Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Aug 2018
Next issue: Nov 2018
Avg review time: 82 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,068,457 unique visits
549,408 downloads
Since November 1, 2009



Robots online now
SemrushBot


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 18 (2018)
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
  View all issues  








LATEST NEWS

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


    
 

  3/2017 - 12

Novel TPPO Based Maximum Power Point Method for Photovoltaic System

ABBASI, M. A. See more information about ABBASI, M. A. on SCOPUS See more information about ABBASI, M. A. on IEEExplore See more information about ABBASI, M. A. on Web of Science, ZIA, M. F. See more information about ZIA, M. F. on SCOPUS See more information about ZIA, M. F. on SCOPUS See more information about ZIA, M. F. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (2,227 KB) | Citation | Downloads: 238 | Views: 561

Author keywords
DC-DC power converters, maximum power point trackers, photovoltaic cells, solar energy, solar power generation

References keywords
optimization(18), algorithm(18), artificial(13), colony(12), comput(8), jasoc(6), swarm(5), soft(5), search(5), jins(5)
No common words between the references section and the paper title.

About this article
Date of Publication: 2017-08-31
Volume 17, Issue 3, Year 2017, On page(s): 95 - 100
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.03012
Web of Science Accession Number: 000410369500012
SCOPUS ID: 85028570193

Abstract
Quick view
Full text preview
Photovoltaic (PV) system has a great potential and it is installed more when compared with other renewable energy sources nowadays. However, the PV system cannot perform optimally due to its solid reliance on climate conditions. Due to this dependency, PV system does not operate at its maximum power point (MPP). Many MPP tracking methods have been proposed for this purpose. One of these is the Perturb and Observe Method (P&O) which is the most famous due to its simplicity, less cost and fast track. But it deviates from MPP in continuously changing weather conditions, especially in rapidly changing irradiance conditions. A new Maximum Power Point Tracking (MPPT) method, Tetra Point Perturb and Observe (TPPO), has been proposed to improve PV system performance in changing irradiance conditions and the effects on characteristic curves of PV array module due to varying irradiance are delineated. The Proposed MPPT method has shown better results in increasing the efficiency of a PV system.


References | Cited By

Cited-By ISI Web of Science

Web of Science® Times Cited: 1 [View]
View record in Web of Science® [View]
View Related Records® [View]

Updated today


Cited-By CrossRef

SCOPUS® Times Cited: 1
View record in SCOPUS®
[Free preview]

Updated today

Cited-By CrossRef

[1] Design and Concept of an Energy System Based on Renewable Sources for Greenhouse Sustainable Agriculture, Aschilean, Ioan, Rasoi, Gabriel, Raboaca, Maria, Filote, Constantin, Culcer, Mihai, Energies, ISSN 1996-1073, Issue 5, Volume 11, 2018.
Digital Object Identifier: 10.3390/en11051201
[CrossRef]

Updated today

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: