
Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

Integration of Simulink Models with
Component-based Software Models

Nicolae MARIAN, Søren TOP
Mads Clausen Institute for Product Innovation, University of Southern Denmark

Alsion 2, DK-6400 Sønderborg
nicolae@mci.sdu.dk

Abstract—Model based development aims to facilitate the

development of embedded control systems by emphasizing the
separation of the design level from the implementation level.
Model based design involves the use of multiple models that
represent different views of a system, having different
semantics of abstract system descriptions. Usually, in
mechatronics systems, design proceeds by iterating model
construction, model analysis, and model transformation.
Constructing a MATLAB/Simulink® model, a plant and
controller behavior is simulated using graphical blocks to
represent mathematical and logical constructs and process
flow, then software code is generated. A Simulink model is a
representation of the design or implementation of a physical
system that satisfies a set of requirements. A software
component-based system aims to organize system architecture
and behaviour as a means of computation, communication and
constraints, using computational blocks and aggregates for
both discrete and continuous behaviour, different
interconnection and execution disciplines for event-based and
time-based controllers, and so on, to encompass the demands to
more functionality, at even lower prices, and with opposite
constraints. COMDES (Component-based Design of Software
for Distributed Embedded Systems) is such a component-based
system framework developed by the software engineering
group of Mads Clausen Institute for Product Innovation
(MCI), University of Southern Denmark.

Once specified, the software model has to be analyzed. One
way of doing that is to integrate in wrapper files the model
back into Simulink S-functions, and use its extensive
simulation features, thus allowing an early exploration of the
possible design choices over multiple disciplines.

The paper describes a safe translation of a restricted set of
MATLAB/Simulink blocks to COMDES software components,
both for continuous and discrete behaviour, and the
transformation of the software system into the S-functions. The
general aim of this work is the improvement of multi-
disciplinary development of embedded systems with the focus
on the relation between control engineering and software
engineering.

Index Terms—component-based design, model-based design,
MATLAB/Simulink, model transformation, discrete-time
models, continuous-time models

I. INTRODUCTION
SIMULINK is a design-based modeling tool, even a

framework, created by MathWorks, that uses graphical
blocks to represent mathematical and logical constructs and
process flow [2], for the modelling, simulation and analysis
of dynamic systems. To the control system engineers the
structure and content of the system representation in
Simulink is intrinsic and intuitive and the design can be
layered depending on the analysis level required.

Simulink is a block diagram industry oriented standard

tool for simulating mixed reactive/transformative, nonlinear
dynamic systems that builds on the MATLAB environment
for technical computing. A Simulink model is a
representation of the design or implementation of a system
that satisfies a set of requirements. For many years Simulink
has been the tool of choice for much of the control industry,
by many considered a de-facto standard, to develop both
physical and control system models, in terms of stability,
response time, overshoot, etc [2,6], and is maturing into the
new generation of systems engineering, representative of an
advanced approach to design. The main attraction of
Simulink has been its flexibility and the range of toolboxes
available to aid control system design, development and
calibration.

COMDES (as a family of versions) is a component-based
framework intended for design and analysis of embedded
control systems [1]. Specific for COMDES is the design of
the control system from prefabricated components, and then
analyzing the executable models that constitute its
configuration specification. COMDES offers strong typing,
explicit initialization, explicit time management (delays,
clocks, etc), and simple expression of concurrency (data
dependencies), based on a well-defined control and data-
flow representation. By means of a graphical signal flow
graph editor, it supports model-based development. The end
result is an integrated process of software development,
featuring model-based configuration and analysis of
embedded applications that can be characterized by the
sentence:

What you specify is what you verify, execute and test.

COMDES (as in its last version COMDES-II) uses an
actor diagram that represents subsystems (actors) and the
signals exchanged between them within the corresponding
distributed transaction. An actor encapsulates state and
exhibits behaviour. Individual actor behaviour is described
by means of reactive behaviour, which is usually specified
with a state-machine model, and continuous behaviour, i.e.
some numerical (conditioned) processing, that is specified
as a function block diagram. The atomic software unit is a
function block. Function blocks are reusable system
components, which eventually enable the reconfiguration of
system structure. Ultimately, the system actor diagram is
transformed into a function block design for control and
data.

Although the different disciplines are tightly coupled in
the considered embedded systems, their development is
often a rather sequential, mono-disciplinary, process.
Typically, first the control part is designed, next the

 3
Digital Object Identifier 10.4316/AECE.2008.02001

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:32:14 (UTC) by 44.210.239.12. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

hardware infrastructure is fixed, and finally the embedded
software is developed. This approach can create large
problems, especially for the software engineers. For
instance, choices about the placements of sensors (and
implicitly the occurrence of interrupts), control rates, control
delays, hardware, etc., have a strong influence on the
complexity of the software. Moreover, usually many
implicit assumptions are made, which first become visible at
system integration. This easily leads to non-optimal
solutions.

Within each discipline, a common solution is the frequent
use of models to detect problems as early as possible. Using
the model-based engineering paradigm for the design of a
system, the models are preferably specified using domain-
specific modelling formalisms. For instance, in the software
domain a lot of effort is put on model driven development,
based on component models. Moreover, mono-disciplinary
modeling is usually supported by tools that allow some form
of execution or simulation. Lacking, however, is the
possibility to combine tools of different disciplines, to
investigate the mutual influence of modeling choices. Our
aim is to couple currently used tools to allow both automatic
translation of the Simulink models to COMDES component-
based models, but also simulation of the transformed
software models into the Simulink setup [10,11]. By means
of co-simulation, the component models can be combined to
obtain a better overall system behavior.

II. MODEL-BASED DESIGN IN CONTROL AND
SOFTWARE

Model-based design provides a proven technique for
creating embedded control systems. Model-based system
development is a change of focus from arithmetic and data
related issues to the overall architecture of software system.
It is a more effective approach to increase system
functionality and reliability, and to decrease development
cost and time.

The design of control algorithms is a fundamental part of
the design flow. It starts from a functional specification and
ends up with a detailed description of the algorithms. In the
model-based design methodology, the part of the control
algorithm that is mapped to the software partition is
automatically translated from a model representation to a set
of software components. The software architecture of the
application will accommodate and compose together those
software components such that the real-time requirements
are met. In the proposed design flow, the control algorithms
are captured using the MATLAB/Simulink design
environment and the automatic translation of the model to
COMDES-language code is performed according to a set of
rules, described in a following section.

A Simulink block-diagram represents a dynamic system
described as a set of first-order ordinary differential
equations.

 dx/dt = f(x, u)
 y = g(x, u), x(t0) = x0

The system can then be specified as in the form above,
where the vector u gives the input signals to the system, y
gives the vector of output signals from the system and the
vector x gives the state of the system.

A Simulink model is represented graphically by means of
a number of interconnected blocks. Lines between blocks
connect block outputs to block inputs and represent data
flow signals. Blocks may have states, which may consist of
a discrete-time and a continuous-time part.

The output of a block is computed by an output function,
based on its input and its current state and time. Similarly,
an update function calculates the next discrete state. A
derivative function relates the derivatives of the continuous
part of the state to time and the current values of the inputs
and the state.

Blocks can be built from a large number of predefined
library blocks, which can be nested in an arbitrary structure
container composition, or they can be implemented by an S-
function, which can be written in MATLAB, C, C++, Ada,
or Fortran, belonging to Simulink's callback architecture. An
S-function can be used for a variety of applications such as
describing a system as a set of mathematical equations,
incorporating existing code into a simulation, and adding a
block that represent athe scheduler of a real-time kernel.

During the simulation of a Simulink model, the outputs,
inputs and states are computed at certain intervals, from a
start time to an end time, as specified by the user. The
successive states of a system are computed by a so-called
solver, a Simulink-specific program.

Since no solver is suitable for all models, there are several
types of solvers. The solvers use numerical integration to
compute the continuous states of a system from the state
derivatives specified by the model. Each solver uses a
different integration method, allowing the selection of the
most suitable method for a particular model.

The successive time points at which the states and outputs
are computed are called time steps. The length of time
between steps is called step size. The step size depends on
the type of the solver used, the characteristics of the
Simulink model, and the existence of discontinuities of the
continuous states (Simulink checks for such discontinuities
– this is called zero crossing detection – and if it detects one
within the current step, the precise time at which zero
crossing occurs is determined and additional time steps are
taken).

There are several types of solvers. Fixed-step solvers use
a fixed step size. Variable-step solvers change the step size
during simulation. They reduce the step size to increase
accuracy when states are changing rapidly and increasing
the step size to avoid taking unnecessary steps when states
are changing slowly. This requires some additional
computation each step, to determine the step size, but can
reduce the total number of steps and hence the duration of
the simulation.

For purely discrete models there are discrete solvers.
Continuous solvers compute continuous states using
numerical integration. Simulink provides an extensive set of
fixed-step and variable-step continuous solvers, each
implementing a specific numerical integration technique for
solving the ordinary differential equations that represent the
continuous states of dynamic systems. The solvers monitor
the error at each time step; they compute the local error,
which is the estimated error of the computed state values. If
the local error is greater than the acceptable error for any
state, the solver reduces the step size and tries again.

 4

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:32:14 (UTC) by 44.210.239.12. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

Simulation of a Simulink model starts with the
initialization phase, where e.g. library blocks are
incorporated, block parameters are evaluated, memory is
allocated and the execution order of the blocks is
determined. Next, Simulink enters a simulation loop,
consisting of simulation steps. During each simulation step,
Simulink executes all blocks of the model in the order
determined during initialization. This execution order does
not change during the simulation. For each block, Simulink
calls functions that compute the block's states, derivatives,
outputs for the current sample time, and the next time step.
This continues until the simulation is complete.

COMDES (Component based design of software for
Distributed Embedded System) which is being developed at
MCI, University of Southern Denmark, is an instance of
component based design, which is a software design method
for real-time embedded systems. COMDES is an executable
visual model for embedded control systems. It mirrors the
architecture of the control process itself, which is made up
of a number of independent control modules, called function
blocks, with a top-level module controller, wired by signals,
such as pressure, temperature, etc. The COMDES system
design is meant to be a diagram of components together
with a description of their interconnection topology and/or
state based behavior. The native timing execution of the
model is a periodically clocked events pattern (under a more
general paradigm called timed multitasking), [1].

III. TRANSLATION OF SIMULINK MODELS TO
COMDES MODELS

Our approach to translate bottom-up and hierarchical the
controller part of the Simulink design, covering functional
and timing aspects, is based on:
• mapping tables between a safe set of Simulink blocks

and the corresponding COMDES function block model.
• a set of translation rules formulated for both Stateflow

and Simulink conditional blocks for converting of some
implicitly behaviour into an explicitly one:
o derive COMDES state machine model out of the

Stateflow state machine, associated input and
output variables and conditional blocks like Switch,
Multiport switch, and

o associate the continuous part of Simulink to the
states of the COMDES state machine model in
terms of the function blocks (basic and composite,
respectively).

• mapping of types and timing constraints
• translation of the Simulink design into the COMDES

software design using an intermediate XML-based
model, which represents a COMDES model in terms of
class, attributes, and node-based hierarchies, according
to the rules established in the previous steps.

The semantic of Simulink is multiple, as presented in the
previous section, dependent on user-defined options, like
that of the simulation method. Simulink has a problem with
the typing (weak), and lacks modularity sometimes.
COMDES design and implementation has to filter out
Simulink ambiguities, and to serve as a reliable middle layer
for safety critical applications.

We start our translation with a Simulink model,

consisting of two parts: a discrete-time part describing the
controller and a continuous-time (or perhaps discrete-time)
part containing the environment in which the controller is
supposed to operate. Modeling both the controller and the
environment is of course essential for studying the
properties of the controller by simulation. Once the design is
validated by various simulation methods, the
implementation of the controller can start. Figure 1 shows a
glance of how they look like, i.e. Simulink and COMDES
models. One of the actors of the COMDES model is called
Controller, and is namely the result of the translation from
the Simulink model. The software model is having other
actors like Sensor, for reading the inputs, Actuator, for
actuating the outputs, and Operator Station, for man-
machine interface and communication, which are not
functionally derived but timing constrained in the
translation.

Figure 1. Simulink and COMDES models.

Both Simulink and COMDES allow the representation of

signals and systems, more precisely, multi-periodic sampled
systems. The two languages share strong similarities, such
as a data-flow model and similar abstraction mechanisms
(basic and composite components). However, there are
several differences:

1. COMDES has discrete-time semantics, whereas
Simulink has continuous-time semantics. It is
important to note that even the discrete-time library
of Simulink blocks produce piece-wise constant
continuous-time signals. In a continuous-time model,
signals continuously vary with time and the blocks
respond to continuously changing input. In a discrete-
time model, signals are sampled at discrete time
intervals; input and output take place in cycles.

2. COMDES has a unique, precise semantics. The
semantics of Simulink depends on the choice of a
simulation method. For instance, some models are
accepted if one chooses variable-step simulation and
rejected if one chooses fixed-step, auto, or
multithreaded simulation.

3. COMDES is a strongly-typed system with explicit
type set on each flow. In Simulink, explicit types are
not mandatory. A type-checking mechanism exists in
Simulink (some models are rejected due to type
errors) but, as with the execution semantics, it can be
modified by the user by setting some flags.

4. COMDES is modular in certain aspects, whereas
Simulink is not: for instance, a Simulink model may
contain implicit inputs (the sampling periods of a
system and its sub-systems, which are not always
inherited).

 5

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:32:14 (UTC) by 44.210.239.12. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

Given the above differences, the goals and limitations of
our translation when mapping a Simulink block-diagram
into COMDES elements are the following:

1. We only translate a discrete-time, non-ambiguous part
of Simulink. In particular, we do not translate blocks of
the continuous-time library, S-functions, or MATLAB
functions. Each Simulink block is mapped into one
COMDES block, according to built mapping tables.
The Simulink model to be translated is assumed to be
(part of) the controller embedded in a larger model
(including the environment).

2. The translation is restricted to the following simulation
method of the solver: fixed-step, discrete and mode:
auto. We assume that the Simulink model to be
translated has the boolean logic signals flag ON. Then,
a requirement on the translator is to perform exactly the
same type inference as Simulink. In particular, every
model that is accepted by Simulink must also be
accepted by the translator and vice versa.

3. The COMDES program must be run at the time period
the Simulink model was simulated. Thus, an outcome of
the translation must be the period at which the
COMDES program shall be run (i.e., the period of the
basic clock). To know the period at which the Simulink
model was simulated, we assume that for every external
input of the model to be translated the sampling time is
explicitly specified. Simulink concept of periodic
execution is maintained for time-continuous blocks, as
they can be mapped to COMDES in the same way as
blocks with a discrete sample time.

For reasons of traceability, the translation must preserve
the hierarchy of the Simulink model as much as possible.
The task of finding a good granularity is also important for
an efficient translation. Simulink ports are mapped into
Sensor, Actuator, and Operator Station actors of the
COMDES model. Simulink edges are mapped into
COMDES signals, so that to maintain Simulink destructive
write, nondestructive read, and broadcast semantics.
Simulink model of computation is thus transformed into a
state oriented data-driven model, with partial ordering
between blocks, which is supported by COMDES. In this
respect, we follow, in general, the ideas from [4,5,7,12], for
graph transformation in terms of states and dataflow,
instantiated to component-based diagrams embedded into
states, and intend to use in the future the tool GReAT [8] to
automate the process.

Mapping tables

Each box in a Simulink diagram is called a block; the
wires carry signals. The inputs and outputs of a system are
represented by rounded boxes containing numbers.
Typically, a block takes some input signals and produces
some outputs according to a function determined by the kind
of block in question. There are libraries of blocks, and they
can also be user-defined. The rectangular boxes without
inputs output the constant value they display. The circles are
sum blocks. Boxes enclosing names are subsystems; they
denote control systems defined in other diagrams. Blocks
can have state. For example, blocks labelled 1/z are unit
delay blocks. They store the value of the input signal, and
output the value stored in the previous cycle. In each cycle,

the output depends on the values of the inputs and of the
state that may be held in the blocks, but other factors may be
relevant. For example, subsystems may be conditionally
executed: an action subsystem has an activated input and is
executed when it is true; an enabled subsystem has an
enabling input and is executed when its value is greater than
zero. When a subsystem is not executed, its outputs can
either be held at their previous value or reset to an initial
value. Any state contained in blocks within the subsystem is
held until the subsystem is about to be executed again, at
which point the states can be held or reset to an initial value.
Merge blocks take a number of inputs and produce one
output: the most recently calculated input.

Translation of Simulink blocks (e.g., adders, multipliers,
the 1/z transfer function) into basic COMDES function
blocks is made in a bottom-up fashion, i.e., starting from the
basic blocks. More complex Simulink blocks (e.g., discrete
filters) are translated into COMDES composite function
blocks.

From the whole Simulink block library we choose only a
safe set of them: Continuous, Discontinuous, Discrete,
Signal Routing and Ports & Subsystems.

Figure 2. Mapping tables for the safe set of Simulink blocks.

The relationships between the Simulink blocks and

corresponding COMDES function blocks are given in terms
of a set of mapping tables, and an example is shown in the
Figure 2.

If we take the continuous time integrator block, then it is
one of a number of blocks that can function in a variety of
different ways depending on the choices made by the user
each time the block is added to a model. The options for the
integrator block include applying limits to the output,
initializing with internal or external initial conditions,
allowing for external reset signals, outputting state
information and information on the limit condition. To
define all this in COMDES in a way that achieves the ideas,
the software block contains the definitions for the input and
output connections to have the required number of
connectors for this method. For example, if an external
initial condition is required then two inputs are needed
rather than one.

This same structure idea has also been used for many
other blocks including the discrete integrator, math function
block, trigonometric function block and many others.

A basic function block specifies a simple subroutine
function or a fragment of a complex one. It is ready to
execute whenever the necessary signals arrive at its inputs.

 6

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:32:14 (UTC) by 44.210.239.12. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

Then the basic function block will execute, and produce
signals at its outputs, which can be the input signals of the
successor basic function block and so on, until the last one is
executed and the final output signal is generated.

Two or more basic function blocks that aggregate a
complex function can be seen as a composite function block.
For example, we can specify a composite function block
called Substract_Max_Gain, which is composed of basic
function blocks such as subtract, max, constant, and gain,
etc.

A composite function block is externally
indistinguishable from a basic function block. It can be
viewed as an aggregation of basic function blocks that
execute in certain precedence by a standard routine called
function block driver.

The function block driver is a static function block
execution scheduler that linearly invokes encapsulated basic
function block instances according to the execution
schedule. The execution schedule is derived for each state
from the signal flow diagram depending on Simulink
application and translation rules.

Translation rules

The following aspects of the Simulink model of
computation have to be preserved by translation:

1. causality and the resulting partial ordering of
Simulink blocks,

2. relative execution rates between Simulink blocks, and
3. read and write access sequence on each edge to

model the register semantics used by Simulink for
communication.

The execution precedence of function blocks mentioned
above is a control flow model (computation sequence
graph), which is actually a state transition model, i.e. a
Moore machine whose states are associated with the
execution of certain function blocks. In this way, states
specify different steps of the whole computation sequence,
which is specified by transitions among different states and
their relevant predicates/guards. Those transitions integrate a
computation sequence path within the state machine.

Therefore the computation sequence graph can be
implemented by means of a binary decision diagram table,
and a function block execution sequence driver that
interprets the table in a sequential logic controller like
manner.

State Machine Model

A transition is the mapping that indicates the relationship
between a source state and the target state, representing
reaction or response. It is used for determining the execution
sequence of computation.

A Simulink model can include a Stateflow block, which is
defined by a diagram that has local data and includes finite
state machines, flow-diagram notations, and state-transition
diagrams. The finite state machine reacts to events triggered
in the Simulink model; the reactions lead to state changes
that affect the behavior of the Simulink model.

A simpler situation occurs when there is only a Switch
block in the control part of a Simulink diagram, Figure 3, or
a Multiport switch block, with similar translation.

In COMDES, the transitional relationship is expressed in
a structure called next-state mapping, which clearly shows
all the information included in a transition described above.

s0

s1 s2

x==1

x==1

x==0

x==0

x==0

x==1

The Criteria for passing the 1st input to the output
port is one of the 3 items:
1. u2 >= threshold
2. u2 > threshold
3. u2 != 0

S0: the initial state;
S1: the state passes the 1st input to output port;
S2: the state passes the third input to output port

Figure 3. Translation of the Switch block.

Translation rules for the Stateflow diagram are similar

with those in [7], namely identification of the states and
transitions in a new state machine, using the current state
machine of the Stateflow diagram, input variables from
different blocks, and output variables wired with a number
of Switch blocks, called switching signals. A simplification
using binary vectors and associated operators is
acomplished.

The translation algorithm according to the formulated
rules is presented below:

1. Each state si is split into A = 2notdefined(s
i
) locations,

where notdefined(si) is the number of switching
signals not defined in si. The total number of the
switching signals is D. The set of locations generated
from si is

Σi = {σi,1, σi,2, … σi,D }.
2. Make a transition τi,n,j,m between σi,n and σj,m if

 (Ci,n ⊕ Cj,m) ∧ M(σj,m) = <0>
where Ci,n is the binary switch code for location σi,n,
Cj,m is the binary switch code for location σj,m, and
M(σj,m) is the mask code for location σj,m.

3. Choose σ1,1 to be the initial location.
4. Add the switching signal values from the entry action

of si as the following invariants to location σi,j.
5. Delete all unreachable locations and transitions from

the new state machine.
6. For each state si generate function blocks

(composite). Copy these function blocks (composite)
from each state si to corresponding locations σi,j, for
all j = 1, 2, 3, ... , D, in the new system.

Type & Timing inference

Typing inference is that from Simulink model to a C
language, i.e. Boolean, integer, real. Whenever two types
are compatible but not the same, the stronger type will be
modified accordingly.

As related to time, a large proportion of the blocks in the
Simulink standard library can run in different time-modes,
i.e. either continuous or discrete time modes. In addition
where blocks are able to run in discrete time mode they can
be defined to run at a predefined sample rate or they can
inherit their sample time from their parent system or from
their driving block.

The translation relaxes the over-constrained exact timing
assumed for all Simulink components, since

1. it is fundamentally impossible to implement blocks
or channels with zero execution time and

2. activation of all blocks at exact points in time is
unnecessarily restrictive.

thereby yielding a larger design space.

 7

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:32:14 (UTC) by 44.210.239.12. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

Timing constraints are (re)inserted afterwards to ensure
time critical correct real-time implementation, typically I/O
activities which have to satisfy external requirements.
Additionally, latency path constraints, typically between
inputs and outputs or along a cycle, may have to be
specified to guarantee timely completion. The execution
period of COMDES model will be the same with Simulink
simulation timing (triggers). In periodically time triggered
state machine, switch control action takes place in the state
and in event-driven state machine it takes place in the entry
action of the state.

IV. INTEGRATION OF THE COMDES BLOCKS INTO
S-FUNCTIONS

In order for the simulation to capture accurate behavior of
the subsystem software in real time, it is essential that the
same software to be modeled in the simulation setup as well.
Simulink uses block diagrams to model dynamic systems
and provides an environment that allows simulation of
COMDES component-based models by converting of
software components into custom S-functions. Simulink
provides the necessary templates to create an S-function,
and the software models will be executed within the
Simulink shell as S-functions, Figure 4.

Plant
ModelCOMDES-controller

S-function

Control variable

Feed-back

Set-point

Figure 4. Encapsulation of a COMDES controller into a Simulink S-
function.

Control engineers can simulate and thus verify the
COMDES component-based model implementation by
comparing its performance to that of pure SIMULINK
models of the controller, and this can happen iteratively,
allowing an early evaluation of the development process.

An S-function is a system function that has been compiled
to run in the Simulink environment. On a Microsoft
Windows® platform, these system functions are compiled
into dynamically linked libraries (DLLs). The software
component is then compiled and built using the MATLAB
mex® function library. This build process within the
MATLAB application produces a DLL for the software
component. The MATLAB-produced DLL is then used in
the simulation model by associating it with a user defined S-
function.

This will allow to accurately simulate several modes of
operation and to improve the control algorithms in the real
application, once the simulation results met their targets.

An S-function implement a set of methods, called
callback methods that together describe the behavior of the
(sub) system modelled by means of the S-function. The
simulation coordinator, in our case Matlab Simulink,
invokes these callback methods during the simulation.

An implementation of the S-function interface must
implement the set of callback methods. Some callback
methods are optional.

The simulation coordinator invokes an optional callback

only if the S-function defines the callback, by a C-code
included at the end of the S-function. The callback methods
perform tasks required at each simulation stage. These tasks
performed by the callback methods include:
• Initialization. Prior to the first simulation loop, the

simulation coordinator initializes the S-function. During
this stage:
- The SimStruct is initialized. A SimStruct is a

simulation S global structure that contains
information about the S-function. Some library
functions permit to create in it variables usable to
pass values among subsequent mdlOutput calls or
to store state.

- The number and dimensions of input and output
ports are set.

- The block sample times are set.
- The storage areas are allocated.

• Calculation of next sample hit. In case a variable
sample time block is specified, this stage calculates the
time of the next sample hit; that is, it calculates the next
step size.

• Calculation of outputs in the major time step. After this
call is complete, all the output ports of the blocks are
valid for the current time step.

• Update of discrete states in the major time step. In this
call, all blocks should perform once-per-timestep
activities such as updating discrete states for next time
around the simulation loop.

• Integration. This applies to models with continuous
states and/or non-sampled zero crossings. If the S-
function contains continuous states, the simulation
coordinator calls the output and derivative portions of
the S-function at minor time steps.

In this way, the simulation coordinator can compute the
states for the S-function. If the S-function contains non-
sampled zero crossings, the simulation coordinator calls the
output and zero-crossings portions of the S-function at
minor time steps so that the zero crossings can be located.

The main callback function together with a brief
description of their functionality is given in Table 1.

TABLE I. FUNCTIONALITY OF THE CALLBACKS METHODS

S-function Description
mdlInitializeSizes Specifies the number of inputs, outputs,

states, and parameters and other
characteristics of the S-function

mdlInitializeSampleTimes Specifies the sample rates
mdlInitializeConditions Initializes the state variables

mdlOutputs Computes values of the output variables
mdlUpdate Updates the state variables

mdlDerivatives Computes the derivatives
mdlZeroCrossings Updates zero-crossing vector

mdlTerminate Performs any actions required at termination
of the simulation

During simulation, Simulink invokes the predefined set of

callback functions of the S-function implementation in order
to perform all necessary computations in the right order.

Figure 5 shows the order in which the simulation
coordinator invokes the callback methods of an S-function,
during initialization and simulation respectively. Solid
rectangles indicate callbacks that always occur during model

 8

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:32:14 (UTC) by 44.210.239.12. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

initialization and/or at every time step. Dotted rectangles
indicate callbacks that may occur during initialization and/or
at some or all time steps during the simulation loop.

A standard S-function contains a number of functions that
are called by Simulink. For instance, during a simulation
step, Simulink calls mdlUpdate() to update discrete states,
mdlDerivatives() to calculate derivatives, and mdlOutputs()
to calculate the outputs of a block. The execution phase of
each Simulink block is an iterative computation of (1) the
block outputs (2) block states and (3) the next time step. The
function mdlOutputs() calculates the output of the block,
while mdlUpdate() updates the block states.

mdlInitializeSizes

mdlInitializeSampleTimes

S-function initialization

mdlInitializeConditions

mdlOutput

Initialization

mdlUpdate

mdlDerivatives

mdlOutputs

mdlDerivatives

mdlOutput

mdlZeroCrossings

mdlTerminate

To simulation loop

End simulation

m
in

or
 ti

m
e

st
ep

s m
aj

or
 ti

m
e

st
ep

Figure 5. Initialization and simulation steps of S-function.

Code errors will be notified and serious problems caused

by run-time errors are resolved; S-function code is executed
by Simulink and errors often cause a Simulink failure,
which often is solved only by a MATLAB reboot.

The Simulink model is becoming a plane of
interconnected Simulink components, COMDES
components, each with a representation in the Simulink
plane, and their interaction, Figure 6.

Figure 6. Addition of a COMDES plane in Simulink.

V. EXAMPLE OF SIMULINK – COMDES TRANSLATION AND
CO-SIMULATION

In order to illustrate how to apply the translations rules
defined in the former chapter, the tank level control example
is taken [7], Figure 7.

Applying the transformation rules, we derive the
COMDES state machine model first, and then the function
blocks associated with states. The flat Stateflow state
machine contains three states and three switching signals

connected to the control input port of switch blocks Switch1,
Switch2 and Switch3. By applying the translation algorithm
steps 1-4, we get a state machine with 8 states, and, finally
after step 5, we end up with a 6 states state machine. The
final step 6 attaches dataflow to the states.

Figure 7. Tank level Simulink model.

For example, state Low has the following Simulink

diagram, Figure 8.

Figure 8. Simulink diagram for state Low.

We translate the MATLAB function into a Simulink

diagram again, Figure 9.

Figure 9. Simulink diagram for MATLAB function block.

Combining the last two diagrams, we have the resulting

Simulink diagram for state Low, Figure 10.

Figure 10. Final Simulink diagram for state Low.

We derive the COMDES function block diagram for state

Low by applying the mapping tables and causality, as well
as for the other states, following similar procedures, Fig. 11.

 9

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:32:14 (UTC) by 44.210.239.12. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

The simulation model is including the software model by
wrapper file template, which in turn is compiled into a
Windows DLL component and used by Simulink in
performing simulations. Wrappers abstract COMDES
details, but make them available at conceptual level.

Figure 11. COMDES function block diagram for state Low.

The implementation of the callback methods of the

COMDES S-function block are defined for each of the
functions mentioned in the previous section. As an example,
in the case of mdlInitializeSizes, the discrete variables of the
process are mapped to the discrete state variables of the S-
function block. The continuous variables and the variable
time of the process are mapped to the continuous state
variables of the S-function block. The number of input ports
is set to the number of input variables that are specified in
the formal parameter list of the model. The number of
output ports is set to the number of output variables as
specified in the parameters of the COMDES S-function
block. The number of sample times is set to 1. The number
of zero crossings is set to the number of occurrences of
guard operators plus the number of occurrences of
inequality delay predicates plus 1 for the time events.

mdlInitializeSampleTimes is implemented by setting the
sample time of the S-function is set to a continuous sample
time with offset 0. mdlInitializeConditions is implemented
such that the initial values for the state variables from the S-
function are obtained from the valuation from the process,
using the variable mapping as defined in function
mdlInitializeSizes. mdlOutputs is copying the values of the
discrete and continuous variables and the variable time to
the corresponding output variables. If the simulation step is
a major time-step, it is determined whether a time event
occurred. If the mdlUpdate function is called for the first
time (ssIsFirstInitCond(S) holds, where S denotes the
SimStruct), the process is simulated using the Simulink
simulator. If a time event occurred (IsTimeEvent holds),
which is determined in function mdlOutputs, the resulting
process is obtained using the end-valuation of the time
transition (EndState(TimeStep)). After that, this process is
simulated using the simulator.

In the same way, other functions like mdlZeroCrossings,
mdlTerminate, are implemented.

VI. CONCLUSION
In this paper we proposed a methodology of transforming

Simulink control models into COMDES software
component-based models. Model-based design, used to its
fullest, provides translation-connected design environments
that enable developers to use Simulink as a single model of
their entire system for visualization and validation, and
ultimately software product deployment, with consistent
automatic code generation.

In this respect, some problem issues may be solved by a
joint control engineer and software engineer effort. Even if

the control and software design work is done in isolation,
there is a close cooperation between the two expertises. The
control engineers can concentrate on their specific issues,
like damping, overshoots, stability of control, whereas the
software engineers can focus on embedded aspects like
scheduling issues, resource consumption, priorities. The
interaction is directly between the two models, like the
relation between the control loop execution periods and the
task deadlines.

The advantages of using COMDES as a software design
and implementation method of Simulink control models are
the straightforward of the translation, well structured design,
feasibility of verification and validation by combining
different techniques, reusability of parts of these in relation
to reuse of components, and cost-efficient development of
code. We intend to improve the translation to handle other
Simulink semantics.

The model-based development process benefits from
control-software co-design, resulting faster and shorter
development cycles and earlier testing. Maintenance of the
control algorithms becomes easy because control algorithm
models are safely translated into component-based software
architectures, and wrapping back software components into
a library of simulation components, Simulink is used as a
testing tool too. In this way, a simulation tool independent
representation of the control algorithms has been achieved.
The new opportunities for checking and the clear division
between control algorithm and simulation code has been
appreciated.

REFERENCES
[1] N. Marian, “Model-Based Development of Embedded Software

Systems with Components”, Advances in Electrical and Computer
Engineering Journal, vol 1/2006, pp 30-38

[2] Simulink, A tool for modeling, simulation and implementation of
control systems, see:
 URL http://www.mathworks.com/products/simulink.

[3] M. M. Adams and P. B. Clayton. Clawz: Cost-effective formal
verification for control systems. In 7th International Conference on
Formal Engineering Methods, pages 465–479, 2005.

[4] P. Caspi et al., “Translating Discrete-Time Simulink to Lustre”, in
Proc. of the 3rd International Embedded Software Conference
EMSOFT’03, LNCS 2855, 2003, pp. 1-15

[5] N. Scaife et al., “Defining and Translating a “Safe” Subset of
Simulink/Stateflow into Lustre”, report No TR-2004-16, Verimag,
2004

[6] T. Henzinger, C. M. Kirsch and M. A. A. Sanvido, “From Control
Models to Real-Time Code Using Giotto”, IEEE Control Systems
Magazine, Feb. 2003, pp. 50-64

[7] A. Agrawl, G. Simon, G. Karsai, “Semantic Translation of
Simulink/Stateflow models to Hybrid Automata using Graph
Translations”, in Electronic Notes in Theoretical Computer Science,
vol 109, 2004, pp 43-56

[8] M. Andries, et al., “Graph Transformation for Specification and
Programming”, Sci. Comput. Program., Vol. 34, No. 1, 1999, pp. 1-5

[9] IEEE Transactions LaTeX and Microsoft Word Style Files, Available:
http://www.ieee.org/organizations/pubs/transactions/ stylesheets.htm

[10] S. Top, H.J. Nørgaard, B. Krogsgaard, B.N. Jørgensen, “The
Sandwich Code File Structure - An architectural support for software
engineering in simulation based development of embedded control
applications”, Proceedings of IASTED International Conference on
Software Engineering (SE 2004). ACTA Press, (2004)

[11] S. Top, H.J. Nørgaard, B.N. Jørgensen, “Object oriented C++
programming in SIMULINK® - A reengineered simulation
architecture for the control algorithm code view”, Proceedings of
Nordic MATLAB Conference 2003, pp 79-84

[12] I. Stürmer, D. Travkin,, “Automated Transformation of MATLAB
Simulink and Stateflow Models”, Proceedings of 4th Workshop on
Object-oriented Modeling of Embedded Real-time Systems, 2007, pp
57-62

 10

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:32:14 (UTC) by 44.210.239.12. Redistribution subject to AECE license or copyright.]

