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Abstract—Model based development aims to facilitate the 

development of embedded control systems by emphasizing the 
separation of the design level from the implementation level. 
Model based design involves the use of multiple models that 
represent different views of a system, having different 
semantics of abstract system descriptions. Usually, in 
mechatronics systems, design proceeds by iterating model 
construction, model analysis, and model transformation. 
Constructing a MATLAB/Simulink® model, a plant and 
controller behavior is simulated using graphical blocks to 
represent mathematical and logical constructs and process 
flow, then software code is generated. A Simulink model is a 
representation of the design or implementation of a physical 
system that satisfies a set of requirements. A software 
component-based system aims to organize system architecture 
and behaviour as a means of computation, communication and 
constraints, using computational blocks and aggregates for 
both discrete and continuous behaviour, different 
interconnection and execution disciplines for event-based and 
time-based controllers, and so on, to encompass the demands to 
more functionality, at even lower prices, and with opposite 
constraints. COMDES (Component-based Design of Software 
for Distributed Embedded Systems) is such a component-based 
system framework developed by the software engineering 
group of Mads Clausen Institute for Product Innovation 
(MCI), University of Southern Denmark. 

Once specified, the software model has to be analyzed. One 
way of doing that is to integrate in wrapper files the model 
back into Simulink S-functions, and use its extensive 
simulation features, thus allowing an early exploration of the 
possible design choices over multiple disciplines. 

The paper describes a safe translation of a restricted set of 
MATLAB/Simulink blocks to COMDES software components, 
both for continuous and discrete behaviour, and the 
transformation of the software system into the S-functions. The 
general aim of this work is the improvement of multi-
disciplinary development of embedded systems with the focus 
on the relation between control engineering and software 
engineering. 
 

Index Terms—component-based design, model-based design, 
MATLAB/Simulink, model transformation, discrete-time 
models, continuous-time models 

I. INTRODUCTION 
SIMULINK is a design-based modeling tool, even a 

framework, created by MathWorks, that uses graphical 
blocks to represent mathematical and logical constructs and 
process flow [2], for the modelling, simulation and analysis 
of dynamic systems. To the control system engineers the 
structure and content of the system representation in 
Simulink is intrinsic and intuitive and the design can be 
layered depending on the analysis level required.  

Simulink is a block diagram industry oriented standard 

tool for simulating mixed reactive/transformative, nonlinear 
dynamic systems that builds on the MATLAB environment 
for technical computing. A Simulink model is a 
representation of the design or implementation of a system 
that satisfies a set of requirements. For many years Simulink 
has been the tool of choice for much of the control industry, 
by many considered a de-facto standard, to develop both 
physical and control system models, in terms of stability, 
response time, overshoot, etc [2,6], and is maturing into the 
new generation of systems engineering, representative of an 
advanced approach to design. The main attraction of 
Simulink has been its flexibility and the range of toolboxes 
available to aid control system design, development and 
calibration. 

COMDES (as a family of versions) is a component-based 
framework intended for design and analysis of embedded 
control systems [1]. Specific for COMDES is the design of 
the control system from prefabricated components, and then 
analyzing the executable models that constitute its 
configuration specification. COMDES offers strong typing, 
explicit initialization, explicit time management (delays, 
clocks, etc), and simple expression of concurrency (data 
dependencies), based on a well-defined control and data-
flow representation. By means of a graphical signal flow 
graph editor, it supports model-based development. The end 
result is an integrated process of software development, 
featuring model-based configuration and analysis of 
embedded applications that can be characterized by the 
sentence:  

What you specify is what you verify, execute and test. 

COMDES (as in its last version COMDES-II) uses an 
actor diagram that represents subsystems (actors) and the 
signals exchanged between them within the corresponding 
distributed transaction. An actor encapsulates state and 
exhibits behaviour. Individual actor behaviour is described 
by means of reactive behaviour, which is usually specified 
with a state-machine model, and continuous behaviour, i.e. 
some numerical (conditioned) processing, that is specified 
as a function block diagram. The atomic software unit is a 
function block. Function blocks are reusable system 
components, which eventually enable the reconfiguration of 
system structure. Ultimately, the system actor diagram is 
transformed into a function block design for control and 
data. 

Although the different disciplines are tightly coupled in 
the considered embedded systems, their development is 
often a rather sequential, mono-disciplinary, process. 
Typically, first the control part is designed, next the 
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hardware infrastructure is fixed, and finally the embedded 
software is developed. This approach can create large 
problems, especially for the software engineers. For 
instance, choices about the placements of sensors (and 
implicitly the occurrence of interrupts), control rates, control 
delays, hardware, etc., have a strong influence on the 
complexity of the software. Moreover, usually many 
implicit assumptions are made, which first become visible at 
system integration. This easily leads to non-optimal 
solutions.  

Within each discipline, a common solution is the frequent 
use of models to detect problems as early as possible. Using 
the model-based engineering paradigm for the design of a 
system, the models are preferably specified using domain-
specific modelling formalisms. For instance, in the software 
domain a lot of effort is put on model driven development, 
based on component models. Moreover, mono-disciplinary 
modeling is usually supported by tools that allow some form 
of execution or simulation. Lacking, however, is the 
possibility to combine tools of different disciplines, to 
investigate the mutual influence of modeling choices. Our 
aim is to couple currently used tools to allow both automatic 
translation of the Simulink models to COMDES component-
based models, but also simulation of the transformed 
software models into the Simulink setup [10,11]. By means 
of co-simulation, the component models can be combined to 
obtain a better overall system behavior. 

II. MODEL-BASED DESIGN IN CONTROL AND 
SOFTWARE 

Model-based design provides a proven technique for 
creating embedded control systems. Model-based system 
development is a change of focus from arithmetic and data 
related issues to the overall architecture of software system. 
It is a more effective approach to increase system 
functionality and reliability, and to decrease development 
cost and time. 

The design of control algorithms is a fundamental part of 
the design flow. It starts from a functional specification and 
ends up with a detailed description of the algorithms. In the 
model-based design methodology, the part of the control 
algorithm that is mapped to the software partition is 
automatically translated from a model representation to a set 
of software components. The software architecture of the 
application will accommodate and compose together those 
software components such that the real-time requirements 
are met. In the proposed design flow, the control algorithms 
are captured using the MATLAB/Simulink design 
environment and the automatic translation of the model to 
COMDES-language code is performed according to a set of 
rules, described in a following section.  

A Simulink block-diagram represents a dynamic system 
described as a set of first-order ordinary differential 
equations. 

 dx/dt = f(x, u) 
 y = g(x, u), x(t0) = x0

The system can then be specified as in the form above, 
where the vector u gives the input signals to the system, y 
gives the vector of output signals from the system and the 
vector x gives the state of the system. 

A Simulink model is represented graphically by means of 
a number of interconnected blocks. Lines between blocks 
connect block outputs to block inputs and represent data 
flow signals. Blocks may have states, which may consist of 
a discrete-time and a continuous-time part. 

The output of a block is computed by an output function, 
based on its input and its current state and time. Similarly, 
an update function calculates the next discrete state. A 
derivative function relates the derivatives of the continuous 
part of the state to time and the current values of the inputs 
and the state. 

Blocks can be built from a large number of predefined 
library blocks, which can be nested in an arbitrary structure 
container composition, or they can be implemented by an S-
function, which can be written in MATLAB, C, C++, Ada, 
or Fortran, belonging to Simulink's callback architecture. An 
S-function can be used for a variety of applications such as 
describing a system as a set of mathematical equations, 
incorporating existing code into a simulation, and adding a 
block that represent athe scheduler of a real-time kernel. 

During the simulation of a Simulink model, the outputs, 
inputs and states are computed at certain intervals, from a 
start time to an end time, as specified by the user. The 
successive states of a system are computed by a so-called 
solver, a Simulink-specific program.  

Since no solver is suitable for all models, there are several 
types of solvers. The solvers use numerical integration to 
compute the continuous states of a system from the state 
derivatives specified by the model. Each solver uses a 
different integration method, allowing the selection of the 
most suitable method for a particular model. 

The successive time points at which the states and outputs 
are computed are called time steps. The length of time 
between steps is called step size. The step size depends on 
the type of the solver used, the characteristics of the 
Simulink model, and the existence of discontinuities of the 
continuous states (Simulink checks for such discontinuities 
– this is called zero crossing detection – and if it detects one 
within the current step, the precise time at which zero 
crossing occurs is determined and additional time steps are 
taken). 

There are several types of solvers. Fixed-step solvers use 
a fixed step size. Variable-step solvers change the step size 
during simulation. They reduce the step size to increase 
accuracy when states are changing rapidly and increasing 
the step size to avoid taking unnecessary steps when states 
are changing slowly. This requires some additional 
computation each step, to determine the step size, but can 
reduce the total number of steps and hence the duration of 
the simulation.  

For purely discrete models there are discrete solvers. 
Continuous solvers compute continuous states using 
numerical integration. Simulink provides an extensive set of 
fixed-step and variable-step continuous solvers, each 
implementing a specific numerical integration technique for 
solving the ordinary differential equations that represent the 
continuous states of dynamic systems. The solvers monitor 
the error at each time step; they compute the local error, 
which is the estimated error of the computed state values. If 
the local error is greater than the acceptable error for any 
state, the solver reduces the step size and tries again. 
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Simulation of a Simulink model starts with the 
initialization phase, where e.g. library blocks are 
incorporated, block parameters are evaluated, memory is 
allocated and the execution order of the blocks is 
determined. Next, Simulink enters a simulation loop, 
consisting of simulation steps. During each simulation step, 
Simulink executes all blocks of the model in the order 
determined during initialization. This execution order does 
not change during the simulation. For each block, Simulink 
calls functions that compute the block's states, derivatives, 
outputs for the current sample time, and the next time step. 
This continues until the simulation is complete.  

COMDES (Component based design of software for 
Distributed Embedded System) which is being developed at 
MCI, University of Southern Denmark, is an instance of 
component based design, which is a software design method 
for real-time embedded systems. COMDES is an executable 
visual model for embedded control systems. It mirrors the 
architecture of the control process itself, which is made up 
of a number of independent control modules, called function 
blocks, with a top-level module controller, wired by signals, 
such as pressure, temperature, etc. The COMDES system 
design is meant to be a diagram of components together 
with a description of their interconnection topology and/or 
state based behavior. The native timing execution of the 
model is a periodically clocked events pattern (under a more 
general paradigm called timed multitasking), [1]. 

III. TRANSLATION OF SIMULINK MODELS TO 
COMDES MODELS 

Our approach to translate bottom-up and hierarchical the 
controller part of the Simulink design, covering functional 
and timing aspects, is based on: 
• mapping tables between a safe set of Simulink blocks 

and the corresponding COMDES function block model. 
• a set of translation rules formulated for both Stateflow 

and Simulink conditional blocks for converting of some 
implicitly behaviour into an explicitly one: 
o derive COMDES state machine model out of the 

Stateflow state machine, associated input and 
output variables and conditional blocks like Switch, 
Multiport switch, and 

o associate the continuous part of Simulink to the 
states of the COMDES state machine model in 
terms of the function blocks (basic and composite, 
respectively). 

• mapping of types and timing constraints 
• translation of the Simulink design into the COMDES 

software design using an intermediate XML-based 
model, which represents a COMDES model in terms of 
class, attributes, and node-based hierarchies, according 
to the rules established in the previous steps. 

The semantic of Simulink is multiple, as presented in the 
previous section, dependent on user-defined options, like 
that of the simulation method. Simulink has a problem with 
the typing (weak), and lacks modularity sometimes. 
COMDES design and implementation has to filter out 
Simulink ambiguities, and to serve as a reliable middle layer 
for safety critical applications.  

We start our translation with a Simulink model, 

consisting of two parts: a discrete-time part describing the 
controller and a continuous-time (or perhaps discrete-time) 
part containing the environment in which the controller is 
supposed to operate. Modeling both the controller and the 
environment is of course essential for studying the 
properties of the controller by simulation. Once the design is 
validated by various simulation methods, the 
implementation of the controller can start. Figure 1 shows a 
glance of how they look like, i.e. Simulink and COMDES 
models. One of the actors of the COMDES model is called 
Controller, and is namely the result of the translation from 
the Simulink model. The software model is having other 
actors like Sensor, for reading the inputs, Actuator, for 
actuating the outputs, and Operator Station, for man-
machine interface and communication, which are not 
functionally derived but timing constrained in the 
translation. 

Figure 1.  Simulink and COMDES models. 
 
Both Simulink and COMDES allow the representation of 

signals and systems, more precisely, multi-periodic sampled 
systems. The two languages share strong similarities, such 
as a data-flow model and similar abstraction mechanisms 
(basic and composite components). However, there are 
several differences: 

1. COMDES has discrete-time semantics, whereas 
Simulink has continuous-time semantics. It is 
important to note that even the discrete-time library 
of Simulink blocks produce piece-wise constant 
continuous-time signals. In a continuous-time model, 
signals continuously vary with time and the blocks 
respond to continuously changing input. In a discrete-
time model, signals are sampled at discrete time 
intervals; input and output take place in cycles. 

2. COMDES has a unique, precise semantics. The 
semantics of Simulink depends on the choice of a 
simulation method. For instance, some models are 
accepted if one chooses variable-step simulation and 
rejected if one chooses fixed-step, auto, or 
multithreaded simulation. 

3. COMDES is a strongly-typed system with explicit 
type set on each flow. In Simulink, explicit types are 
not mandatory. A type-checking mechanism exists in 
Simulink (some models are rejected due to type 
errors) but, as with the execution semantics, it can be 
modified by the user by setting some flags. 

4. COMDES is modular in certain aspects, whereas 
Simulink is not: for instance, a Simulink model may 
contain implicit inputs (the sampling periods of a 
system and its sub-systems, which are not always 
inherited). 
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Given the above differences, the goals and limitations of 
our translation when mapping a Simulink block-diagram 
into COMDES elements are the following: 

1.  We only translate a discrete-time, non-ambiguous part 
of Simulink. In particular, we do not translate blocks of 
the continuous-time library, S-functions, or MATLAB 
functions. Each Simulink block is mapped into one 
COMDES block, according to built mapping tables. 
The Simulink model to be translated is assumed to be 
(part of) the controller embedded in a larger model 
(including the environment). 

2.  The translation is restricted to the following simulation 
method of the solver: fixed-step, discrete and mode: 
auto. We assume that the Simulink model to be 
translated has the boolean logic signals flag ON. Then, 
a requirement on the translator is to perform exactly the 
same type inference as Simulink. In particular, every 
model that is accepted by Simulink must also be 
accepted by the translator and vice versa.  

3.  The COMDES program must be run at the time period 
the Simulink model was simulated. Thus, an outcome of 
the translation must be the period at which the 
COMDES program shall be run (i.e., the period of the 
basic clock). To know the period at which the Simulink 
model was simulated, we assume that for every external 
input of the model to be translated the sampling time is 
explicitly specified. Simulink concept of periodic 
execution is maintained for time-continuous blocks, as 
they can be mapped to COMDES in the same way as 
blocks with a discrete sample time. 

For reasons of traceability, the translation must preserve 
the hierarchy of the Simulink model as much as possible. 
The task of finding a good granularity is also important for 
an efficient translation. Simulink ports are mapped into 
Sensor, Actuator, and Operator Station actors of the 
COMDES model. Simulink edges are mapped into 
COMDES signals, so that to maintain Simulink destructive 
write, nondestructive read, and broadcast semantics. 
Simulink model of computation is thus transformed into a 
state oriented data-driven model, with partial ordering 
between blocks, which is supported by COMDES. In this 
respect, we follow, in general, the ideas from [4,5,7,12], for 
graph transformation in terms of states and dataflow, 
instantiated to component-based diagrams embedded into 
states, and intend to use in the future the tool GReAT [8] to 
automate the process. 

Mapping tables 

Each box in a Simulink diagram is called a block; the 
wires carry signals. The inputs and outputs of a system are 
represented by rounded boxes containing numbers. 
Typically, a block takes some input signals and produces 
some outputs according to a function determined by the kind 
of block in question. There are libraries of blocks, and they 
can also be user-defined. The rectangular boxes without 
inputs output the constant value they display. The circles are 
sum blocks. Boxes enclosing names are subsystems; they 
denote control systems defined in other diagrams. Blocks 
can have state. For example, blocks labelled 1/z are unit 
delay blocks. They store the value of the input signal, and 
output the value stored in the previous cycle. In each cycle, 

the output depends on the values of the inputs and of the 
state that may be held in the blocks, but other factors may be 
relevant. For example, subsystems may be conditionally 
executed: an action subsystem has an activated input and is 
executed when it is true; an enabled subsystem has an 
enabling input and is executed when its value is greater than 
zero. When a subsystem is not executed, its outputs can 
either be held at their previous value or reset to an initial 
value. Any state contained in blocks within the subsystem is 
held until the subsystem is about to be executed again, at 
which point the states can be held or reset to an initial value. 
Merge blocks take a number of inputs and produce one 
output: the most recently calculated input. 

Translation of Simulink blocks (e.g., adders, multipliers, 
the 1/z transfer function) into basic COMDES function 
blocks is made in a bottom-up fashion, i.e., starting from the 
basic blocks. More complex Simulink blocks (e.g., discrete 
filters) are translated into COMDES composite function 
blocks. 

From the whole Simulink block library we choose only a 
safe set of them: Continuous, Discontinuous, Discrete, 
Signal Routing and Ports & Subsystems.  

 

 
Figure 2.  Mapping tables for the safe set of Simulink blocks. 

 
The relationships between the Simulink blocks and 

corresponding COMDES function blocks are given in terms 
of a set of mapping tables, and an example is shown in the 
Figure 2. 

If we take the continuous time integrator block, then it is 
one of a number of blocks that can function in a variety of 
different ways depending on the choices made by the user 
each time the block is added to a model. The options for the 
integrator block include applying limits to the output, 
initializing with internal or external initial conditions, 
allowing for external reset signals, outputting state 
information and information on the limit condition. To 
define all this in COMDES in a way that achieves the ideas, 
the software block contains the definitions for the input and 
output connections to have the required number of 
connectors for this method. For example, if an external 
initial condition is required then two inputs are needed 
rather than one.  

This same structure idea has also been used for many 
other blocks including the discrete integrator, math function 
block, trigonometric function block and many others. 

A basic function block specifies a simple subroutine 
function or a fragment of a complex one. It is ready to 
execute whenever the necessary signals arrive at its inputs. 
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Then the basic function block will execute, and produce 
signals at its outputs, which can be the input signals of the 
successor basic function block and so on, until the last one is 
executed and the final output signal is generated. 

Two or more basic function blocks that aggregate a 
complex function can be seen as a composite function block. 
For example, we can specify a composite function block 
called Substract_Max_Gain, which is composed of basic 
function blocks such as subtract, max, constant, and gain, 
etc. 

A composite function block is externally 
indistinguishable from a basic function block. It can be 
viewed as an aggregation of basic function blocks that 
execute in certain precedence by a standard routine called 
function block driver. 

The function block driver is a static function block 
execution scheduler that linearly invokes encapsulated basic 
function block instances according to the execution 
schedule. The execution schedule is derived for each state 
from the signal flow diagram depending on Simulink 
application and translation rules. 

 
Translation rules 

The following aspects of the Simulink model of 
computation have to be preserved by translation:  

1. causality and the resulting partial ordering of 
Simulink blocks, 

2. relative execution rates between Simulink blocks, and 
3. read and write access sequence on each edge to 

model the register semantics used by Simulink for 
communication.  

The execution precedence of function blocks mentioned 
above is a control flow model (computation sequence 
graph), which is actually a state transition model, i.e. a 
Moore machine whose states are associated with the 
execution of certain function blocks. In this way, states 
specify different steps of the whole computation sequence, 
which is specified by transitions among different states and 
their relevant predicates/guards. Those transitions integrate a 
computation sequence path within the state machine. 

Therefore the computation sequence graph can be 
implemented by means of a binary decision diagram table, 
and a function block execution sequence driver that 
interprets the table in a sequential logic controller like 
manner. 

 
State Machine Model 

A transition is the mapping that indicates the relationship 
between a source state and the target state, representing 
reaction or response. It is used for determining the execution 
sequence of computation.  

A Simulink model can include a Stateflow block, which is 
defined by a diagram that has local data and includes finite 
state machines, flow-diagram notations, and state-transition 
diagrams. The finite state machine reacts to events triggered 
in the Simulink model; the reactions lead to state changes 
that affect the behavior of the Simulink model. 

A simpler situation occurs when there is only a Switch 
block in the control part of a Simulink diagram, Figure 3, or 
a Multiport switch block, with similar translation. 

In COMDES, the transitional relationship is expressed in 
a structure called next-state mapping, which clearly shows 
all the information included in a transition described above. 

 
 
 
 
 
 
 
 
 
 

s0

s1 s2

x==1

x==1

x==0

x==0

x==0

x==1

The Criteria for passing the 1st input to the output 
port is one of the 3 items: 
1. u2 >= threshold 
2. u2 > threshold 
3. u2 != 0 
 
S0: the initial state;  
S1: the state passes the 1st input to output port;   
S2: the state passes the third input to output port 

Figure 3.  Translation of the Switch block. 
 
Translation rules for the Stateflow diagram are similar 

with those in [7], namely identification of the states and 
transitions in a new state machine, using the current state 
machine of the Stateflow diagram, input variables from 
different blocks, and output variables wired with a number 
of Switch blocks, called switching signals. A simplification 
using binary vectors and associated operators is 
acomplished.  

The translation algorithm according to the formulated 
rules is presented below: 

1. Each state si  is split into A = 2notdefined(s
i
)  locations, 

where notdefined(si) is the number of switching 
signals not defined in si. The total number of the 
switching signals is D. The set of locations generated 
from si  is   

Σi = {σi,1, σi,2, … σi,D }. 
2. Make a transition  τi,n,j,m between  σi,n and  σj,m  if 

  (Ci,n ⊕ Cj,m ) ∧  M(σj,m) = <0>  
where Ci,n is the binary switch code for location σi,n, 
Cj,m is the binary switch code for location σj,m, and 
M(σj,m) is the mask code for location σj,m.  

3. Choose  σ1,1  to be the initial location. 
4. Add the switching signal values from the entry action 

of si as the following invariants to location  σi,j. 
5. Delete all unreachable locations and transitions from 

the new state machine. 
6. For each state si generate function blocks 

(composite). Copy these function blocks (composite) 
from each state si to corresponding locations σi,j, for 
all j = 1, 2, 3, ... , D, in the new system. 

 
Type & Timing inference 

Typing inference is that from Simulink model to a C 
language, i.e. Boolean, integer, real. Whenever two types 
are compatible but not the same, the stronger type will be 
modified accordingly. 

As related to time, a large proportion of the blocks in the 
Simulink standard library can run in different time-modes, 
i.e. either continuous or discrete time modes. In addition 
where blocks are able to run in discrete time mode they can 
be defined to run at a predefined sample rate or they can 
inherit their sample time from their parent system or from 
their driving block. 

The translation relaxes the over-constrained exact timing 
assumed for all Simulink components, since  

1. it is fundamentally impossible to implement blocks 
or channels with zero execution time and 

2. activation of all blocks at exact points in time is 
unnecessarily restrictive. 

thereby yielding a larger design space. 

         7

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 09:32:14 (UTC) by 44.210.239.12. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                       Volume 8, Number 2, 2008 
 

Timing constraints are (re)inserted afterwards to ensure 
time critical correct real-time implementation, typically I/O 
activities which have to satisfy external requirements. 
Additionally, latency path constraints, typically between 
inputs and outputs or along a cycle, may have to be 
specified to guarantee timely completion. The execution 
period of COMDES model will be the same with Simulink 
simulation timing (triggers). In periodically time triggered 
state machine, switch control action takes place in the state 
and in event-driven state machine it takes place in the entry 
action of the state. 

IV. INTEGRATION OF THE COMDES BLOCKS INTO 
S-FUNCTIONS 

In order for the simulation to capture accurate behavior of 
the subsystem software in real time, it is essential that the 
same software to be modeled in the simulation setup as well. 
Simulink uses block diagrams to model dynamic systems 
and provides an environment that allows simulation of 
COMDES component-based models by converting of 
software components into custom S-functions. Simulink 
provides the necessary templates to create an S-function, 
and the software models will be executed within the 
Simulink shell as S-functions, Figure 4.  

Plant
ModelCOMDES-controller

S-function

Control variable

Feed-back

Set-point

 
Figure 4.  Encapsulation of a COMDES controller into a Simulink S-
function.

Control engineers can simulate and thus verify the 
COMDES component-based model implementation by 
comparing its performance to that of pure SIMULINK 
models of the controller, and this can happen iteratively, 
allowing an early evaluation of the development process. 

An S-function is a system function that has been compiled 
to run in the Simulink environment. On a Microsoft 
Windows® platform, these system functions are compiled 
into dynamically linked libraries (DLLs). The software 
component is then compiled and built using the MATLAB 
mex® function library. This build process within the 
MATLAB application produces a DLL for the software 
component. The MATLAB-produced DLL is then used in 
the simulation model by associating it with a user defined S-
function.  

This will allow to accurately simulate several modes of 
operation and to improve the control algorithms in the real 
application, once the simulation results met their targets.  

An S-function implement a set of methods, called 
callback methods that together describe the behavior of the 
(sub) system modelled by means of the S-function. The 
simulation coordinator, in our case Matlab Simulink, 
invokes these callback methods during the simulation. 

An implementation of the S-function interface must 
implement the set of callback methods. Some callback 
methods are optional.  

The simulation coordinator invokes an optional callback 

only if the S-function defines the callback, by a C-code 
included at the end of the S-function. The callback methods 
perform tasks required at each simulation stage. These tasks 
performed by the callback methods include: 
• Initialization. Prior to the first simulation loop, the 

simulation coordinator initializes the S-function. During 
this stage: 
- The SimStruct is initialized. A SimStruct is a 

simulation S global structure that contains 
information about the S-function. Some library 
functions permit to create in it variables usable to 
pass values among subsequent mdlOutput calls or 
to store state. 

- The number and dimensions of input and output 
ports are set. 

- The block sample times are set. 
- The storage areas are allocated. 

• Calculation of next sample hit. In case a variable 
sample time block is specified, this stage calculates the 
time of the next sample hit; that is, it calculates the next 
step size. 

• Calculation of outputs in the major time step. After this 
call is complete, all the output ports of the blocks are 
valid for the current time step. 

• Update of discrete states in the major time step. In this 
call, all blocks should perform once-per-timestep 
activities such as updating discrete states for next time 
around the simulation loop. 

• Integration. This applies to models with continuous 
states and/or non-sampled zero crossings. If the S-
function contains continuous states, the simulation 
coordinator calls the output and derivative portions of 
the S-function at minor time steps.  
 

In this way, the simulation coordinator can compute the 
states for the S-function. If the S-function contains non-
sampled zero crossings, the simulation coordinator calls the 
output and zero-crossings portions of the S-function at 
minor time steps so that the zero crossings can be located. 

The main callback function together with a brief 
description of their functionality is given in Table 1. 

 
TABLE I. FUNCTIONALITY OF THE CALLBACKS METHODS  

S-function Description 
mdlInitializeSizes Specifies the number of inputs, outputs, 

states, and parameters and other 
characteristics of the S-function 

mdlInitializeSampleTimes Specifies the sample rates 
mdlInitializeConditions Initializes the state variables 

mdlOutputs Computes values of the output variables 
mdlUpdate Updates the state variables 

mdlDerivatives Computes the derivatives 
mdlZeroCrossings Updates zero-crossing vector 

mdlTerminate Performs any actions required at termination 
of the simulation 

 
During simulation, Simulink invokes the predefined set of 

callback functions of the S-function implementation in order 
to perform all necessary computations in the right order. 

Figure 5 shows the order in which the simulation 
coordinator invokes the callback methods of an S-function, 
during initialization and simulation respectively. Solid 
rectangles indicate callbacks that always occur during model 
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initialization and/or at every time step. Dotted rectangles 
indicate callbacks that may occur during initialization and/or 
at some or all time steps during the simulation loop. 

A standard S-function contains a number of functions that 
are called by Simulink. For instance, during a simulation 
step, Simulink calls mdlUpdate() to update discrete states, 
mdlDerivatives() to calculate derivatives, and mdlOutputs() 
to calculate the outputs of a block. The execution phase of 
each Simulink block is an iterative computation of (1) the 
block outputs (2) block states and (3) the next time step. The 
function mdlOutputs() calculates the output of the block, 
while mdlUpdate() updates the block states. 

 

mdlInitializeSizes

mdlInitializeSampleTimes

S-function initialization

mdlInitializeConditions

mdlOutput

Initialization

mdlUpdate

mdlDerivatives

mdlOutputs

mdlDerivatives

mdlOutput

mdlZeroCrossings

mdlTerminate

To simulation loop

End simulation

m
in

or
 ti

m
e 

st
ep
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m
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ep

 
Figure 5.  Initialization and simulation steps of S-function. 

 
Code errors will be notified and serious problems caused 

by run-time errors are resolved; S-function code is executed 
by Simulink and errors often cause a Simulink failure, 
which often is solved only by a MATLAB reboot. 

The Simulink model is becoming a plane of 
interconnected Simulink components, COMDES 
components, each with a representation in the Simulink 
plane, and their interaction, Figure 6. 

  

 
Figure 6.  Addition of a COMDES plane in Simulink. 

 

V. EXAMPLE OF SIMULINK – COMDES TRANSLATION AND 
CO-SIMULATION 

In order to illustrate how to apply the translations rules 
defined in the former chapter, the tank level control example 
is taken [7], Figure 7. 

Applying the transformation rules, we derive the 
COMDES state machine model first, and then the function 
blocks associated with states. The flat Stateflow state 
machine contains three states and three switching signals 

connected to the control input port of switch blocks Switch1, 
Switch2 and Switch3. By applying the translation algorithm 
steps 1-4, we get a state machine with 8 states, and, finally 
after step 5, we end up with a 6 states state machine. The 
final step 6 attaches dataflow to the states. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Tank level Simulink model. 
 
For example, state Low has the following Simulink 

diagram, Figure 8. 
 
 
 
 
 
 
 
 
 

Figure 8.  Simulink diagram for state Low. 
 
We translate the MATLAB function into a Simulink 

diagram again, Figure 9. 
 

 
 
 
 
 
 
 

Figure 9.  Simulink diagram for MATLAB function block. 
 
Combining the last two diagrams, we have the resulting 

Simulink diagram for state Low, Figure 10. 
 
 
 
 
 
 
 
 
 
 

 
Figure 10.  Final Simulink diagram for state Low. 

 
We derive the COMDES function block diagram for state 

Low by applying the mapping tables and causality, as well 
as for the other states, following similar procedures, Fig. 11. 
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The simulation model is including the software model by 
wrapper file template, which in turn is compiled into a 
Windows DLL component and used by Simulink in 
performing simulations. Wrappers abstract COMDES 
details, but make them available at conceptual level. 

 
 
 
 
 

 
Figure 11. COMDES function block diagram for state Low. 

 
The implementation of the callback methods of the 

COMDES S-function block are defined for each of the 
functions mentioned in the previous section. As an example, 
in the case of mdlInitializeSizes, the discrete variables of the  
process are mapped to the discrete state variables of the S-
function block. The continuous variables and the variable 
time of the  process are mapped to the continuous state 
variables of the S-function block. The number of input ports 
is set to the number of input variables that are specified in 
the formal parameter list of the  model. The number of 
output ports is set to the number of output variables as 
specified in the parameters of the COMDES S-function 
block. The number of sample times is set to 1. The number 
of zero crossings is set to the number of occurrences of 
guard operators plus the number of occurrences of 
inequality delay predicates plus 1 for the time events.  

mdlInitializeSampleTimes is implemented by setting the  
sample time of the S-function is set to a continuous sample 
time with offset 0. mdlInitializeConditions is implemented 
such that the initial values for the state variables from the S-
function are obtained from the valuation from the process, 
using the variable mapping as defined in function 
mdlInitializeSizes. mdlOutputs is copying the values of the 
discrete and continuous variables and the variable time to 
the corresponding output variables. If the simulation step is 
a major time-step, it is determined whether a time event 
occurred. If the mdlUpdate function is called for the first 
time (ssIsFirstInitCond(S) holds, where S denotes the 
SimStruct), the  process is simulated using the Simulink 
simulator. If a time event occurred (IsTimeEvent holds), 
which is determined in function mdlOutputs, the resulting 
process is obtained using the end-valuation of the time 
transition (EndState(TimeStep)). After that, this process is 
simulated using the simulator. 

In the same way, other functions like mdlZeroCrossings, 
mdlTerminate, are implemented. 

VI. CONCLUSION 
In this paper we proposed a methodology of transforming 

Simulink control models into COMDES software 
component-based models. Model-based design, used to its 
fullest, provides translation-connected design environments 
that enable developers to use Simulink as a single model of 
their entire system for visualization and validation, and 
ultimately software product deployment, with consistent 
automatic code generation. 

In this respect, some problem issues may be solved by a 
joint control engineer and software engineer effort. Even if 

the control and software design work is done in isolation, 
there is a close cooperation between the two expertises. The 
control engineers can concentrate on their specific issues, 
like damping, overshoots, stability of control, whereas the 
software engineers can focus on embedded aspects like 
scheduling issues, resource consumption, priorities. The 
interaction is directly between the two models, like the 
relation between the control loop execution periods and the 
task deadlines. 

The advantages of using COMDES as a software design 
and implementation method of Simulink control models are 
the straightforward of the translation, well structured design, 
feasibility of verification and validation by combining 
different techniques, reusability of parts of these in relation 
to reuse of components, and cost-efficient development of 
code. We intend to improve the translation to handle other 
Simulink semantics. 

The model-based development process benefits from 
control-software co-design, resulting faster and shorter 
development cycles and earlier testing. Maintenance of the 
control algorithms becomes easy because control algorithm 
models are safely translated into component-based software 
architectures, and wrapping back software components into 
a library of simulation components, Simulink is used as a 
testing tool too. In this way, a simulation tool independent 
representation of the control algorithms has been achieved. 
The new opportunities for checking and the clear division 
between control algorithm and simulation code has been 
appreciated.  
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