

significantly as follows: 
1) REM explicitly focuses on the reuse process in design. 

It describes three different stages of reuse, reuse models 
used and the particular actions of the designer. 

2) It combines the ideas of design-for-reuse and design-
for-change. Design-for-reuse promotes the development of 
reusable components. Design-for-change promotes the 
development of components while foreseeing and 
anticipating future modifications and changes. The 
combination of two paradigms requires the development of 
modifiable and changeable components using open 
transformation environments and catalogues of design 
transformations in the same way as the design patterns are 
catalogued. 

3) The process of evolution is continuous, uninterrupted 
and possibly everlasting. No component is being ever 

finished, finally released or disposed after the end of its life 
cycle. The usage of a particular design entity may be 
discontinued in a certain context of an application, but it is 
preserved for possible future uses and modifications in other 
contexts of application. 

IV. METAPROGRAMMING METHODOLOGY 

Metaprogramming is a methodology which allows 
manipulations with programs as data [55]. The methodology 
allows representing generic specifications for reuse. The 
generic specification represents domain variability either 
implicitly or explicitly. Once the domain is expressed as a 
metaprogram, the metaprogram and its processing tool is a 
vehicle for generating the domain program instances.  

There are two kinds of metaprogramming: homogeneous 
and heterogeneous ones. Homogeneous metaprogramming 
deals with program transformations within the endogeneous 
environments. Heterogeneous metaprogramming deals with 
program transformations within the exogeneous 
environments (usually two).  

Homogeneous metaprogramming depends on the 
capabilities of the given domain language. The key point is 
that the domain language should provide a support for 
realization of the metaprogramming concept. More 
precisely, such a language should allow the decomposition 
of its constructs into two levels as follows. The first level 
represents the lower-level constructs for expressing basic 
domain functionality. The second level represents higher 
(meta)-level constructs for expressing variability and 
generalization. Homogeneous metaprogramming is typically 
used for describing generic domain components. Two 
standard hardware languages (VHDL and SystemC) support 
homogeneous metaprogramming: VHDL has Generic 
statement and SystemC has class template. 

 Heterogeneous metaprogramming depends on the 
capabilities of a metalanguage, which has metaconstructs 
(such as meta-if, meta-for) and provides support for 
implementing the metaprogramming techniques. The main 
aim is to create a metaprogram – a program generator for a 
narrow domain of application. Conceptually, a metaprogram 
is based on the domain variability model [56]. Structurally, a 
metaprogram consists of a generic interface, domain code 
instances and a modification algorithm that describes 
generation of a particular domain program depending upon 
values of the generic parameters (Fig. 2).  

 

Metaspecification 

Generic interface

has has 

Generic parameter

contains
1

*
Modification algorithm 

contains 

Program instance

1 

*

Metaconstruct 
implements 

Metalanguage
describes

Domain language

describes
depends

Metacode contains

  
 
Figure 2. Structure of a Metaprogram. 
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Heterogeneous metaprogramming uses two different 

languages in the same metaprogram. The lower-level 
language (domain language) is used for expressing the basic 
domain functionality. The higher-level language 
(metalanguage) is used for expressing generalization and 
describing domain program modifications. A general-
purpose programming language (such as C++, Java) can be 
used as a metalanguage for implementing component 
generators. An alternative is to use a dedicated 
metalanguage (such as Open PROMOL [57]), which is 
dedicated to generic component parameterization and 
component instance generation. Though there are no 
essential differences between both methods, the second has 
some advantages from the user's perspective. A dedicated 
metalanguage processor can better ensure the explicit 
separation of concerns when implementing external 
parameterization, thus giving some advantages for a user.  

The capabilities of homogeneous and heterogeneous 
metaprogramming are compared in Table II. The particular 
advantage of heterogeneous metaprogramming is its 
suitability for developing domain code generators. For more 
information concerning heterogeneous metaprogramming, 
see [44, 53, 56, 57, 58]. 

 
TABLE II. HOMOGENEOUS METAPROGRAMMING VS. 

HETEROGENEOUS METAPROGRAMMING 

 Criteria Homogeneous 
metaprogramming 

 Heterogeneous 
metaprogramming 

Need of an external 
metalanguage No Yes 

Kind of languages Domain (target) 
only 

Meta and domain 
(target) 

Type of 
metalanguage  

Domain language 
subset 

Metalanguage or 
programming language 
as a metalanguage 

Dependency upon 
target language Dependent Independent 

Separation of 
instances within 
generic specification  

Implicit within 
compiler (user 
inaccessible) 

Explicit (user visible& 
accessible) via external 
processor  

Scope of 
components 

Fine-grained 
components 

From fine- to coarse-
grained 

Scope of variability 
expression Restricted From grey- to white-

box reuse 

Adaptation to 
hardware synthesis 
limitations 

Limited adaptation  No limitations 

Verification 
problem  Moderate Difficult  

V. HIGH-LEVEL MODELS FOR SPECIFICATION OF 
TRANSFORMATION AND METAPROGRAMMING 

A. Concept of model and metamodel 
Models are abstract views of a system that describe the 

structure and behavior of the system and the relationship 
between the parts of the system. Models underline the 
features of a system that are important to the designer, while 
other (unimportant) features are not represented. Models are 
implemented using a domain language (e.g., a HDL). Such 
implementations are specific domain systems performing a 

particular domain task. What lies behind a model is the 
relationship between modeling language constructs and 
domain language constructs. Such relationship can be 
defined in a metamodel that represents an abstract view on 
system description notations and describes a mapping 
between particular elements of these notations. Metamodel 
relates to the model of a system, as the model of the system 
relates to the system itself. Therefore, the model-based 
design allows to build a hierarchy of models (metamodels, 
meta-metamodels, etc.) which allows to model domain 
systems at multiple levels of abstraction and detail. 

The process of model-based design of a system from the 
abstract representation to the low level implementation 
involves the usage of two languages: 1) model-based design 
languages (such as UML) are used explicitly to describe a 
model of the system, while 2) domain language (such as 
VHDL, SystemC) is used implicitly when a system (or parts 
thereof) are generated from the model. Generally, this 
means that model-based design requires two metamodels: 1) 
a metamodel of a model-based design language (e.g., MOF 
[59] for UML) and 2) a metamodel of a relationship 
between abstractions of a model-based design language and 
a domain language (e.g., UML-VHDL metamodel). 

B. Metamodel as a bridge between models and 
metaprograms 

The practical application of metamodels is the description 
of transformation from high-level system specification in a 
modeling language to a specific implementation in a HDL. 
An example of such metamodel, describing generation of 
VHDL component from UML state diagrams is given in 
Fig. 3. UML state diagrams are composed of states and 
transitions. UML states are always mapped to a case 
statement within a VHDL process. A special internal signal 
“state” is used to activate the process. Then depending upon 
a value of the signal “state”, the particular actions are 
selected and executed. UML events correspond to VHDL 
signals. UML actions are represented in VHDL as sequential 
statements selected using the case statement and are 
executed within the process. 

 

 
 
Figure 3. A Relationship Metamodel Between UML State Diagram and 
VHDL Abstractions. 

 

Such transformation between UML and VHDL van be 
performed manually or can be automated using the 
heterogeneous metaprogramming techniques. In the latter 
case, the metamodel serves as a guideline for developing a 
metaprogram. For example, a metamodel shown in Fig. 2 
was used to develop a VHDL code generator [27] in a 
PragScript scripting language used by the UMLStudio 
package [60]. PragScript is a LISP-like language and in this 
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context can be treated as a metalanguage. A PragScript 
script encapsulates two levels of abstraction: meta-level 
provides access to the data stored by UMLStudio projects 
and describes generation of VHDL code, which is at the 
domain level of abstraction. 

C. Generic model as a high level specification of 
metaprograms 

Another view to metamodeling considers metamodels as 
generic models that captures aspects specific to the domain 
at hand. The model-based design provides several 
mechanisms for describing genericity in the domain. 1) 
Generalization (inheritance) relationship: abstract class 
(super-class) is a generic representation of its subclasses. 2) 
Template classes: parameterized classes in UML class 
diagrams. 3) Design patterns that can be seen as a generic 
representation of a class of design solutions or design 
activities [27, 61]. 4) Feature models that describe 
mandatory and optional features of a system using Feature 
Diagrams [62, 63]. 

Such generic models can be directly or indirectly 
implemented as metaprograms. The main mechanism of 
metaprogramming for describing genericity is the 
metalanguage itself. It allows representing common as well 
as variable parts of a domain system in a generic fashion. 
Here we focus on the implementation of template classes 
and feature models.  

A template class defines a family of classes in UML 
models. Template classes can be implemented in SystemC 
using the template metaprogramming [64] technique, which 
is a special case of homogeneous metaprogramming. 
Template keyword is used to specify a generic skeleton for a 
class parameterized by generic parameters or types. To 
complete the declaration, a programmer must supply a 
concrete value for each of the template’s parameters, which 
must be known at compile time. Specification of parameter 
values causes the template to be instantiated: replacing all 
occurrences of the parameter with its value creates an 
instance of the template. An example of template-based 
metaprogramming is presented in Fig. 4, where a 
parameterized gate class in UML and the corresponding 
SystemC generic gate module is presented. Template 
parameter T is used to select, whether the AND gate, or the 
OR gate will be implemented. 

 

 template <int T>  
SC_MODULE(gate) { 

sc_in <bool > x, y; 
sc_out<bool > z; 
 

void  process (void) { 
if (T == 1)  

z = x & y; 
else if (T == 2)  

z = x | y; 
}; 

 
gate (sc_module_name nm): 

sc_module(nm){  
SC_METHOD (process); 
sensitive << x << y; 

}; 
};  

   (a)   (b) 
 
Figure 4. An example of a) parameterized class in UML, and b) template-
based metaprogramming in systemc. 

 
The reasons behind the introduction of the generic 

parameters are as follows: (1) to express the generalization 

of a model, when new generic parameters are introduced, 
and (2) to perform the customization of a model, when a 
specific instance is derived depending on the values of the 
generic parameters. For example, a parameter T (Fig. 4) 
generalizes expressions regardless of the implementation, 
whether it is a variable or a generic parameter. However, in 
case of the generic implementation, only one specific gate is 
instantiated (AND gate or OR gate), whereas in a non-
generic implementation both gates will be created. 
Therefore, genericity allows achieving larger reusability, as 
well as better performance. 

D. Feature model as a domain variability model 
Feature models specify hierarchies of system features 

(external characteristics) in terms of commonality and 
variability, rather than describing all details. As such feature 
modeling is important for describing domain variability 
models. Features are primarily used in order to discriminate 
between system instances. Common features among 
different systems are modeled as mandatory features, while 
different features among them may be optional or 
alternative. Optional features represent selectable features 
for systems and alternative features indicate that no more 
than one feature can be selected for a system. The derivation 
of a system consists of traversing the feature tree in an 
orderly manner and selecting the optional features. The 
result is a system description containing all features in the 
system (a feature configuration).  

As there can be many different configurations of a system 
encapsulated by a feature model, such model can be seen as 
a high-level specification of a metaprogram that specifies 
different variants of system implementation. Feature models 
can be used as domain variability models specifying system 
commonalty and variability and their relationship, whereas 
metaprogramming can be used to specify implicitly common 
parts of a system using domain language and variable parts 
of a system using metalanguage abstractions.  

An example of such application of feature models is 
presented in Fig. 5 and Fig. 6. Fig. 5 shows feature model of 
a combinatorial circuit that necessarily has the following 
design characteristics: chip area, delay and power 
consumption. When considering circuit implementation, 
only one of the above-mentioned characteristics can be used 
as a design criterion. When developing a metaprogram for 
this circuit, the generic interface of a metaprogram can 
contain the evaluation of any of these characteristics 
allowing the user to select and generate the implementation 
satisfying the design constraints. Fig. 6 presents a 
metaprogram developed from such feature model. It 
encapsulated three different implementations of 2-bit 
comparator in VHDL optimized with three different design 
criteria in mind and the corresponding metadata for each 
implementation. However, only one implementation can be 
selected for generation by the user.  

Circuit

Characteristics MetadataDesign 
criterion

PowerArea Area Power Area PowerDelay Delay Delay  
 

Figure 5. Feature model of a circuit. 
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A combination of feature modeling and meta-
programming is especially useful for developing product 
lines of embedded systems [10], where the aims are to 
achieve greater configurability, variability and adaptability 
to particular user and application requirements. A 
configurable product family may include millions of 
variants from that individual products are configured to 
meet particular customer needs. Therefore, the designers 
must use high-level models and abstractions to specify 
systems and their variants. 

 
 $ 

"Select design criterion: 
 1 - area (area=1151 um2; delay=0.51 ns; power=1.828 uW/MHz) 
 2 - delay (area=1553 um2; delay=0.49 ns; power=2.697 uW/MHz) 
 3 - power (area=1370 um2; delay=0.67 ns; power=1.784 uW/MHz)"  

{1,2,3} sel:=1; 
$ 
entity system_@case[sel,{area},{power},{delay}] is 
 port(X0,X1,X2,X3: in bit; 
 Y0,Y1,Y2: out bit); 
end system_@case[sel,{area},{power},{delay}]; 
 
architecture behave of system_@case[sel,{area},{power},{delay}] is 
begin 
@case[sel,{ 
 Y0 <= (not ((X1 nor (X3 nand X2)) nor  
((((X3 nor X2) nor X1) nor X2) nor X0))); 
 Y1 <= ((X0 xor X2) nor (X3 xor X1)); 
 Y2 <= ((((X0 nand X1) nand X2) nand (X3 nand  
((not X2) nand X0))) nor (X0 nor X1)); 
},{ 
 Y0 <= ((((X0 nand X2) nor X1) nor (X0 nor X0)) nor  
((not ((X1 nand X3) nand X3)) nor ((X2 nor X2) nor X0))); 
 Y1 <= ((X0 xor X2) nor (X3 xor X1)); 
 Y2 <= (((((X3 nand X2) nand X0) nand X2) nand (X3 nand (X0 nand X0)))  

nor ((X2 nand (not X1)) nand ((not X0) nand (not X1)))); 
},{ 
 Y0 <= (not ((X0 nor (((X3 nor X2) nor X1) nor X2)) xnor  
((X2 nor X1) nor (((not X3) nor X1) nand X0)))); 
 Y1 <= ((X0 xor X2) nor (X1 xor X3)); 
 Y2 <= ((((X0 nand X1) nand X2) nand (X3 nand X2)) nor  
(((X0 nor X1) nor X3) nor X0)); 
}] 
end behave; 

 
 
Figure 6. Open promol metaprogram of 2-bit comparator. 

 

Table III summarizes the capabilities of model-based 
design and metaprogramming for implementing 
transformational design processes. 

 
TABLE III. CAPABILITIES OF MODEL-BASED DESIGN AND 

METAPROGRAMMING FOR IMPLEMENTING 
TRANSFORMATIONAL DESIGN 

Capability Model-based design Metaprogramming 
methodology 

Parameteriza-
tion 

Implemented using 
parameterized classes 
and represented using 
template parameters 

Implemented using generic 
parameters represented at 
generic interface 

Representation Real-world entities Domain program families 

Abstraction 
Class is an abstract 
representation of a 
family of objects 

Metaprogram is an abstract 
representation of a family 
of programs 

Generalization 
Two mechanisms: 
through inheritance 
and via templates 

Via generic parameters 
represented at generic 
interface 

Specialization Via sub-classing 
hierarchies 

By instantiating a 
metaprogram 

Modification 
May be implemented 
using parameterized 
template 

Performed automatically 
using metalanguage 
abstractions 

Generation 

Class instances are 
generated from class 
templates at compile 
time 

Domains programs are 
generated from 
metaprograms at 
construction time 

Reuse 

Implemented using 
inheritance: subclasses 
reuse attributes and 
methods of the 
superclass 

Implemented by selecting 
values of generic 
parameters and generating 
domain programs 

Separation of 
concerns 

Class header is 
separated from class 
implementation; class 
attributes – from class 
methods; class – from 
its objects 

Generic interface is 
separated from 
metaprogram body; 
metaprogram – from 
domain programs 

Variability 

Implemented using 
class constructor(s) 
that modify the values 
of class attributes 

Implemented using 
metalanguage abstractions 
that modify domain 
programs 

VI. DISCUSSION AND CONCLUSIONS 
The metaprogramming methodology and its elements 

(variability model, reuse evolution model, modeling 
language and domain language relationship metamodels, 
transformational design techniques) have been supported by 
numerous case studies [21, 27, 43, 44, 49, 53, 56, 57, 58, 61, 
63]. Based on these case studies and the research presented 
in this paper we can conclude that the higher abstraction 
level is used, the larger is the role of various transformation 
processes in the design. However, the effective 
specification, implementation and automation of 
transformation processes in the domain requires introduction 
of 1) high level transformation model (metamodel), and 2) 
generative technology for derivation of lower-level domain 
programs from higher-level design task specifications.  

Heterogeneous metaprogramming is a domain language 
independent generative technology, which when compared 
to homogeneous metaprogramming better fits for wide scale 
domain generators (e.g., for product line oriented designs 
and huge soft IP repositories). The cost we need to pay for 
this is the need of a metalanguage and its environment and 
much more complicated verification. The use of the grey-
box-based reuse evolution model within this technology can 
significantly reduce its deficiencies. The dedicated 
metalanguage as compared to the general-purpose 
programming language allows expressing 
metaspecifications more concisely, but a designer should 
learn yet another language and be confident in its reliability. 

Metaprogramming per se requires the definition of a high-
level domain model (metamodel or domain variability 
model) for its implementation. Such models describe high-
level abstractions can be mapped to the lower level of 
abstraction and can serve both as a guideline for manual 
development of metaprograms or executable specifications 
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for producing domain programs or at least parts of 
metaprograms.  

Due to increasing complexity of designed systems in the 
embedded system and hardware design domains and the 
complexity of the design process itself, design of modern 
systems require design automation and management of 
domain variability. Domain variability at best can be 
modeled using feature diagrams and other relationships 
within the domain can be modeled using a subset of UML 
(though UML allows specifying variability at a certain 
degree, too). These technologies introduce new layers of 
abstraction above traditional HDL specifications. 
Heterogeneous metaprogramming brings the expressive 
power to bridge the gap between different levels of 
abstraction and to describe genericity and variability in the 
domain explicitly. 
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