Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Feb 2019
Next issue: May 2019
Avg review time: 80 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


2,211,971 unique visits
Since November 1, 2009

No robots online now


SCImago Journal & Country Rank

SEARCH ENGINES - Google Pagerank


Anycast DNS Hosting

 Volume 19 (2019)
     »   Issue 1 / 2019
 Volume 18 (2018)
     »   Issue 4 / 2018
     »   Issue 3 / 2018
     »   Issue 2 / 2018
     »   Issue 1 / 2018
 Volume 17 (2017)
     »   Issue 4 / 2017
     »   Issue 3 / 2017
     »   Issue 2 / 2017
     »   Issue 1 / 2017
 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
 Volume 15 (2015)
     »   Issue 4 / 2015
     »   Issue 3 / 2015
     »   Issue 2 / 2015
     »   Issue 1 / 2015
  View all issues  


Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


  1/2015 - 17

Performance Improvement for Quasi Periodical Disturbances in PH Control

STEBEL, K. See more information about STEBEL, K. on SCOPUS See more information about STEBEL, K. on IEEExplore See more information about STEBEL, K. on Web of Science, CHOINSKI, D. See more information about CHOINSKI, D. on SCOPUS See more information about CHOINSKI, D. on SCOPUS See more information about CHOINSKI, D. on Web of Science
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (973 KB) | Citation | Downloads: 274 | Views: 1,891

Author keywords
nonlinear control systems, PI control, process control, error analysis, chemical industry

References keywords
control(23), stebel(7), systems(6), process(5), model(5), choinski(5), practice(4), poland(4), measurement(4), design(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-02-28
Volume 15, Issue 1, Year 2015, On page(s): 123 - 134
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.01017
Web of Science Accession Number: 000352158600017
SCOPUS ID: 84924765128

Quick view
Full text preview
Proper operation of control systems is essential for achieving good economic results and reducing control effort. The paper is focused on presenting a new application of a well-known concept. The main scope of the paper is a practical presentation of obtaining a minimum process performance index by means of known statistical tools. This is achievable by appropriate selection of the correction value for set-point and the width of the time window of a statistical algorithm. The proposed novel algorithm was successfully implemented in the pilot neutralization process. On one hand, the proposed algorithm is a corrector of the statistical properties of the control error, and, on the other one, of a set point of the control system.

References | Cited By  «-- Click to see who has cited this paper

[1] Q. Li, Whiteley, J. Rhinehart, "An automated performance monitor for process controllers," Control Engineering Practice, vol. 12, pp. 537-553, 2004.
[CrossRef] [Web of Science Times Cited 7]

[2] S. A. Zahiripour, A. A. Jalali, "A novel adaptive switching function on fault tolerable sliding mode control for uncertain stochastic systems," ISA Transactions, vol. 53, no 5, pp. 1528-1533, 2014.
[CrossRef] [Web of Science Times Cited 3]

[3] R-E. Precup, S. Preitl, M-B. Radac, E. M. Petriu, C-A Dragos¸ J. K. Tar, "Experiment-Based Teaching in Advanced Control Engineering," IEEE Transactions On Education, vol. 54, no. 3, pp. 345-355, 2011.
[CrossRef] [Web of Science Times Cited 52]

[4] P. Skupin, D. Choinski, "Microactuator System for Teaching Micropositioning Control System Design," International Journal of Engineering Education, vol. 30(6A), pp.1499-1508, 2014.

[5] Q. B. Jin, Q. Liu, "IMC-PID design based on model matching approach and closed-loop shaping," ISA Transactions vol. 53, pp. 462-473, 2014.
[CrossRef] [Web of Science Times Cited 25]

[6] A. Besancon-Voda, "Iterative auto-calibration of digital controllers: methodology and applications," Control Engineering Practice vol. 6, pp. 345-358, 1998.
[CrossRef] [Web of Science Times Cited 17]

[7] V. J. Ginter, J. K. Pieper, "Robust Gain Scheduled Control of a Hydrokinetic Turbine," IEEE Transactions On Control Systems Technology, vol. 19, no. 4, pp. 805-817, 2011.
[CrossRef] [Web of Science Times Cited 22]

[8] K. Stebel, J. Czeczot, P. Laszczyk, "General tuning procedure for the nonlinear balance-based adaptive controller," International Journal of Control, vol. 87, no 1, pp. 76-89, 2014.
[CrossRef] [Web of Science Times Cited 19]

[9] T. Klopot, P. Laszczyk, K. Stebel, J. Czeczot, "Flexible function block implementation of the balance-based adaptive controller as the potential alternative for PID-based industrial applications," Transactions of the Institute of Measurement and Control, vol. 36, no. 8, pp.1098-1113, 2014.
[CrossRef] [Web of Science Times Cited 23]

[10] T. Hagglund, "Industrial implementation of on-line performance monitoring tools," Control Engineering Practice vol.13, pp.1383-1390 2005.
[CrossRef] [Web of Science Times Cited 38]

[11] A. Kozyra, J. Wiora, A. Wiora, "Calibration of potentiometric sensor arrays with a reduced number of standard," Talanta, vol. 98, pp. 28-33, 2012.
[CrossRef] [Web of Science Times Cited 6]

[12] T. Hagglund, "A control-loop performance monitor," Control Engineering Practice, vol. 3 no. 11, pp.1543-1551, 1995.
[CrossRef] [Web of Science Times Cited 139]

[13] K. Patanarapeelert, T. Frank, R. Friedrich, P. Beek, I. Tang, "A data analysis method for identifying deterministic components od stable and unstable time-delayed systems with colored noise," Physics Letters A, vol. 360, pp. 190-198, 2006.
[CrossRef] [Web of Science Times Cited 7]

[14] J. Bhattacharya, E. Pereda, H. Petsche, "Effective Detection of Coupling in Short and Noisy Bivariate Data," IEEE Transactions on Systems, Mam, and Cybernetics- part B: Cybernetics, vol. 33, no. 1, pp. 85-95, 2003.
[CrossRef] [Web of Science Times Cited 34]

[15] Y. Wang, T. Liu, Z. Zhao, "Advanced PI control with simple learning set-point design: Application on batch processes and robust stability analysis," Chemical Engineering Science vol. 71, pp. 153-165, 2012.
[CrossRef] [Web of Science Times Cited 19]

[16] K. Stebel, M. Metzger, "Distributed parameter model for pH process including distributed continuous and discrete reactant feed," Computers and Chemical Engineering vol. 38 pp. 82- 93, 2012.
[CrossRef] [Web of Science Times Cited 11]

[17] T. J. McAvoy, "Time Optimal Ziegler-Nichols Control," Ind. Eng. Chem. Process Des. Develop, vol. 11, no. 1, 1972.

[18] S. Mahuli, R. Rhinehart, J. Riggs. "Experimental demonstration of non-linear model-based in-line control of pH," J. Proc. Cont., vol 2, no 3, pp.145-153, 1992.

[19] T. K. Gustafsson , B. O. Skrifvars , K. V. Sandstroem , K. V. Waller, "Modeling of pH for Control," Ind. Eng. Chem. Res., vol. 34, pp. 820-827, 1995.
[CrossRef] [Web of Science Times Cited 60]

[20] K. Stebel, J. Czeczot, "Nostationary modelling approaches of neutralization process for model-based control," 14th IEEE International Conference on Methods and Models in Automation and Robotics MMAR 2009, Poland 2009.

[21] S. Rubio, B. Jørgensen, G. Jonsson, "pH control structure design for a periodically operated membrane separation process," Computers and Chemical Engineering, Vol. 43, pp. 120- 129, 2012.
[CrossRef] [Web of Science Times Cited 3]

[22] K. Stebel, D. Choinski, "Programmable pH measurement correction in application to control," Proceedings of IFAC Workshop on Programmable Devices and Systems PDS 2004, Cracow, Poland, pp.47-52, 2004.

[23] K. Stebel, D. Choinski, "Context Model for Multi-Agent System Reconfiguration," AIMSA 2008, LNAI 5253, pp. 1-11. Springer-Verlag Berlin Heidelberg, 2008.

[24] M. Metzger, D. Choinski, "Neutralization pilot plant," Activity report 1999-2000, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland, pp.67-69, 2001.

[25] I. Leito, L. Strauss, E. Koort, V. Pihl, "Estimation of uncertainty in routine pH measurement," Springer-Verlag Accred Qual Assur, vol 7: pp.242-249, 2002.
[CrossRef] [Web of Science Times Cited 29]

[26] G. Meinrath, P. Spitzer, "Uncertainties in Determination of pH," Springer-Verlag Mikrochim. Acta, vol. 135, pp.155-168 2000.
[CrossRef] [Web of Science Times Cited 35]

[27] P. Brandstetter, T. Krecek, "Speed and Current Control of Permanent Magnet Synchronous Motor Drive Using IMC Controllers," Advances in Electrical and Computer Engineering vol. 12, no 4, 2012.

[28] V. G. Dovm, A. D. Borghi, "Rectification of flow measurements in continuous processes subject to fluctuations," Chemical Engineering Science vol. 56, pp. 2851-2857, 2001.
[CrossRef] [Web of Science Times Cited 3]

[29] J. G. Ziegler, N. B. Nichols, "Optimum settings for automatic controllers," Transactions of the A.S.M.E. vol. 42, pp. 759-765, 1942.

[30] K. L. Chien, J. A. Hornes, J. B. Reswick, "On the automatic control of the generalized passive systems," Trans. Assoc. Soc. Mech. Eng. 1952.

[31] D. Choinski, K. Stebel, W. Nocon, "Detection of Measurement Deviation in Application to Oxygen Level Control," 12th IEEE International Conference on "Methods and Models in Automation and Robotics", Poland, vol. 1, pp. 387-392 , 2006.

References Weight

Web of Science® Citations for all references: 552 TCR
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 17 ACR
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2019-04-22 08:56 in 149 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2019
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: