Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 78 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,498,467 unique visits
994,391 downloads
Since November 1, 2009



Robots online now
Sogou
Googlebot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Analysis of the Hybrid PSO-InC MPPT for Different Partial Shading Conditions, LEOPOLDINO, A. L. M., FREITAS, C. M., MONTEIRO, L. F. C.
Issue 2/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  1/2011 - 10

 HIGHLY CITED PAPER 

Blind Source Separation for Convolutive Mixtures with Neural Networks

KIREI, B. S. See more information about KIREI, B. S. on SCOPUS See more information about KIREI, B. S. on IEEExplore See more information about KIREI, B. S. on Web of Science, TOPA, M. D. See more information about  TOPA, M. D. on SCOPUS See more information about  TOPA, M. D. on SCOPUS See more information about TOPA, M. D. on Web of Science, MURESAN, I. See more information about  MURESAN, I. on SCOPUS See more information about  MURESAN, I. on SCOPUS See more information about MURESAN, I. on Web of Science, HOMANA, I. See more information about  HOMANA, I. on SCOPUS See more information about  HOMANA, I. on SCOPUS See more information about HOMANA, I. on Web of Science, TOMA, N. See more information about TOMA, N. on SCOPUS See more information about TOMA, N. on SCOPUS See more information about TOMA, N. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (826 KB) | Citation | Downloads: 2,169 | Views: 6,964

Author keywords
blind source separation, neural networks, independent component analysis, subband analysis and synthesis

References keywords
separation(17), blind(14), source(12), topa(10), processing(10), marina(10), audio(10), signal(9), telecommunications(7), speech(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2011-02-27
Volume 11, Issue 1, Year 2011, On page(s): 63 - 68
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2011.01010
Web of Science Accession Number: 000288761800010
SCOPUS ID: 79955960740

Abstract
Quick view
Full text preview
Blind source separation of convolutive mixtures is used as a preprocessing stage in many applications. The aim is to extract individual signals from their mixtures. In enclosed spaces, due to reverberation, audio signal mixtures are considered to be convolutive ones. Time domain algorithms (as neural network based blind source separation) are not suitable for signal recovery from convolutive mixtures, thus the need of frequency domain or subband processing arise. We propose a subband approach: first the mixtures are split to several subbands, next time-domain blind source separation is carried out in each subband, finally the recovered sources are recomposed from the subbands. The major drawback of the subband approach is the unknown order of the recovered sources. Regardless of this undesired phenomenon the subband approach is faster and more stable than the simple time domain algorithm.


References | Cited By

Cited-By Clarivate Web of Science

Web of Science® Times Cited: 4 [View]
View record in Web of Science® [View]
View Related Records® [View]

Updated today


Cited-By SCOPUS

SCOPUS® Times Cited: 4
View record in SCOPUS®
[Free preview]
View citations in SCOPUS® [Free preview]

Updated today

Cited-By CrossRef

[1] An Adaptive Sparse Algorithm for Synthesizing Note Specific Atoms by Spectrum Analysis, Applied to Music Signal Separation, AZAMIAN, M., KABIR, E., SEYEDIN, S., MASEHIAN, E., Advances in Electrical and Computer Engineering, ISSN 1582-7445, Issue 2, Volume 17, 2017.
Digital Object Identifier: 10.4316/AECE.2017.02014
[CrossRef] [Full text]

[2] Convolution separation and application of joint diagonalization with optimal parameters on mechanical signals, Zhang, Yuanyuan, Xin, Jianghui, Journal of Vibroengineering, ISSN 1392-8716, Issue 8, Volume 23, 2021.
Digital Object Identifier: 10.21595/jve.2021.21961
[CrossRef]

[3] Binary spectral masking for speech recognition systems, Versiani, Thiago de Souza Siqueira, Rodrigues, Gustavo Fernandes, Souza, Ana Claudia Silva de, Moreira, Jussara de Matos, Yehia, Hani Camille, 2012 35th International Conference on Telecommunications and Signal Processing (TSP), ISBN 978-1-4673-1118-2, 2012.
Digital Object Identifier: 10.1109/TSP.2012.6256330
[CrossRef]

Updated today

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy