Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: Aug 2017
Next issue: Nov 2017
Avg review time: 78 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,718,000 unique visits
505,864 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  4/2015 - 13

An Electronically Tunable Transconductance Amplifier for Use in Auditory Prostheses

FARAGO, P. See more information about FARAGO, P. on SCOPUS See more information about FARAGO, P. on IEEExplore See more information about FARAGO, P. on Web of Science, FARAGO, C. See more information about  FARAGO, C. on SCOPUS See more information about  FARAGO, C. on SCOPUS See more information about FARAGO, C. on Web of Science, OLTEAN, G. See more information about  OLTEAN, G. on SCOPUS See more information about  OLTEAN, G. on SCOPUS See more information about OLTEAN, G. on Web of Science, HINTEA, S. See more information about HINTEA, S. on SCOPUS See more information about HINTEA, S. on SCOPUS See more information about HINTEA, S. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,464 KB) | Citation | Downloads: 231 | Views: 967

Author keywords
analog processing circuits, cochlear implants, low-power electronics, operational transconductance amplifier, programmable circuits

References keywords
cmos(8), circuits(7), amplifier(6), systems(4), signal(4), sarpeshkar(4), processing(4), power(4), farago(4), design(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-11-30
Volume 15, Issue 4, Year 2015, On page(s): 95 - 100
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.04013
Web of Science Accession Number: 000368499800012
SCOPUS ID: 84949945758

Abstract
Quick view
Full text preview
Low-voltage and low-power trends in analog electronics enable novel features in modern bio-medical devices, such as extensive portability, autonomy and even battery-less operation. One specific example is the cochlear implant (CI), which emulates the physiology of hearing to produce auditory sensations via neural stimulation. Besides low-voltage and low-power operation, a key feature in modern CIs is wide-range programmability of the speech processing parameters. This paper proposes an operational transconductance amplifier (OTA) for use in CIs, with wide-range electronic tuning of the transconductance value. The proposed OTA is developed around a cascade of two transconductor stages, making the transconductance dependent on the bias current ratio. A combination of linearization techniques: bulk input, parallel differential pairs and feedback, is used to achieve sufficient linear range for CI speech processing. Wide-range parameter tuning of the speech processing sections is illustrated on a variable gain amplifier, a bandpass Tow-Thomas biquad and an envelope detector. Finally, the complete CI speech processing chain is illustrated. The proposed OTA and its employment in CI analog speech processing are validated on a 350 nm CMOS process.


References | Cited By  «-- Click to see who has cited this paper

[1] L. Magnelli, F. A. Amoroso, F. Crupi, G. Cappuccino, G. Iannaccone, "Design of a 75-nW, 0.5-V subthreshold complementary metal-oxide-semiconductor operational amplifier", International Journal of Circuit Theory and Applications, vol. 42, no. 9, pp. 967-977, Sept. 2014.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 28]


[2] R. Sarpeshkar, Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-Inspired Systems. Cambridge University Press, 2010.
[CrossRef] [SCOPUS Times Cited 82]


[3] P. C. Loizou, "Mimicking the Human Ear," IEEE Signal Processing Magazine. vol. 15(5), pp. 101-130, Sept. 1998.
[CrossRef] [Web of Science Times Cited 169] [SCOPUS Times Cited 212]


[4] R. Groza and M. Cirlugea, "Current-mode log-domain programmable gain amplifier," in 2014 IEEE International Conference on Automation Quality and Testing Robotics (AQTR), 2014, pp. 75-78.
[CrossRef] [SCOPUS Times Cited 3]


[5] S. Hintea, P. Farago, L. Festila, P. Soser, "Reconfigurable Filter Design for Implantable Auditory Prosthesis", Electronics and Electrical Engineering, vol. 99, no.3, pp.7-12, 2010.

[6] S. Hintea, P. Farago, M. N. Roman, G. Oltean, L. Festila, "A Programmable Gain Amplifier for Automated Gain Control in Auditory Prostheses", J. Med. Biol. Eng., vol. 31. no 3, pp 185-192, 2011.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 8]


[7] Baker W, Sarpeshkar R, "Low-power single-loop and dual-loop AGCs for bionic ears", IEEE J. Solid-St. Circ., vol. 41, no. 9, 2006, pp. 1983-1996.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 35]


[8] J. Silva-Martinez, S. Solis-Bustos, J. Salcedo-Suner, R. Rojas-Hernandez, M. Schellenberg, "A CMOS Hearing Aid Device", Analog Integrated Circuits and Signal Processing, Vol. 21, No. 2, pp 163-172, 1999.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 20]


[9] P. Farago, C. Farago, S. Hintea, M. Cirlugea, "An Evolutionary Multi-objective Optimization Approach to Design the Sound Processor of a Hearing Aid," in Proc. IFMBE Proceedings, vol. 44, pp 181-186, 2014.
[CrossRef] [SCOPUS Times Cited 3]


[10] R. Sarpeshkar, R. F. Lyon, C. Mead, "A Low-Power Wide-Linear-Range Transconductance Amplifier," Analog Integrated Circuits and Signal Processing, vol. 13, No. 1-2, pp 123-151, May/June 1997.
[CrossRef] [Web of Science Times Cited 78]


[11] Barrie Gilbert, "The Multi-tanh Principle: A Tutorial Overview", IEEE Journal of Solid-State Circuits, vol. 33, no. 1, pp. 2-17, 1998.
[CrossRef] [Web of Science Times Cited 123] [SCOPUS Times Cited 162]


[12] P. M. Furth, A.G. Andreou, "Linearised differential transconductors in subthreshold CMOS", Electronics Letters, vol. 31, no. 7, pp. 545 - 547, 1995.
[CrossRef] [Web of Science Times Cited 42] [SCOPUS Times Cited 49]


[13] A. Veeravalli, E. Sánchez-Sinencio, J. Silva-Martínez, "A CMOS transconductance amplifier architecture with wide tuning range for very low frequency applications", IEEE Journal of Solid-State Circuits, vol. 37, no.6, pp. 776 - 781, 2002.
[CrossRef] [Web of Science Times Cited 46] [SCOPUS Times Cited 56]


[14] R. G. Bozomitu, V. Cehan, V. Popa, "A New Linearization Technique Using "Multi-sinh" Doublet", Advances in Electrical and Computer Engineering, vol. 9, no. 2, pp. 45-57, 2009.
[CrossRef] [Full Text] [Web of Science Times Cited 5] [SCOPUS Times Cited 5]


[15] P. M. Furth, On the Design of Optimal Continuous-Time Filter Banks in Subthreshold CMOS, PhD dissertation, Baltimore, Maryland, 1996

[16] S. Dwivedi, A. K. Gogoi, "A 0.8 V CMOS OTA and Its Application in Realizing a Neural Recording Amplifier", Journal of Medical and Bioengineering, vol. 4, no. 3, pp. 227-234, 2015.
[CrossRef]


[17] C.-C. Hung, I. Halonen, M. Ismail, V. Porra, "Micropower CMOS Gm-C Filters for Speech Signal Processing," IEEE International Symposium on Circuits and Systems, Hong Kong, 1997, pp. 1972-1975.
[CrossRef]


[18] R. Torrance, T. Viswanathan, J. Hanson, "CMOS voltage to current transducers", IEEE Transactions on Circuits and Systems, vol. 32, no. 11, pp. 1097-1104, 1985.
[CrossRef] [Web of Science Times Cited 94]


[19] R. Sarpeshkar, C. Salthouse, S. Ji-Jon, M. W. Baker, S. M. Zhak, T. K.-T. Lu, L. Turicchia, S. Balster, "An ultra-low-power programmable analog bionic ear processor", IEEE Transactions on Biomedical Engineering, vol. 52, no. 4, pp. 711 - 727, 2005.
[CrossRef] [Web of Science Times Cited 83] [SCOPUS Times Cited 94]


[20] S. Jun, S. J. Ahn, "CMOS precision half-wave rectifying transconductor," in Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, vol. 3, Monterey, 1198, pp. 659 - 662, 1998.
[CrossRef]


[21] P. Loizou, M. Dorman, Z. Tu, "On the number of channels needed to understand speech," Journal of Acoustical Society of America. Vol. 106(4), pp. 2097-2103, 1999.
[CrossRef] [Web of Science Times Cited 107] [SCOPUS Times Cited 126]




References Weight

Web of Science® Citations for all references: 794 TCR
SCOPUS® Citations for all references: 883 TCR

Web of Science® Average Citations per reference: 36 ACR
SCOPUS® Average Citations per reference: 40 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-09-22 20:14 in 124 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: