Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.650
JCR 5-Year IF: 0.639
Issues per year: 4
Current issue: May 2019
Next issue: Aug 2019
Avg review time: 81 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,303,360 unique visits
600,690 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 19 (2019)
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
  View all issues  








LATEST NEWS

2019-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

2018-May-31
Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

Read More »


    
 

  2/2019 - 10

A Diagonally Weighted Binary Memristor Crossbar Architecture Based on Multilayer Neural Network for Better Accuracy Rate in Speech Recognition Application

VO, M.-H. See more information about VO, M.-H. on SCOPUS See more information about VO, M.-H. on IEEExplore See more information about VO, M.-H. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,804 KB) | Citation | Downloads: 85 | Views: 119

Author keywords
pattern recognition, memristors, neural network, neural network hardware, speech recognition

References keywords
neural(19), memristor(10), netw(7), networks(6), crossbar(6), circuit(6), recognition(5), network(5), multilayer(5), circuits(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2019-05-31
Volume 19, Issue 2, Year 2019, On page(s): 75 - 82
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2019.02010
Web of Science Accession Number: 000475806300010
SCOPUS ID: 85066310486

Abstract
Quick view
Full text preview
A novel binary memristor crossbar architecture based on multilayer neural networks is proposed in the speech recognition application. Here, the memristor crossbar circuit acts as the weights of the neural network combined with the activation function circuit to determine the output. In the new crossbar architecture, the weights are arranged diagonally and divided into 2 arrays according to positive and negative weights. A speech recognition application for 5 vowels is implemented using the proposed architecture. The result shows that the average recognition rate achieves from 94 percent to 96.6 percent over 1000 audio samples. A statistical table shows that the recognition rate and the number of the memristors increase correspondingly to the number of used bits. From the Monte Carlo simulation, the recognition rate of the proposed binary memristor crossbar is decreased slightly from 94 percent to 93.7 percent, while the memristance variation is increased from 1 percent to 15 percent.


References | Cited By  «-- Click to see who has cited this paper

[1] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, "Phoneme recognition using time-delay neural networks," IEEE Trans. Acoust. Speech Signal Process., vol. 37, no. 3, pp. 328-339, Mar. 1989.
[CrossRef] [Web of Science Times Cited 756] [SCOPUS Times Cited 1028]


[2] H. A. Rowley, S. Baluja, and T. Kanade, "Neural network-based face detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 1, pp. 23-38, Jan. 1998.
[CrossRef] [Web of Science Times Cited 1742] [SCOPUS Times Cited 2428]


[3] R. Fierro and F. L. Lewis, "Control of a nonholonomic mobile robot using neural networks," IEEE Trans. Neural Netw., vol. 9, no. 4, pp. 589-600, Jul. 1998.
[CrossRef] [Web of Science Times Cited 384] [SCOPUS Times Cited 504]


[4] J. B. Lont and W. Guggenbuhl, "Analog CMOS implementation of a multilayer perceptron with nonlinear synapses," IEEE Trans. Neural Netw., vol. 3, no. 3, pp. 457-465, May 1992.
[CrossRef] [Web of Science Times Cited 37] [SCOPUS Times Cited 46]


[5] A. J. Montalvo, R. S. Gyurcsik, and J. J. Paulos, "Toward a general-purpose analog VLSI neural network with on-chip learning," IEEE Trans. Neural Netw., vol. 8, no. 2, pp. 413-423, Mar. 1997.
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 52]


[6] T. Shima, T. Kimura, Y. Kamatani, T. Itakura, Y. Fujita, and T. Iida, "Neuro chips with on-chip back-propagation and/or Hebbian learning," IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1868-1876, Dec. 1992.
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 43]


[7] L. Gatet, H. Tap-Beteille, and F. Bony, "Comparison Between Analog and Digital Neural Network Implementations for Range-Finding Applications," IEEE Trans. Neural Netw., vol. 20, no. 3, pp. 460-470, Mar. 2009.
[CrossRef] [Web of Science Times Cited 21] [SCOPUS Times Cited 34]


[8] W. H. Lee and P. Mazumder, "Motion Detection by Quantum-Dots-Based Velocity-Tuned Filter," IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 355-362, May 2008.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 8]


[9] P. Mazumder, S. Li, and I. E. Ebong, "Tunneling-Based Cellular Nonlinear Network Architectures for Image Processing," IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 17, no. 4, pp. 487-495, Apr. 2009.
[CrossRef] [Web of Science Times Cited 24] [SCOPUS Times Cited 29]


[10] L. Chua, "Memristor-The missing circuit element," IEEE Trans. Circuit Theory, vol. 18, no. 5, pp. 507-519, Sep. 1971.
[CrossRef] [SCOPUS Times Cited 4008]


[11] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, vol. 453, no. 7191, pp. 80-83, May 2008.
[CrossRef] [Web of Science Times Cited 4610] [SCOPUS Times Cited 5155]


[12] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman, "Memristor Crossbar-Based Neuromorphic Computing System: A Case Study," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 10, pp. 1864-1878, Oct. 2014.
[CrossRef] [Web of Science Times Cited 103] [SCOPUS Times Cited 130]


[13] D. Chabi, Z. Wang, C. Bennett, J. Klein, and W. Zhao, "Ultrahigh Density Memristor Neural Crossbar for On-Chip Supervised Learning," IEEE Trans. Nanotechnol., vol. 14, no. 6, pp. 954-962, Nov. 2015.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 22]


[14] S. N. Truong, S.-J. Ham, and K.-S. Min, "Neuromorphic crossbar circuit with nanoscale filamentary-switching binary memristors for speech recognition," Nanoscale Res. Lett., vol. 9, no. 1, p. 629, 2014.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 28]


[15] S. N. Truong, S. Shin, S.-D. Byeon, J. Song, H.-S. Mo, and K.-S. Min, "Comparative Study on Statistical-Variation Tolerance Between Complementary Crossbar and Twin Crossbar of Binary Nano-scale Memristors for Pattern Recognition," Nanoscale Res. Lett., vol. 10, Oct. 2015.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 6]


[16] H. M. Vo, "Training On-chip Hardware with Two Series Memristor Based Backpropagation Algorithm," in 2018 IEEE Seventh International Conference on Communications and Electronics (ICCE), 2018, pp. 179-183.
[CrossRef] [SCOPUS Times Cited 1]


[17] H. Harrer, "Multiple layer discrete-time cellular neural networks using time-variant templates," IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 40, no. 3, pp. 191-199, Mar. 1993.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 30]


[18] S. N. Truong, K. V. Pham, W. Yang, and K. Min, "Sequential Memristor Crossbar for Neuromorphic Pattern Recognition," IEEE Trans. Nanotechnol., vol. 15, no. 6, pp. 922-930, Nov. 2016.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 30]


[19] S. P. Adhikari, H. Kim, R. K. Budhathoki, C. Yang, and L. O. Chua, "A Circuit-Based Learning Architecture for Multilayer Neural Networks With Memristor Bridge Synapses," IEEE Trans. Circuits Syst. Regul. Pap., vol. 62, no. 1, pp. 215-223, Jan. 2015.
[CrossRef] [Web of Science Times Cited 63] [SCOPUS Times Cited 66]


[20] D. Soudry, D. D. Castro, A. Gal, A. Kolodny, and S. Kvatinsky, "Memristor-Based Multilayer Neural Networks With Online Gradient Descent Training," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10, pp. 2408-2421, Oct. 2015.
[CrossRef] [Web of Science Times Cited 65] [SCOPUS Times Cited 85]


[21] H. Kim, M. P. Sah, C. Yang, T. Roska, and L. O. Chua, "Neural Synaptic Weighting With a Pulse-Based Memristor Circuit," IEEE Trans. Circuits Syst. Regul. Pap., vol. 59, no. 1, pp. 148-158, Jan. 2012.
[CrossRef] [Web of Science Times Cited 190] [SCOPUS Times Cited 210]


[22] Y. Zhang, X. Wang, and E. G. Friedman, "Memristor-Based Circuit Design for Multilayer Neural Networks," IEEE Trans. Circuits Syst. Regul. Pap., vol. 65, no. 2, pp. 677-686, Feb. 2018.
[CrossRef] [Web of Science Times Cited 25] [SCOPUS Times Cited 34]


[23] X. Hu, G. Feng, S. Duan, and L. Liu, "A Memristive Multilayer Cellular Neural Network With Applications to Image Processing," IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 8, pp. 1889-1901, Aug. 2017.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 24]


[24] L. Muda, M. Begam, and I. Elamvazuthi, "Voice Recognition Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques," Journal of Computing, vol. 2, no. 3, pp. 138-143, Mar. 2010.





References Weight

Web of Science® Citations for all references: 8,234 TCR
SCOPUS® Citations for all references: 14,001 TCR

Web of Science® Average Citations per reference: 317 ACR
SCOPUS® Average Citations per reference: 539 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2019-08-13 11:59 in 160 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2019
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: