Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 75 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,529,177 unique visits
1,005,613 downloads
Since November 1, 2009



Robots online now
Sogou
bingbot
Googlebot
SemanticScholar


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  3/2015 - 21

 HIGH-IMPACT PAPER 

Genetic Synthesis of New Reversible/Quantum Ternary Comparator

DEIBUK, V. See more information about DEIBUK, V. on SCOPUS See more information about DEIBUK, V. on IEEExplore See more information about DEIBUK, V. on Web of Science, BILOSHYTSKYI, A. See more information about BILOSHYTSKYI, A. on SCOPUS See more information about BILOSHYTSKYI, A. on SCOPUS See more information about BILOSHYTSKYI, A. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,130 KB) | Citation | Downloads: 705 | Views: 3,323

Author keywords
genetic algorithms, multivalued logic, ternary comparators, reversible logic, quantum computing

References keywords
quantum(22), logic(16), sible(12), circuits(11), multiple(9), ternary(8), khan(7), evolutionary(7), soft(6), genetic(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-08-31
Volume 15, Issue 3, Year 2015, On page(s): 147 - 152
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.03021
Web of Science Accession Number: 000360171500021
SCOPUS ID: 84940762198

Abstract
Quick view
Full text preview
Methods of quantum/reversible logic synthesis are based on the use of the binary nature of quantum computing. However, multiple-valued logic is a promising choice for future quantum computer technology due to a number of advantages over binary circuits. In this paper we have developed a synthesis of ternary reversible circuits based on Muthukrishnan-Stroud gates using a genetic algorithm. The method of coding chromosome is presented, and well-grounded choice of algorithm parameters allowed obtaining better circuit schemes of one- and n-qutrit ternary comparators compared with other methods. These parameters are quantum cost of received reversible devices, delay time and number of constant input (ancilla) lines. Proposed implementation of the genetic algorithm has led to reducing of the device delay time and the number of ancilla qutrits to 1 and 2n-1 for one- and n-qutrits full comparators, respectively. For designing of n-qutrit comparator we have introduced a complementary device which compares output functions of 1-qutrit comparators.


References | Cited By  «-- Click to see who has cited this paper

[1] M. Nielsen, I. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010.

[2] A. De Vos, M. Bose, S.D. Baerdemacker, "Reversible computation, quantum computation, and computer architectures in between", J. Multiple-Valued Logic and Soft Comput., vol. 18, no. 1, pp. 67-81, 2012.

[3] A. Muthukrishnan, C. R. Stroud, Jr., "Multivalued logic gates for quantum computation," Physical Review A, vol. 62, no. 5, pp. 052309/1-8, 2000.
[CrossRef] [Web of Science Times Cited 257]


[4] A. B. Klimov, R. Guzman, J. C. Retamal, C. Saavedra, "Qutrit quantum computer with trapped ions," Physical Review A, vol. 67, no. 6, 062313/1-7, 2003.
[CrossRef] [Web of Science Times Cited 163]


[5] D. McHugh, J. Twamley, "Trapped-ion qutrit spin molecule quantum computer", New J. Physics, vol. 7, No. 1, pp. 174/1-9,2005.

[6] V. G. Deibuk. I.M. Yuriychuk, R.I. Yuriychuk, "Spin model of full adder on Peres gates," Int. J. Computing, vol. 11, no. 3, pp. 282-292, 2012.

[7] D. M. Miller, M. A. Thornton. Multiple Valued Logic: Concepts and Representations. Morgan & Claypool Publishers, 2008.

[8] M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, C. H. Yu, K. Chung, H. Jee, B-G. Kim, Y-D. Kim, "Evolutionary approach to Quantum and Reversible Circuits synthesis," Artificial Intelligence Review, vol. 20, no. 3-4, pp. 361-417, 2003.
[CrossRef] [Web of Science Times Cited 52]


[9] D. M. Miller, D. Maslov, G. W. Dueck, "Synthesis of quantum multiple-valued circuits", J. Multiple-Valued Logic and Soft Comput., vol. 12, no. 5-6, pp. 431-450, 2006.

[10] D. M. Miller, R. Wille, R. Drechsler, "Reducing reversible circuit cost by adding lines", J. Multiple-Valued Logic and Soft Comput., vol. 19, no. 1-3, pp. 185-201, 2012.

[11] M. Lukac M. Perkowski and M. Kameyama, "Evolutionary quantum logic synthesis of boolean reversible logic circuits embedded in ternary quantum space using structural restrictions", in Proc. IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona, Spain, 18-23 July 2010, pp. 1-8.
[CrossRef]


[12] M. H. A. Khan, M. A. Perkowski, M. R. Khan, and P. Kerntopf, "Ternary GFSOP minimization using Kronecker Decision Diagrams and their synthesis with quantum cascades," J. Multiple-Valued Logic and Soft Comput., vol. 11, no. 5-6, pp. 567-602, 2005.

[13] R. Khanom, T. Kamal, M. H. A. Khan, "Genetic algorithm based synthesis of ternary reversible / quantum circuits," in Proc. 11th IEEE Int. Conf. on Computer and Information Technology (ICCIT 2008), Khulna, Bangladesh, 25-27 December, 2008, pp. 270-275.
[CrossRef]


[14] X. Li, G. Yang, D. Zheng, "Logic synthesis of ternary quantum circuits with minimal qutrits," J. of Computers, vol. 8, no. 8, pp. 1941-1946, 2013.
[CrossRef] [Web of Science Times Cited 15]


[15] Y.-M. Di, and H.-R. Wie, "Synthesis of multivalued quantum logic circuits by elementary gates," Physical Review A, vol. 87, no. 1, pp. 012325/1-8, 2013.
[CrossRef] [Web of Science Times Cited 40]


[16] S. B. Mandal, A. Chakrabarti and S. Sur-Kolay, "Quantum Ternary Circuit Synthesis Using Projection Operations," J. Multiple-Valued Logic and Soft Comput., vol. 24, no. 1-4, pp. 73-92, 2015.

[17] K. Fazel, M. A. Thornton, and J. E. Rice, "ESOP-based Toffoli gate cascade generation," in Proc. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, (PacRim,2007), Victoria, Canada, 22-24 August, 2007, pp. 206-209.
[CrossRef]


[18] R. S. Zebulum, M. C. Pachecco, M. M. Vellasco. Evolutionary Electronics: Automatic Design of Electronic Circuits and Systems by Genetic Algorithms. CRC Press, 2002.

[19] L. Spector. Automatic Quantum Computer Programming: A Genetic Programming Approach. Kluwer Academic Publishers, 2004.

[20] A. E. Eiben, J. E. Smith. Introduction to Evolutionary Computing. Springer-Verlag, 2013.

[21] M. H. A. Khan, "Design of reversible/quantum ternary comparator circuits," Engineering Letters, vol. 16, no. 2, pp. 178-164, 2008.

[22] R. P. Zadeh, M. Haghparast, "A new reversible/quantum ternary comparator," Australian J. Basic and Applied Sciences, vol. 5, no. 12, pp. 2348-2355, 2011.

[23] D. Mukherjee, A. Chakrabarti, D. Bhattacherjee, "Synthesis of quantum circuits using genetic algorithm," Intern. J. of Recent Trends in Engineering, vol. 2, no. 1, pp. 212-216, 2009.

[24] A.I. Khan, N. Nusrat, S.M. Khan, M. Hasan, M.H.A. Khan, "Quantum realization of some ternary circuits using Muthukrishnan-Stroud gates," in Proc. 37th Intern. Symposium on Multiple-Valued Logic, (ISMVL,2007), Oslo, Norway, 13-16 May 2007, pp. 20.
[CrossRef]


[25] R. Wille, R. Drechsler. Toward a Design Flow for Reversible Logic. Springer Science+Business Media B.V., 2010.

[26] M. Lukac, M. Kameyama, M. D. Miller, M. Perkowski, "High speed genetic algorithms in quantum logic synthesis: Low level parallelization vs. representation," J. Multiple-Valued Logic and Soft Comput., vol. 20, no. 1-2, pp. 89-120, 2013.

[27] V. Deibuk, I. Grytsku, "Optimal synthesis of reversible quantum adders using genetic algorithm," Int. J. Computing, vol. 12, no. 1, pp. 32-41, 2013.

[28] F. Z. Hadjam, C. Moraga, "RIMEP2: Evolutionary design of reversible digital circuits," ACM J, on Emerging Technologies in Computing Systems, vol. 11, no. 3, pp. 2348-2355, 2014.
[CrossRef] [Web of Science Times Cited 10]


[29] K. Datta, I. Sengupta, H. Rahaman, and R. Drechsler, "An evolutionary approach to reversible logic synthesis using output permutation," in Proc. IEEE Design and Test Symposium (IDT), Doha, Qatar, 16-18 Dec. 2013, pp. 1-6.
[CrossRef]


[30] J. Jegier, P. Kerntopf, M. Szyprowski, "An approach to constructing reversible multi-qubit benchmarks with provably minimal implementations," in Proc. 13th IEEE Conference on Nanotechnology (IEEE-NANO,2013), Beijing, China, 5-8 Aug. 2013, pp. 99-104.
[CrossRef]




References Weight

Web of Science® Citations for all references: 537 TCR
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 17 ACR
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-04-16 03:39 in 69 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy