Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 78 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,500,121 unique visits
994,716 downloads
Since November 1, 2009



Robots online now
Googlebot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  4/2013 - 12

Low Complexity Approach for High Throughput Belief-Propagation based Decoding of LDPC Codes

BELEAN, B. See more information about BELEAN, B. on SCOPUS See more information about BELEAN, B. on IEEExplore See more information about BELEAN, B. on Web of Science, BORDA, M. See more information about  BORDA, M. on SCOPUS See more information about  BORDA, M. on SCOPUS See more information about BORDA, M. on Web of Science, BOT, A. See more information about  BOT, A. on SCOPUS See more information about  BOT, A. on SCOPUS See more information about BOT, A. on Web of Science, NEDEVSCHI, S. See more information about NEDEVSCHI, S. on SCOPUS See more information about NEDEVSCHI, S. on SCOPUS See more information about NEDEVSCHI, S. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (623 KB) | Citation | Downloads: 774 | Views: 3,086

Author keywords
LDPC decoder, decoding algorithms, low-complexity, hardware implementations, belief propagation

References keywords
ldpc(17), codes(15), decoding(8), systems(6), decoder(5), turbo(4), communications(4), architecture(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2013-11-30
Volume 13, Issue 4, Year 2013, On page(s): 69 - 72
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.04012
Web of Science Accession Number: 000331461300012
SCOPUS ID: 84890249314

Abstract
Quick view
Full text preview
The paper proposes a low complexity belief propagation (BP) based decoding algorithm for LDPC codes. In spite of the iterative nature of the decoding process, the proposed algorithm provides both reduced complexity and increased BER performances as compared with the classic min-sum (MS) algorithm, generally used for hardware implementations. Linear approximations of check-nodes update function are used in order to reduce the complexity of the BP algorithm. Considering this decoding approach, an FPGA based hardware architecture is proposed for implementing the decoding algorithm, aiming to increase the decoder throughput. FPGA technology was chosen for the LDPC decoder implementation, due to its parallel computation and reconfiguration capabilities. The obtained results show improvements regarding decoding throughput and BER performances compared with state-of-the-art approaches.


References | Cited By  «-- Click to see who has cited this paper

[1] R. G. Gallager, "Low-Density Parity-Check Codes," IRE Transmission Information Theory, vol. 8, pp. 21-28, Jan. 1962.
[CrossRef] [SCOPUS Times Cited 5328]


[2] Sangmin Kim, Gerald E. Sobelman, and Hanho Lee, "A Reduced-Complexity Architecture for LDPC Layered Decoding Schemes," IEEE Transactions on VLSI systems, 2011.
[CrossRef] [Web of Science Times Cited 33] [SCOPUS Times Cited 36]


[3] Steffen Kunze, Emil Matus and Gerhard P. Fettweis, ASIP Decoder Architecture for Convolutional and LDPC Codes, IEEE Int. Symposium on Circuits and Systems, ISCAS 2009.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 11]


[4] Z. Zhang, et al., "Design of LDPC Decoders for Improved Low Error Rate Performance: Quantization and Algorithm Choices," IEEE Trans. on Wireless Comm., 8(11), pp. 3258-3268, 2009.
[CrossRef] [Web of Science Times Cited 54] [SCOPUS Times Cited 82]


[5] H. Ji, J. Cho, W. Sung , "Memory Access Optimized Implementation of Cyclic and Quasi-Cyclic LDPC Codes on a GPGPU," Journal of Signal Processing Systems, 64(1), pp 149-159, 2011.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 25]


[6] G. Falcao, L. Sousa, V. Silva, "Massively LDPC Decoding on Multicore Architectures," IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 2, 2011.
[CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 88]


[7] Houston M, Stanford University, General Purpose Computation on Graphics Processors, 2008.

[8] J. Su, K. Liu, H. Min, "Hardware Efficient Decoding of LDPC Codes Using Partial-min Algorithms," IEEE Trans. on Consumer Electronics, 52(4), pp. 1463-1468, November 2006.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 6]


[9] M. Awais, A. Singh, G. Masera, "High Throughput LDPC Decoder for WiMAX (802.16e) Applications," Advances in Computing and Communications, Communications in Computer and Information Science Volume 191, pp 374-385, 2011.
[CrossRef] [SCOPUS Times Cited 4]


[10] Y. Sun, J. Cavallaro, " Flexible LDPC/Turbo Decoder Architecture," Journal of Signal Processing Systems, 64(1), pp 1-16, 2011.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 30]


[11] Matthias Alles, Timo Vogt, Norbert Wehn, FlexiChaP: A Reconfigurable ASIP for Convolutional, Turbo, and LDPC Code Decoding, International Symposium on Turbo Codes, 2008.
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 59]


[12] Xiaojun Zhang, Yinghong Tian, et al. , An Multi-Rate LDPC Decoder Based on ASIP for DMB-TH, IEEE 8th International Conference on ASIC, pp. 995-998, 2009.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 6]


[13] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, "Factor Graphs and the Sum-Product Algorithm," IEEE Transactions on Information Theory, 47(2), pp. 498-519, February 2001.
[CrossRef] [Web of Science Times Cited 3897] [SCOPUS Times Cited 5018]


[14] Bernhard M.J. Leiner, LDPC Codes - a brief Tutorial, 2005.

[15] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier and X. Hu, "Reduced Complexity Decoding of LDPC Codes," IEEE Transactions on Communications, 53, pp. 1232-1232, 2005.
[CrossRef] [Web of Science Times Cited 596] [SCOPUS Times Cited 790]


[16] Sunghwan Kim, Min-Ho Janget, et al., "Sequential message-passing decoding of LDPC codes by partitioning check nodes," IEEE Trans. on Communications, 56 (7), pp. 1025-1031, 2008.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 7]


[17] John R. Barry, Low-Density Parity-Check Codes, Georgia Institute of Tech., October 2001

[18] Daesun Oh and K. Parhi, "Min-Sum Decoder Architectures With Reduced Word Length for LDPC Codes," IEEE Trans. on Circuits and Cystems, 57(1), pp. 105-115, January 2010.
[CrossRef] [Web of Science Times Cited 44]


[19] C. Jego, P. Adde, C. Leroux, "Full-parallel architecture for turbo decoding of product codes," Electronics Letters, 42(18), pp. 1052-1054, 2006.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 22]


[20] R. Terebes, "Mobile communication systems. Part one: GSM networks," UTPRES, Cluj-Napoca, 2006, ISBN 978-973-662-221.

[21] D. Klinc, J. Ha, S. McLaughlin, J. Barros and B. Kwak, "LDPC Codes for Physical Layer Security," IEEE Globecom , 2009.
[CrossRef] [SCOPUS Times Cited 40]


[22] Q. Huang, S. Pan., M. Zhang and Z. Wang, "A concatenation scheme of LDPC codes and source codes for flash memories," EURASIP Journal on Advances in Signal Processing, Vol. 208, 2012.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 4]


[23] A. D. Potorac, "Considerations on VoIP Throughput in 802.11 Networks," Advances in Electrical and Computer Engineering, Volume 9, Number 3, 2009.

[24] E. Puschita, P. Kantor, G. Manuliac, T. Palade, J. Bito, "Enabling Frame-Based Adaptive Video Transmission in a Multilink Environment," Advances in Electrical and Computer Engineering Volume 12, Number 2, 2012.
[CrossRef] [Full Text] [Web of Science Times Cited 2] [SCOPUS Times Cited 4]


[25] X. Hu, E. Eleftheriou, D. Arnold, A. Dholakia, "Efficient Implementations of the Sum-Product Algorithm for Decoding LDPC Codes", IEEE Globecom Proceedings, 2001.
[CrossRef]




References Weight

Web of Science® Citations for all references: 4,798 TCR
SCOPUS® Citations for all references: 11,560 TCR

Web of Science® Average Citations per reference: 185 ACR
SCOPUS® Average Citations per reference: 445 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-03-28 18:15 in 144 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy