Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 75 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,485,986 unique visits
989,985 downloads
Since November 1, 2009



Robots online now
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  4/2016 - 4

 HIGH-IMPACT PAPER 

Robust Fourier Watermarking for ID Images on Smart Card Plastic Supports

RIAD, R. See more information about RIAD, R. on SCOPUS See more information about RIAD, R. on IEEExplore See more information about RIAD, R. on Web of Science, HARBA, R. See more information about  HARBA, R. on SCOPUS See more information about  HARBA, R. on SCOPUS See more information about HARBA, R. on Web of Science, DOUZI, H. See more information about  DOUZI, H. on SCOPUS See more information about  DOUZI, H. on SCOPUS See more information about DOUZI, H. on Web of Science, ROS, F. See more information about  ROS, F. on SCOPUS See more information about  ROS, F. on SCOPUS See more information about ROS, F. on Web of Science, ELHAJJI, M. See more information about ELHAJJI, M. on SCOPUS See more information about ELHAJJI, M. on SCOPUS See more information about ELHAJJI, M. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,691 KB) | Citation | Downloads: 923 | Views: 2,849

Author keywords
Fourier transform, printing, scanning, smart cards, watermarking

References keywords
image(21), watermarking(19), processing(14), signal(8), robust(7), multimedia(7), print(6), scan(5), watermark(4), images(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-11-30
Volume 16, Issue 4, Year 2016, On page(s): 23 - 30
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.04004
Web of Science Accession Number: 000390675900004
SCOPUS ID: 85007608255

Abstract
Quick view
Full text preview
Security checking can be improved by watermarking identity (ID) images printed on smart cards plastic supports. The major challenge is resistance to attacks: printing the images on the plastic cards, durability and other attacks then scanning the image from the plastic card. In this work, a robust watermarking technique is presented in this context. It is composed of three main mechanisms. The first is a watermarking algorithm based on the Fourier transform to cope with global geometric distortions. The second comprises a filter that reduces image blurring. The third attenuates color degradations. Experiments on 400 ID images show that the Wiener filter strongly improves the detection rate and outperforms competitive algorithms (blind deconvolution and unsharp filter). Color corrections also enhance the watermarking score. The whole scheme has a high efficiency and a low computational cost. It makes it compatible with the desired industrial constraints, i.e. the watermark is to be invisible, the error rate must be lower than 1%, and the detection of the mark should be fast and simple for the user.


References | Cited By  «-- Click to see who has cited this paper

[1] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital watermarking and steganography: Morgan Kaufmann, 2007.

[2] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, "Techniques for data hiding," IBM systems journal, vol. 35, pp. 313-336, 1996.
[CrossRef] [Web of Science Times Cited 1369]


[3] A. Poljicak, G. Botella, C. Garcia, L. Kedmenec, and M. Prieto-Matias, "Portable real-time DCT-based steganography using OpenCL," Journal of Real-Time Image Processing, pp. 1-13, 2016.
[CrossRef] [Web of Science Times Cited 9]


[4] V. Solachidis and I. Pitas, "Circularly symmetric watermark embedding in 2-D DFT domain," IEEE Transactions on Image Processing, vol. 10, pp. 1741-1753, 2001.
[CrossRef] [Web of Science Times Cited 192]


[5] S. H. Amiri and M. Jamzad, "Robust watermarking against print and scan attack through efficient modeling algorithm," Signal Processing: Image Communication, vol. 29, pp. 1181-1196, 2014.
[CrossRef] [Web of Science Times Cited 16]


[6] P. Bas, J.-M. Chassery, and B. Macq, "Image watermarking: an evolution to content based approaches," Pattern recognition, vol. 35, pp. 545-561, 2002.
[CrossRef] [Web of Science Times Cited 29]


[7] H. S. Malvar and D. A. Florêncio, "Improved spread spectrum: a new modulation technique for robust watermarking," IEEE Transactions on Signal Processing, vol. 51, pp. 898-905, 2003.
[CrossRef] [Web of Science Times Cited 332]


[8] W. Wan, J. Liu, J. Sun, C. Ge and X. Nie, "Logarithmic STDM watermarking using visual saliency-based JND model," in Electronics Letters, vol. 51, no. 10, pp. 758-760, 5 14 2015.
[CrossRef] [Web of Science Times Cited 13]


[9] T. Bianchi and A. Piva, "Secure Watermarking for Multimedia Content Protection: A Review of its Benefits and Open Issues," in IEEE Signal Processing Magazine, vol. 30, no. 2, pp. 87-96, 2013.
[CrossRef] [Web of Science Times Cited 96]


[10] F. Ros, J. Borla, F. Leclerc, R. Harba, and N. Launay, "An industrial watermarking process for plastic card supports," ICIT 2006. IEEE International Conference on Industrial Technology, 2006, pp. 2809-2814.
[CrossRef]


[11] J. F. Lichtenauer, I. Setyawan, T. Kalker, and R. L. Lagendijk, "Exhaustive geometrical search and the false positive watermark detection probability," Proc. SPIE 5020, Security and Watermarking of Multimedia Contents V, p. 203, 2003.
[CrossRef] [Web of Science Times Cited 35]


[12] S. Pereira and T. Pun, "Robust template matching for affine resistant image watermarks," IEEE Transactions on Image Processing, vol. 9, pp. 1123-1129, 2000.
[CrossRef] [Web of Science Times Cited 351]


[13] A. Poljicak, L. Mandic, and D. Agic, "Discrete Fourier transform-based watermarking method with an optimal implementation radius," Journal of Electronic Imaging, vol. 20, pp. 033008-033008-8, 2011.
[CrossRef] [Web of Science Times Cited 73]


[14] A. Poljicak, L. Mandic, and M. S. Kurecic, "Improvement of the watermark detector performance using image enhancement filters," in Systems, Signals and Image Processing (IWSSIP), 2012 19th International Conference on, 2012, pp. 68-71.

[15] L. Yu, X. Niu, and S. Sun, "Print-and-scan model and the watermarking countermeasure," Image and Vision Computing, vol. 23, pp. 807-814, 2005.
[CrossRef] [Web of Science Times Cited 37]


[16] R. Riad, R. Harba, H. Douzi, M. El-hajji, and F. Ros, "Print-and-scan counterattacks for plastic card supports Fourier watermarking," in IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1036-1041, 2014.
[CrossRef]


[17] A. Keskinarkaus, A. Pramila, T. Seppänen, "Image watermarking with feature point based synchronization robust to print-scan attack," Journal of Visual Communication and Image Representation, vol. 23, no. 3, pp. 507-515, 2012.
[CrossRef] [Web of Science Times Cited 15]


[18] X.-Y. Wang, Y.-N. Liu, S. Li, H.-Y. Yang and P.-P. Niu, "Robust image watermarking approach using polar harmonic transforms based geometric correction," Neurocomputing, vol. 174, Part B, pp. 627-642, 2016.
[CrossRef] [Web of Science Times Cited 39]


[19] H.-Y. Yang, X.-Y. Wang, P.-P. Niu, and A.-L. Wang, "Robust Color Image Watermarking Using Geometric Invariant Quaternion Polar Harmonic Transform," ACM Trans. Multimedia Comput. Commun. Appl., vol. 11, pp. 1-26, 2015.
[CrossRef] [Web of Science Times Cited 44]


[20] Z. Shao, Y. Shang, Y. Zhang, X. Liu, and G. Guo, "Robust watermarking using orthogonal Fourier-Mellin moments and chaotic map for double images," Signal Processing, vol. 120, pp. 522-531, 2016.
[CrossRef] [Web of Science Times Cited 84]


[21] M. Ali and C. W. Ahn, "An optimized watermarking technique based on self-adaptive DE in DWT-SVD transform domain," Signal Processing, vol. 94, pp. 545-556, 2014.
[CrossRef] [Web of Science Times Cited 129]


[22] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, "Digital image steganography: Survey and analysis of current methods," Signal processing, vol. 90, pp. 727-752, 2010.
[CrossRef] [Web of Science Times Cited 847]


[23] C. Strauss, F. Pasteau, F. Autrusseau, M. Babel, L. Bedat, and O. Deforges, "Subjective and objective quality evaluation of lar coded art images," IEEE International Conference on in Multimedia and Expo ICME 2009, pp. 674-677, 2009.
[CrossRef]


[24] M. Carnec, P. Le Callet, and D. Barba, "Objective quality assessment of color images based on a generic perceptual reduced reference," Signal Processing: Image Communication, vol. 23, pp. 239-256, 2008.
[CrossRef] [Web of Science Times Cited 85]


[25] P. Le Callet, F. Autrusseau, and P. Campisi, "Visibility control and quality assessment of watermarking and data hiding algorithms," Multimedia Forensics and security, pp. 163-192, 2008.
[CrossRef]


[26] M. L. Miller and J. A. Bloom, "Computing the probability of false watermark detection," in Information Hiding, pp. 146-158, 1999.
[CrossRef]


[27] C.-Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, M. L. Miller, and Y. M. Lui, "Rotation, scale, and translation resilient watermarking for images," IEEE Transactions on Image Processing, vol. 10, pp. 767-782, 2001.
[CrossRef] [Web of Science Times Cited 458]


[28] C.-Y. Lin and S.-F. Chang, "Distortion modeling and invariant extraction for digital image print-and-scan process," in Proceedings of International Symposium on Multimedia, 1999.

[29] A. Malvido, F. Perez-González, and A. Cousiño, "A novel model for the print-and-capture channel in 2D bar codes," in Multimedia Content Representation, Classification and Security, ed: Springer, 2006, pp. 627-634.
[CrossRef]


[30] R. Riad, M. El Hajji, H. Douzi, R. Harba, and F. Ros, "Evaluation of a Fourier Watermarking Method Robustness to Cards Durability Attacks," in Image and Signal Processing, ed: Springer, 2014, pp. 280-288.
[CrossRef]


[31] Z. Sharif and A. Z. Sha'Ameri, "The application of cross correlation technique for estimating impulse response and frequency response of wireless communication channel,", SCOReD 2007. in 5th Student Conference on Research and Development, 2007, pp. 1-5.
[CrossRef]


[32] F. Luisier, T. Blu, and M. Unser, "Image denoising in mixed Poisson-Gaussian noise," IEEE Transactions on Image Processing, vol. 20, pp. 696-708, 2011.
[CrossRef] [Web of Science Times Cited 300]


[33] C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T. Freeman, "Automatic estimation and removal of noise from a single image," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, pp. 299-314, 2008.
[CrossRef] [Web of Science Times Cited 339]




References Weight

Web of Science® Citations for all references: 4,892 TCR
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 144 ACR
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-03-12 12:00 in 170 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy