Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: Nov 2017
Next issue: Feb 2018
Avg review time: 106 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,787,439 unique visits
513,754 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  3/2013 - 11

Interval Type-2 Fuzzy Logic Controller Based Maximum Power Point Tracking in Photovoltaic Systems

ALTIN, N. See more information about ALTIN, N. on SCOPUS See more information about ALTIN, N. on IEEExplore See more information about ALTIN, N. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (782 KB) | Citation | Downloads: 751 | Views: 2,793

Author keywords
Boost converter, interval type-2 fuzzy logic controller, MPPT, photovoltaic systems

References keywords
fuzzy(16), systems(15), type(9), photovoltaic(9), logic(8), system(6), electronics(6), power(5), industrial(4), grid(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2013-08-31
Volume 13, Issue 3, Year 2013, On page(s): 65 - 70
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.03011
Web of Science Accession Number: 000326321600011
SCOPUS ID: 84884916465

Abstract
Quick view
Full text preview
In this paper, interval type-2 fuzzy logic controller based maximum power point tracking method is proposed for photovoltaic systems. The proposed interval type-2 fuzzy logic controller has two inputs and one output. Rate of change in photovoltaic system output power and rate of change in photovoltaic system terminal voltage are selected as input variables and change in duty cycle as output variable. Seven type-2 membership functions are used for determined input and output variables of fuzzy logic controller. Since type-2 fuzzy sets are used, effect of uncertainties on maximum power point tracking capability is removed. Operation point of the photovoltaic system is controlled via a boost type DC-DC converter. Simulation results show that the proposed maximum power point tracking method provides fast dynamic response, and it is also useful for rapidly changing atmospheric conditions.


References | Cited By  «-- Click to see who has cited this paper

[1] N. Altin, I. Sefa, "dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter", Energy Conversion and Management, vol. 56, pp. 130-139, 2012.
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 52]


[2] O. Aydogmus, "Design of a solar motor drive system fed by a direct-connected photovoltaic array", Advances in Electrical and Computer Engineering, vol. 12, no:3, pp. 5 3-58, 2012.
[CrossRef] [Full Text] [Web of Science Times Cited 3] [SCOPUS Times Cited 4]


[3] I. Sefa, N. Altin, "Grid interactive photovoltaic inverters-a review", J. Fac. Eng. Arch. Gazi Univ., vol. 24, no:3, pp.409-424, 2009.

[4] D. Petreus, D. Moga, A. Rusu, T. Patarau, M. Munteanu, "Photovoltaic system with smart tracking of the optimal working point", Advances in Electrical and Computer Engineering, vol. 10, no:3, pp. 40-47, 2010.
[CrossRef] [Full Text] [Web of Science Times Cited 5] [SCOPUS Times Cited 7]


[5] F. Liu, S. Duan, F. Liu, B. Liu, Y. Kang, "A variable step size inc mppt method for pv systems", IEEE Transactions on Industrial Electronics, vol. 55, no. 7, 2622-2628, 2008.
[CrossRef] [Web of Science Times Cited 448] [SCOPUS Times Cited 663]


[6] H. Koizumi, T. Mizuno, T. Kaito, Y. Noda, N. Goshima, M. Kawasaki, K. Nagasaka, K. Kurokawa, "A novel microcontroller for grid connected photovoltaic systems", IEEE Transactions on Industrial Electronics, vol. 53, no. 6, pp. 1889-1897, 2006.
[CrossRef] [Web of Science Times Cited 77] [SCOPUS Times Cited 90]


[7] Q. Mei, M. Shan, L. Liu, J. M. Guerrero, "A novel improved variable step-size incremental-resistance mppt method for pv systems", IEEE Transaction on Industrial Electronics, vol. 58, no. 6, pp. 2427-2434, 2011.
[CrossRef] [Web of Science Times Cited 247] [SCOPUS Times Cited 317]


[8] A. Varnham, A. M. Varnham, G. S. Virk, D. Azzi, "Soft-computing model-based controllers for increased photovoltaic plant efficiencies", IEEE Trans. Energy Convers., vol. 22, no. 4, pp. 873-880, 2007.
[CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 25]


[9] J. L. Agorreta, L. Reinaldos, R. Gonzalez, M. Borrega, J. Balda, L. Marroyo, "Fuzzy switching technique applied to PWM boost converter operating in mixed conduction mode for PV systems", IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4363-4373, 2009.
[CrossRef] [Web of Science Times Cited 43] [SCOPUS Times Cited 57]


[10] L. A. Zadeh, "The concept of a linguistic variable and its application to approximate reasoning-1", Inform. Sci., vol. 8, pp. 199-249. 1975.

[11] N. N., Karnik, J. M. Mendel, Q. Liang, "Type-2 Fuzzy Logic Systems", IEEE Transactions on Fuzzy Systems, Vol. 7, No. 6, 1999, 643-658.
[CrossRef] [Web of Science Times Cited 691] [SCOPUS Times Cited 941]


[12] S. Barkat, A. Tlemçani, H. Nouri, "Noninteracting adaptive control of PMSM using interval type-2 fuzzy logic systems", IEEE Transactions on Fuzzy Systems, Vol. 19, No. 5, pp. 925-928, 2011.
[CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 48]


[13] P. Z. Lin, C. M. Lin, C. F. Hsu, T. T. Lee, "Type-2 fuzzy controller design using a sliding-mode approach for application to DC-DC converters", Proc. IEE Electr. Power Appl., vol. 152, no. 6, pp. 1482-1488, 2005.
[CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 79]


[14] L. Li, W. H. Lin, H. Liu, "Type-2 fuzzy logic approach for short-term traffic forecasting", Proc. Inst. Elect. Eng.—Intell. Transp. Syst., vol. 153, no. 1, pp. 33-40, 2006.
[CrossRef] [SCOPUS Times Cited 42]


[15] H. Hagras, "A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots", IEEE Trans. on Fuzzy Systems, vol. 12, no. 4, pp. 524-539, 2004.
[CrossRef] [Web of Science Times Cited 487] [SCOPUS Times Cited 650]


[16] J. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New directions, Upper Saddle River, NJ: Prentice-Hall, 2001.

[17] N. Altin, "Single phase grid interactive pv system with mppt capability based on type-2 fuzzy logic systems", Int. Conf. on Renewable Energy Research and Applications, pp.1-6, 2012.
[CrossRef] [SCOPUS Times Cited 4]


[18] M. G. Villalva, J. R. Gazoli, E. R. Filho, "Comprehensive approach to modeling and simulation of photovoltaic arrays", IEEE Transactions on Power Electronics, vol. 24, pp. 1198-1208, 2009.
[CrossRef] [Web of Science Times Cited 1125] [SCOPUS Times Cited 1645]


[19] C. A. Otieno, G. N. Nyakoe, C. W. Wekesa, "A neural fuzzy based maximum power point tracker for a photovoltaic system", 9th IEEE AFRICON, 1-6, 2009.
[CrossRef] [SCOPUS Times Cited 25]


[20] N. Altin, T. Yildirimoglu, "Labview/Matlab based photovoltaic system simulator with maximum power point tracking capability", Journal of Polytechnic, vol. 14, no: 4, pp. 271-280, 2011.

[21] M. A. Khanesar, E. Kayacan, M. Teshnehlab, O. Kaynak, "Analysis of the noise reduction property of type-2 fuzzy logic systems using a novel type-2 membership function", IEEE Transactions on Systems, Man, and Cybernetics—Part b: Cybernetics, vol. 41, no. 5, 1395-1406, 2011.
[CrossRef] [Web of Science Times Cited 43] [SCOPUS Times Cited 50]


[22] S. E. Jr. Mineiro, S. Daher, F. L. M. Antunes, C. M. T. Cruz, "Photovoltaic system for supply public illumination in electrical energy demand peak", 19. Annual IEEE Applied Power Electronics Conference and Exposition, vol. 3, 1501-1506, 2004.
[CrossRef]


[23] Q. Liang, J. M. Mendel, "Interval type-2 fuzzy logic systems: theory and design", IEEE Transactions on Fuzzy Systems, vol. 8 no.5, 535-549, 2000.
[CrossRef] [Web of Science Times Cited 841] [SCOPUS Times Cited 1082]


References Weight

Web of Science® Citations for all references: 4,156 TCR
SCOPUS® Citations for all references: 5,781 TCR

Web of Science® Average Citations per reference: 181 ACR
SCOPUS® Average Citations per reference: 251 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-12-10 19:16 in 123 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: