Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 1.102
JCR 5-Year IF: 0.734
Issues per year: 4
Current issue: May 2020
Next issue: Aug 2020
Avg review time: 73 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,615,868 unique visits
665,586 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 20 (2020)
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
  View all issues  


FEATURED ARTICLE

Improved Wind Speed Prediction Using Empirical Mode Decomposition, ZHANG, Y., ZHANG, C., SUN, J., GUO, J.
Issue 2/2018

AbstractPlus






LATEST NEWS

2020-Jun-29
Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

2020-Jun-11
Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

2019-Dec-16
Starting on the 15th of December 2019 all paper authors are required to enter their SCOPUS IDs. You may use the free SCOPUS ID lookup form to find yours in case you don't remember it.

2019-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

2018-May-31
Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

Read More »


    
 

  2/2017 - 15

A Novel Approach for the Prediction of Conversion from Mild Cognitive Impairment to Alzheimer's disease using MRI Images

AYUB, A. See more information about AYUB, A. on SCOPUS See more information about AYUB, A. on IEEExplore See more information about AYUB, A. on Web of Science, FARHAN, S. See more information about  FARHAN, S. on SCOPUS See more information about  FARHAN, S. on SCOPUS See more information about FARHAN, S. on Web of Science, FAHIEM, M. A. See more information about  FAHIEM, M. A. on SCOPUS See more information about  FAHIEM, M. A. on SCOPUS See more information about FAHIEM, M. A. on Web of Science, TAUSEEF, H. See more information about TAUSEEF, H. on SCOPUS See more information about TAUSEEF, H. on SCOPUS See more information about TAUSEEF, H. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,667 KB) | Citation | Downloads: 343 | Views: 424

Author keywords
computer aided diagnosis, feature extraction, image analysis, image classification, pattern recognition

References keywords
alzheimer(34), disease(29), classification(20), brain(14), neuroimage(13), cognitive(13), structural(12), mild(12), impairment(12), pattern(11)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2017-05-31
Volume 17, Issue 2, Year 2017, On page(s): 113 - 122
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.02015
Web of Science Accession Number: 000405378100015
SCOPUS ID: 85020067022

Abstract
Quick view
Full text preview
The main objective of our research is to introduce an approach that uses noninvasive MRI images to predict the conversion from mild cognitive impairment to Alzheimer's disease at an early stage. It detects normal controls that are likely to develop Alzheimer's disease and mild cognitive impairment patients that are likely to establish Alzheimer's disease within two years or, contrarily, their stage remains same. The proposed approach uses two types of features i.e. volumetric features and textural features. Volumetric features consist of volume of grey matter, volume of white matter and volume of cerebrospinal fluid. A total of 364 textural features have been calculated. To avoid the curse of dimensionality, textural features are reduced to 15 features using gain ratio, a ranking based search algorithm. All features are tested against four classifiers i.e. AODEsr, VFI, RBF and LBR. Leave-One-Out cross validation strategy is used for the evaluation of proposed approach. Results show accuracy of 98.33% with volumetric features and 100% with textural features using VFI and LBR. Our approach is innovative because of its higher accuracy results as compared to existing approaches yet with a smaller feature set.


References | Cited By  «-- Click to see who has cited this paper

[1] "2015 Alzheimer's disease facts and figures," Alzheimer's & Dementia, vol. 11, pp. 332-384, 2015.
[CrossRef] [Web of Science Times Cited 1188] [SCOPUS Times Cited 1013]


[2] R. Brookmeyer, E. Johnson, K. Ziegler-Graham, and H. M. Arrighi, "Forecasting the global burden of Alzheimer's disease," Alzheimer's & dementia, vol. 3, pp. 186-191, 2007
[CrossRef] [Web of Science Times Cited 1833] [SCOPUS Times Cited 2003]


[3] S. Farhan, M. A. Fahiem, and H. Tauseef, "An Ensemble-of-Classifiers Based Approach for Early Diagnosis of Alzheimer's Disease: Classification Using Structural Features of Brain Images," Computational and mathematical methods in medicine, vol. 2014, 2014

[4] A. B. Tufail, A. Abidi, A. M. Siddiqui, and M. S. Younis, "Automatic classification of initial categories of Alzheimer's disease from structural MRI phase images: a comparison of PSVM, KNN and ANN methods," Age, vol. 75, pp. 76.13-7.55, 2012

[5] R. Casanova, F.-C. Hsu, K. M. Sink, S. R. Rapp, J. D. Williamson, et al., "Alzheimer's disease risk assessment using large-scale machine learning methods," PloS one, vol. 8, p. e77949, 2013.
[CrossRef] [Web of Science Times Cited 52] [SCOPUS Times Cited 55]


[6] S. Klöppel, C. M. Stonnington, C. Chu, B. Draganski, R. I. Scahill, et al., "Automatic classification of MR scans in Alzheimer's disease," Brain, vol. 131, pp. 681-689, 2008.
[CrossRef] [Web of Science Times Cited 679] [SCOPUS Times Cited 773]


[7] Y. Fan, S. M. Resnick, X. Wu, and C. Davatzikos, "Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study," Neuroimage, vol. 41, pp. 277-285, 2008.
[CrossRef] [Web of Science Times Cited 203] [SCOPUS Times Cited 224]


[8] C. Davatzikos, P. Bhatt, L. M. Shaw, K. N. Batmanghelich, and J. Q. Trojanowski, "Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification," Neurobiology of aging, vol. 32, pp. 2322. e19-2322. e27, 2011

[9] K. A. Johnson, N. C. Fox, R. A. Sperling, and W. E. Klunk, "Brain imaging in Alzheimer disease," Cold Spring Harbor perspectives in medicine, vol. 2, p. a006213, 2012.
[CrossRef] [Web of Science Times Cited 199] [SCOPUS Times Cited 253]


[10] K. Kantarci and C. R. Jack, "Neuroimaging in Alzheimer disease: an evidence-based review," Neuroimaging Clinics of North America, vol. 13, pp. 197-209, 2003.
[CrossRef] [Web of Science Times Cited 128] [SCOPUS Times Cited 154]


[11] D. Zhang, Y. Wang, L. Zhou, H. Yuan, D. Shen, et al., "Multimodal classification of Alzheimer's disease and mild cognitive impairment," Neuroimage, vol. 55, pp. 856-867, 2011.
[CrossRef] [Web of Science Times Cited 606] [SCOPUS Times Cited 705]


[12] E. Moradi, A. Pepe, C. Gaser, H. Huttunen, J. Tohka, et al., "Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects," NeuroImage, vol. 104, pp. 398-412, 2015.
[CrossRef] [Web of Science Times Cited 200] [SCOPUS Times Cited 237]


[13] G. Chetelat, B. Desgranges, V. De La Sayette, F. Viader, F. Eustache, et al., "Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment," Neuroreport, vol. 13, pp. 1939-1943, 2002.
[CrossRef] [SCOPUS Times Cited 294]


[14] J. Ashburner and K. J. Friston, "Voxel-based morphometry—the methods," Neuroimage, vol. 11, pp. 805-821, 2000.
[CrossRef] [Web of Science Times Cited 5577] [SCOPUS Times Cited 5939]


[15] J. E. Arco, J. Ramírez, J. M. Gorriz, C. G. Puntonet, and M. Ruz, "Short-term Prediction of MCI to AD conversion based on Longitudinal MRI analysis and neuropsychological tests," in Innovation in Medicine and Healthcare 2015, ed: Springer, 2016, pp. 385-394.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 6]


[16] C. Davatzikos, S. M. Resnick, X. Wu, P. Parmpi, and C. M. Clark, "Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI," Neuroimage, vol. 41, pp. 1220-1227, 2008.
[CrossRef] [Web of Science Times Cited 148] [SCOPUS Times Cited 166]


[17] R. C. Petersen, "Mild cognitive impairment as a diagnostic entity," Journal of internal medicine, vol. 256, pp. 183-194, 2004.
[CrossRef] [Web of Science Times Cited 3899] [SCOPUS Times Cited 4224]


[18] L. M. Shaw, H. Vanderstichele, M. Knapik-Czajka, C. M. Clark, P. S. Aisen, et al., "Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects," Annals of neurology, vol. 65, pp. 403-413, 2009.
[CrossRef] [Web of Science Times Cited 1187] [SCOPUS Times Cited 1260]


[19] R. M. Chapman, M. Mapstone, J. W. McCrary, M. N. Gardner, A. Porsteinsson, et al., "Predicting conversion from mild cognitive impairment to Alzheimer's disease using neuropsychological tests and multivariate methods," Journal of clinical and experimental neuropsychology, vol. 33, pp. 187-199, 2011.
[CrossRef] [Web of Science Times Cited 57] [SCOPUS Times Cited 63]


[20] C. R. Jack, V. J. Lowe, M. L. Senjem, S. D. Weigand, B. J. Kemp, et al., "11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment," Brain, vol. 131, pp. 665-680, 2008.
[CrossRef] [Web of Science Times Cited 620] [SCOPUS Times Cited 655]


[21] C. D. Good, R. I. Scahill, N. C. Fox, J. Ashburner, K. J. Friston, et al., "Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias," Neuroimage, vol. 17, pp. 29-46, 2002.
[CrossRef] [Web of Science Times Cited 320] [SCOPUS Times Cited 335]


[22] O. Colliot, G. Chételat, M. Chupin, B. Desgranges, B. Magnin, et al., "Discrimination between Alzheimer Disease, Mild Cognitive Impairment, and Normal Aging by Using Automated Segmentation of the Hippocampus 1," Radiology, vol. 248, pp. 194-201, 2008.
[CrossRef] [Web of Science Times Cited 174] [SCOPUS Times Cited 187]


[23] C. Misra, Y. Fan, and C. Davatzikos, "Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI," Neuroimage, vol. 44, pp. 1415-1422, 2009.
[CrossRef] [Web of Science Times Cited 337] [SCOPUS Times Cited 368]


[24] A. Mechelli, C. J. Price, K. J. Friston, and J. Ashburner, "Voxel-based morphometry of the human brain: methods and applications," Current medical Imaging reviews, vol. 1, pp. 105-113, 2005.
[CrossRef] [Web of Science Times Cited 527]


[25] Y. Fan, N. Batmanghelich, C. M. Clark, C. Davatzikos, and A. s. D. N. Initiative, "Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline," Neuroimage, vol. 39, pp. 1731-1743, 2008.
[CrossRef] [Web of Science Times Cited 326] [SCOPUS Times Cited 362]


[26] M. Bozzali, M. Filippi, G. Magnani, M. Cercignani, M. Franceschi, et al., "The contribution of voxel-based morphometry in staging patients with mild cognitive impairment," Neurology, vol. 67, pp. 453-460, 2006.
[CrossRef] [Web of Science Times Cited 135] [SCOPUS Times Cited 152]


[27] G. Chetelat, B. Landeau, F. Eustache, F. Mezenge, F. Viader, et al., "Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study," Neuroimage, vol. 27, pp. 934-946, 2005.
[CrossRef] [Web of Science Times Cited 371] [SCOPUS Times Cited 413]


[28] Y. Hirata, H. Matsuda, K. Nemoto, T. Ohnishi, K. Hirao, et al., "Voxel-based morphometry to discriminate early Alzheimer's disease from controls," Neuroscience letters, vol. 382, pp. 269-274, 2005.
[CrossRef] [Web of Science Times Cited 204] [SCOPUS Times Cited 229]


[29] A. Hämäläinen, S. Tervo, M. Grau-Olivares, E. Niskanen, C. Pennanen, et al., "Voxel-based morphometry to detect brain atrophy in progressive mild cognitive impairment," Neuroimage, vol. 37, pp. 1122-1131, 2007.
[CrossRef] [Web of Science Times Cited 105] [SCOPUS Times Cited 114]


[30] C. Davatzikos, Y. Fan, X. Wu, D. Shen, and S. M. Resnick, "Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging," Neurobiology of aging, vol. 29, pp. 514-523, 2008.
[CrossRef] [Web of Science Times Cited 246] [SCOPUS Times Cited 281]


[31] E. Gerardin, G. Chételat, M. Chupin, R. Cuingnet, B. Desgranges, et al., "Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging," Neuroimage, vol. 47, pp. 1476-1486, 2009.
[CrossRef] [Web of Science Times Cited 231] [SCOPUS Times Cited 261]


[32] M. Chupin, E. Gérardin, R. Cuingnet, C. Boutet, L. Lemieux, et al., "Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI," Hippocampus, vol. 19, pp. 579-587, 2009.
[CrossRef] [Web of Science Times Cited 178] [SCOPUS Times Cited 206]


[33] S. L. Risacher, A. J. Saykin, J. D. Wes, L. Shen, H. A. Firpi, et al., "Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort," Current Alzheimer Research, vol. 6, pp. 347-361, 2009.
[CrossRef] [Web of Science Times Cited 293] [SCOPUS Times Cited 344]


[34] Y. Fan, D. Shen, and C. Davatzikos, "Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM," in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2005, ed: Springer, 2005, pp. 1-8.
[CrossRef]


[35] A. Farzan, S. Mashohor, A. R. Ramli, and R. Mahmud, "Boosting diagnosis accuracy of Alzheimer's disease using high dimensional recognition of longitudinal brain atrophy patterns," Behavioural brain research, vol. 290, pp. 124-130, 2015.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 27]


[36] L. Khedher, J. Ramírez, J. Gorriz, A. Brahim, F. Segovia, et al., "Early diagnosis of Alzheimer? s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images," Neurocomputing, vol. 151, pp. 139-150, 2015.
[CrossRef] [Web of Science Times Cited 104] [SCOPUS Times Cited 112]


[37] Y. Zhang, S. Wang, P. Phillips, Z. Dong, G. Ji, et al., "Detection of Alzheimer's disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC," Biomedical Signal Processing and Control, vol. 21, pp. 58-73, 2015.
[CrossRef] [Web of Science Times Cited 98] [SCOPUS Times Cited 100]


[38] X. Long and C. Wyatt, "An automatic unsupervised classification of MR images in Alzheimer's disease," in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, 2010, pp. 2910-2917.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 16]


[39] S. Farhan, M. A. Fahiem, F. Tahir, and H. Tauseef, "A Comparative Study of Neuroimaging and Pattern Recognition Techniques for Estimation of Alzheimer's," Life Science Journal, vol. 10, 2013.

[40] A. Ortiz, J. M. Gorriz, J. Ramírez, F. J. Martínez-Murcia, and A. s. D. N. Initiative, "LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer's disease," Pattern Recognition Letters, vol. 34, pp. 1725-1733, 2013.
[CrossRef] [Web of Science Times Cited 51] [SCOPUS Times Cited 59]


[41] D. H. Ye, K. M. Pohl, and C. Davatzikos, "Semi-supervised pattern classification: application to structural MRI of Alzheimer's disease," in Pattern Recognition in NeuroImaging (PRNI), 2011 International Workshop on, 2011, pp. 1-4.
[CrossRef] [SCOPUS Times Cited 24]


[42] R. Filipovych, C. Davatzikos, and A. s. D. N. Initiative, "Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)," NeuroImage, vol. 55, pp. 1109-1119, 2011.
[CrossRef] [Web of Science Times Cited 63] [SCOPUS Times Cited 74]


[43] Y. Zhang, S. Wang, and Z. Dong, "Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree," Progress In Electromagnetics Research, vol. 144, pp. 171-184, 2014.
[CrossRef] [Web of Science Times Cited 107] [SCOPUS Times Cited 110]


[44] K. Hu, Y. Wang, K. Chen, L. Hou, and X. Zhang, "Multi-scale features extraction from baseline structure MRI for MCI patient classification and AD early diagnosis," Neurocomputing, vol. 175, pp. 132-145, 2016.
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 27]


[45] D. W. Shattuck and R. M. Leahy, "BrainSuite: an automated cortical surface identification tool," Medical image analysis, vol. 6, pp. 129-142, 2002.
[CrossRef]


[46] S. M. Smith and J. M. Brady, "SUSAN—a new approach to low level image processing," International journal of computer vision, vol. 23, pp. 45-78, 1997.
[CrossRef] [Web of Science Times Cited 1813] [SCOPUS Times Cited 2504]


[47] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, "Magnetic resonance image tissue classification using a partial volume model," NeuroImage, vol. 13, pp. 856-876, 2001.
[CrossRef] [Web of Science Times Cited 670] [SCOPUS Times Cited 746]


[48] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, et al., "The WEKA data mining software: an update," ACM SIGKDD explorations newsletter, vol. 11, pp. 10-18, 2009.

[49] C. Ledig, R. Guerrero, T. Tong, K. Gray, A. Makropoulos, et al., "Alzheimer's disease state classification using structural volumetry, cortical thickness and intensity features," in Proc MICCAI workshop challenge on computer-aided diagnosis of dementia based on structural MRI data, 2014, pp. 55-64.

[50] J. Zhang, C. Yu, G. Jiang, W. Liu, and L. Tong, "3D texture analysis on MRI images of Alzheimer's disease," Brain imaging and behavior, vol. 6, pp. 61-69, 2012.
[CrossRef] [Web of Science Times Cited 59] [SCOPUS Times Cited 64]


[51] P. Keserwani, V. C. Pammi, O. Prakash, A. Khare, and M. Jeon, "Classification of Alzheimer Disease using Gabor Texture Feature of Hippocampus Region," International Journal of Image, Graphics & Signal Processing, vol. 8, 2016.

[52] J.-D. Lee, S.-C. Su, C.-H. Huang, W.-C. Xu, and Y.-Y. Wei, "Using volume features and shape features for Alzheimer's disease diagnosis," in Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on, 2009, pp. 437-440.
[CrossRef] [SCOPUS Times Cited 3]




References Weight

Web of Science® Citations for all references: 23,056 TCR
SCOPUS® Citations for all references: 25,142 TCR

Web of Science® Average Citations per reference: 435 ACR
SCOPUS® Average Citations per reference: 474 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2020-07-11 12:02 in 314 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2020
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: