Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: May 2017
Next issue: Aug 2017
Avg review time: 76 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,642,644 unique visits
496,441 downloads
Since November 1, 2009



Robots online now
Googlebot
Baiduspider


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

Broken Bar Fault Detection in IM Operating Under No-Load Condition, RELJIC, D., JERKAN, D., MARCETIC, D., OROS, D.
Issue 4/2016

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  4/2016 - 12

An Ink-Jet Printed Capacitive Sensor for Angular Position/Velocity Measurements

KRKLJES, D. B. See more information about KRKLJES, D. B. on SCOPUS See more information about KRKLJES, D. B. on IEEExplore See more information about KRKLJES, D. B. on Web of Science, STOJANOVIC, G. M. See more information about STOJANOVIC, G. M. on SCOPUS See more information about STOJANOVIC, G. M. on SCOPUS See more information about STOJANOVIC, G. M. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,392 KB) | Citation | Downloads: 125 | Views: 290

Author keywords
angular velocity, capacitive sensors, flexible electronics, rotation measurement, sensor systems and applications

References keywords
capacitive(15), sensors(9), sensor(9), measurement(8), brasseur(5), instrumentation(4), flexible(4), encoder(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-11-30
Volume 16, Issue 4, Year 2016, On page(s): 77 - 82
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.04012
Web of Science Accession Number: 000390675900012
SCOPUS ID: 85007543292

Abstract
Quick view
Full text preview
This paper presents the prototype of a capacitive angular position/velocity sensor which exploits the advantages of flexible/printed electronics. The sensor belongs to the incremental encoder type with two quadrature channels. Instead of the commonly used structure of planar capacitor, in this paper a cylindrical capacitor structure with digitated electrodes, for both the stator and the rotor, was implemented. The flexible printed electrodes are attached to the inner wall of the stator and to the perimeter of the rotor cylinder. The rotor has no external contacts; electrical connection is established with the stator only. The working principles of the sensor and the signal conditioning circuit were demonstrated through experimental results based on in-house developed mechanical and electronics platforms.


References | Cited By  «-- Click to see who has cited this paper

[1] F. Kimura, M. Gondo, N. Yamashita, A. Yamamoto, T. Higuchi, "Capacitive-Type Flexible Linear Encoder With Untethered Slider using Electrostatic Induction", IEEE Sensors Journal, vol. 10, pp. 972-978, May 2010,
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 2]


[2] L. K. Baxter, "Capacitive Sensors", IEEE Press, New York, pp. 38-40, 1997.

[3] M. Kim, W. Moon, "A new linear encoder-like capacitive displacement sensor", Measurement, vol. 39, pp. 481-489, July 2006,
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 21]


[4] M. Kim, W. Moon, E. Yoon, K. Lee, "A new capacitive displacement sensor with high accuracy and long-range", Sensors and Actuators A, vol. 130-131, pp. 135-141, August 2006,
[CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 54]


[5] D. Kang,W. Moon, "Electrode configuration method with surface profile effect in a contact-type area-varying capacitive displacement sensor", Sensors and Actuators A, vol. 189, pp. 33-44, January 2013,
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 8]


[6] A. A. Kuijpers, G. J. M. Krijnen, R. J. Wiegerink, T. S. J. Lammerink and M. Elwenspoek, "A micromachined capacitive incremental position sensor: part 2. Experimental assessment", Journal of Micromechanics and Microengineering, vol. 16, pp. 125-134, May 2006,
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 11]


[7] H. Zangl and T. Bretterklieber, "Rotor Design for Capacitive Sensors", in Proc. of IEEE Sensors conference, Vienna, pp. 520-523, 2004,
[CrossRef] [Web of Science Times Cited 4]


[8] R. M. Kannel and St. Basler, "New developments in capacitive encoders for servo drives", in Proc. Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM, Ischia, pp. 190-195, 2008,
[CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 8]


[9] G. Brasseur, "A Robust Capacitive Angular Position Sensor", in Proc. IEEE Instrumentation and Measurement Technology Conference, Brussels, pp. 1081-1086, 1996,
[CrossRef]


[10] T. Fabian and G. Brasseur, "A Robust Capacitive Angular Speed Sensor", IEEE Transactions on Instrumentation and Measurement, vol. 47, pp. 280-284, August 2002,
[CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 23]


[11] T. Fabian and G. Brasseur, "A Measurement Algorithm for Capacitive Speed Encoder with a Modified Front-End Topology", IEEE Transactions on Instrumentation and Measurement, vol. 47, pp. 1341-1345, October 1998,
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 5]


[12] S. Cermak, G. Brasseur, H. Zangl and P. L. Fulmek, "Capacitive Sensor for Incremental Angular Measurement", in Proc. SIcod/02 - Sensors for Industry Conference, Houston, pp. 115-118, 2002,
[CrossRef]


[13] X. Li and C. M. G. Meijer, "A New Method for the Measurement of Low Speed Using a Multiple-Electrode Capacitive Sensor", IEEE Transactions on Instrumentation and Measurement, vol. 46, pp. 636-639, April 199,
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 10]


[14] B. Brandsttter, G. Brasseur, S. Cermak, H. Zangl and P. L. Fulmek, "An Incremental Capacitive Sensor for Harsh Environment", in Proc. IEEE International Conference on Sensors, Orlando, pp. 841-842 vol. 2, 2002,
[CrossRef]


[15] F. Kimura, M. Gondo, N. Yamashita, A. Yamamoto, T. Higuchi, "Capacitive-Type Flexible Linear Encoder With Untethered Slider Using Electrostatic Induction", IEEE Sensors Journal, vol. 10, pp. 972-978, March 2010,
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 2]


[16] H. R. Khaleel, H. M. Al-Rizzo, A. I. Abbosh, "Design, Fabrication, and Testing of Flexible Antennas", InTech, Chapter 15, March 2013,
[CrossRef]


[17] J. Hu, "Overview of flexible electronics from ITRI’s viewpoint", in Proc. VLSI Test Symposium (VTS), Santa Cruz, pp. 87, 2010,
[CrossRef]




References Weight

Web of Science® Citations for all references: 100 TCR
SCOPUS® Citations for all references: 144 TCR

Web of Science® Average Citations per reference: 6 ACR
SCOPUS® Average Citations per reference: 8 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-06-27 03:46 in 116 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: