Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.650
JCR 5-Year IF: 0.639
Issues per year: 4
Current issue: Nov 2019
Next issue: Feb 2020
Avg review time: 73 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,410,626 unique visits
624,900 downloads
Since November 1, 2009



Robots online now
SemrushBot


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
  View all issues  


FEATURED ARTICLE

Supporting Location Transparent Services in a Mobile Edge Computing Environment, GILLY, K., FILIPOSKA, S., MISHEV, A.
Issue 4/2018

AbstractPlus






LATEST NEWS

2019-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

2018-May-31
Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

Read More »


    
 

  3/2017 - 6

A New V2G Control Strategy for Load Factor Improvement Using Smoothing Technique

CHANHOM, P. See more information about CHANHOM, P. on SCOPUS See more information about CHANHOM, P. on IEEExplore See more information about CHANHOM, P. on Web of Science, NUILERS, S. See more information about  NUILERS, S. on SCOPUS See more information about  NUILERS, S. on SCOPUS See more information about NUILERS, S. on Web of Science, HATTI, N. See more information about HATTI, N. on SCOPUS See more information about HATTI, N. on SCOPUS See more information about HATTI, N. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (2,168 KB) | Citation | Downloads: 273 | Views: 1,079

Author keywords
electric vehicles, energy storage, finite impulse response filters, power smoothing, smart grids

References keywords
grid(20), power(19), vehicle(13), energy(12), smart(10), electric(10), vehicles(9), systems(7), system(5), capacity(5)
No common words between the references section and the paper title.

About this article
Date of Publication: 2017-08-31
Volume 17, Issue 3, Year 2017, On page(s): 43 - 50
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.03006
Web of Science Accession Number: 000410369500006
SCOPUS ID: 85028564493

Abstract
Quick view
Full text preview
This paper proposes a new vehicle-to-grid (V2G) control strategy for improving the load factor in the power network. To operate the proposed strategy, the available storage capacity of the PEVs batteries is considered as a battery energy storage system (BESS) for charging and discharging an amount of power corresponding to the V2G power command. Due to the remarkable advantages of the technique so-called simple moving average, it is selected for applying in the proposed V2G control strategy. In this research, for investigating the load factor improvement, the essential data including the daily-load profiles with 7-day and 14-day periods are used for the 3 studied cases. These 3 studied cases present the power network with variation of the PEVs locations for describing the PEVs usage and charging or discharging behavior. The performance of the proposed strategy is simulated and verified by the MATPOWER software. The simulation results show that the load factors of the 3 studied cases are improved. Moreover, the encouragement of energy arbitrage for the PEVs owners is also discussed in this paper.


References | Cited By

Cited-By ISI Web of Science

Web of Science® Times Cited: 0
View record in Web of Science® [View]
View Related Records® [View]

Updated today


Cited-By CrossRef

SCOPUS® Times Cited: 0
View record in SCOPUS®
[Free preview]

Updated today

Cited-By CrossRef

[1] Real Measure of a Transmission Line Data with Load Fore-cast Model for The Future, YILMAZ, Musa, Balkan Journal of Electrical and Computer Engineering, ISSN 2147-284X, 2018.
Digital Object Identifier: 10.17694/bajece.419646
[CrossRef]

Updated today

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2019
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: