Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Feb 2017
Next issue: May 2017
Avg review time: 77 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,594,634 unique visits
490,149 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

2016-Jun-14
Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

Read More »


    
 

  4/2013 - 7

CA-MAC: A Novel MAC Protocol to Alleviate Congestion in Wireless Sensor Networks

QIAN, L. See more information about QIAN, L. on SCOPUS See more information about QIAN, L. on IEEExplore See more information about QIAN, L. on Web of Science, FANG, C. See more information about  FANG, C. on SCOPUS See more information about  FANG, C. on SCOPUS See more information about FANG, C. on Web of Science, DOBRE, O. A. See more information about  DOBRE, O. A. on SCOPUS See more information about  DOBRE, O. A. on SCOPUS See more information about DOBRE, O. A. on Web of Science, LIU, H. See more information about  LIU, H. on SCOPUS See more information about  LIU, H. on SCOPUS See more information about LIU, H. on Web of Science, WU, J. See more information about WU, J. on SCOPUS See more information about WU, J. on SCOPUS See more information about WU, J. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (808 KB) | Citation | Downloads: 369 | Views: 2,375

Author keywords
wireless sensor networks, MAC protocol, data gathering effect, congestion alleviation, contention window

References keywords
sensor(28), networks(22), protocol(8), systems(6), embedded(6), communications(6), networked(5), mobile(5), efficient(5), duty(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2013-11-30
Volume 13, Issue 4, Year 2013, On page(s): 41 - 46
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.04007
Web of Science Accession Number: 000331461300007
SCOPUS ID: 84890239128

Abstract
Quick view
Full text preview
Even if the traffic pattern is known and the network topology is simple, a strong congestion can take place in wireless sensor networks (WSNs) due to the data gathering effect and the duty-cycle operation. In this paper, we propose a novel medium access control (MAC) protocol to alleviate the congestion, which is referred to as the congestion alleviation-MAC (CA-MAC). It adopts an adaptive contention window (ACW), which allows the nodes with more buffered packets to transmit with a higher probability, as well as an intelligent burst packet transmission when the congested nodes seize the channel. Simulations are performed in NS-2, and results show that the proposed CA-MAC protocol achieves a good performance in terms of the packet delivery ratio (PDR), power consumption, throughput, and average latency.


References | Cited By  «-- Click to see who has cited this paper

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor networks: a survey," IEEE Communications Magazine, vol. 40, no. 8, pp. 102 - 114, Mar. 2002.
[CrossRef] [Web of Science Times Cited 5834] [SCOPUS Times Cited 9385]


[2] I. Demirkol, C. Ersoy and F. Alagz , "Wireless sensor networks: A survey," IEEE Communications Magazine, vol. 44, no. 4, pp.115-121, Apr. 2006.
[CrossRef] [Web of Science Times Cited 383] [SCOPUS Times Cited 650]


[3] C.-Y. Wan, S. B. Eisenman, A. T. Campbell, and J. Crowcroft, "Overload traffic management for sensor networks," ACM Transactions on Sensor Networks, vol. 3, no. 4, pp. 18-es, Oct. 2007.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 40]


[4] W. Ye, J. Heidemann, and D. Estrin,, "An energy-efficient mac proto-col for wireless sensor networks," in Proc. IEEE INFOCOM, 2002, pp. 1567-1576.
[CrossRef] [SCOPUS Times Cited 3124]


[5] M. Ringwald and K. Romer, "Bitmac: A deterministic, collision-free, and robust mac protocol for sensor networks," in Proc. Second European Workshop on Wireless Sensor Networks, 2005, pp. 57 - 69.
[CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 36]


[6] F. Yu, T. Wu, and S. Biswas, "Toward in-band self-organization in energy-efficient mac protocols for sensor networks," IEEE Transactions on Mobile Computing, vol. 7, no. 2, pp.156-170, Feb. 2008.
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 23]


[7] O. Younis and S. Fahmy, "Heed: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks," IEEE Transactions on Mobile Computing, vol. 3, no. 4, pp. 366 - 379, Oct.-Dec. 2004.
[CrossRef] [Web of Science Times Cited 1404] [SCOPUS Times Cited 2486]


[8] S. H. Lee, J. H. Park, and L. Choi, "Amac: Traffic-adaptive sensor network mac protocol through variable duty-cycle operations," in Proc. IEEE International Conference on Communications, 2007, pp. 3259-3264.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 8]


[9] G. Lu, B. Krishnamachari, and C. S. Raghavendra, "An adaptive energy efficient and low-latency mac for data gathering in wireless sensor networks," in Proc. International Parallel and Distributed Processing Symposium, 2004, pp. 224-230.
[CrossRef]


[10] D. Shu, A. K. Saha, and D. B. Johnson, "RMAC: A routing-enhance-d duty-cycle mac protocol for wireless sensor networks," in Proc. IEEE International Conference on Computer Communications, 2007. pp. 1478-1486.
[CrossRef] [Web of Science Times Cited 95] [SCOPUS Times Cited 132]


[11] C. Fang, H. Liu, and L.L. Qian, "LC-MAC: An efficient mac protocol for the long-chain wireless sensor networks," in Proc. International Conference on Communications and Mobile Computing, 2011, pp. 495-500.
[CrossRef] [SCOPUS Times Cited 7]


[12] J. Polastre, J. Hill, and D. Culler, "Versatile low power media access for wireless sensor networks," in Proc. International Conference on Embedded Networked Sensor Systems, 2004, pp. 95-107.
[CrossRef]


[13] M. Buettner, G. V. Yee, E. Anderson, and R. Han, "X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks," in Proc. International Conference on Embedded Networked Sensor Systems, 2006, pp. 307-320.
[CrossRef] [SCOPUS Times Cited 896]


[14] Y. Sun, O. Gurewitz, and D. B. Johnson, "RI-MAC: a receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks," in Proc. International Conference on Embedded Network Sensor Systems, 2008, pp. 1-14.
[CrossRef] [Web of Science Times Cited 269] [SCOPUS Times Cited 315]


[15] B. Hull, K. Jamieson, and H. Balakrishnan, "Mitigating congestion in wireless sensor networks," in Proc. International Conference on Embedded Networked Sensor Systems, 2004, pp. 134-147.
[CrossRef]


[16] Y. Sankarasubramaniam, O. B. Akan, and I. F. Akyildiz, "Event-to-sink reliable transport in wireless sensor networks," in Proc. ACM MobiHoc, 2003, pp. 177-188.
[CrossRef] [Web of Science Times Cited 180] [SCOPUS Times Cited 328]


[17] C. Y. Wan, S. B. Eisenman, and A. T. Campbell, "Coda: congestion detection and avoidance in sensor networks," in Proc. International Conference on Embedded Networked Sensor Systems, 2003, pp. 266-279.
[CrossRef]


[18] H. Gong, M. Liu, Y. Mao, L. J. Chen, and L. Xie, "Traffic adaptive mac protocol for wireless sensor network," Networking and Mobile Computing Lecture Notes in Computer Science, vol. 3619, pp. 1134-1143, Aug. 2005.
[CrossRef]


[19] N. Saxena, A. Roy, and J. Shin, "Dynamic duty cycle and adaptive contention window based QoSMAC protocol for wireless multimedia sensor networks," Computer Networks, vol. 52, no. 13, pp. 2532-2542, Sept. 2008.
[CrossRef] [Web of Science Times Cited 52] [SCOPUS Times Cited 79]


[20] G. S. Ahn, S. G. Hong, E. Miluzzo, A. T. Campbell, and F. Cuomo, "Funneling-mac: a localized, sink-oriented mac for boosting fidelity in sensor networks," in Proc. International Conference on Embedded Networked Sensor Systems, 2006, pp. 293-306.
[CrossRef] [SCOPUS Times Cited 210]


[21] H. Zhai and U. Fang, "Distributed flow control and medium access in multihop ad hoc networks," IEEE Transactions on Mobile Computing, vol. 5, no. 11, pp. 1503-1514, Nov. 2006.
[CrossRef] [SCOPUS Record]


[22] T. S. Rappaport, Wireless Communications Principles and Practice. Second Edition, pp. 120-125, Prentice Hall, 2001.



References Weight

Web of Science® Citations for all references: 8,269 TCR
SCOPUS® Citations for all references: 17,719 TCR

Web of Science® Average Citations per reference: 360 ACR
SCOPUS® Average Citations per reference: 770 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-04-27 04:28 in 138 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: